
• OS kernel stack bypass and zero-copy
transfer.

• Message-oriented via one-sided and
two-sided verbs API.

• Current DMS use RDMA to accelerate
batch OLAP and OLTP.

What is Remote Direct Memory Access? How does it help?

Rethinking Stateful Stream Processing with RDMA
Bonaventura Del Monte⌆, Steffen Zeuch⌆,⌔, Tilmann Rabl⌽, Volker Markl⌆,⌔

⌆Technische Universität Berlin · ⌔DFKI GmbH · ⌽Hasso-Platner Institute · ⌽Potsdam Universität

High-speed networks and RDMA have invalidated the common
assumption that network is often the bottleneck for scale-out SPEs.

Current SPEs design is RDMA-unfriendly, as it relies on costly data re-
partitioning to scale-out.

We propose Slash: an SPE suited for native RDMA acceleration that
scales out by omitting the expensive data re-partitioning demands

Overview and Motivation

Performance evaluation

This work was funded by the German Ministry for Education and Research as BIFOLD -
Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A and 01IS18037A)
and by the German Research Foundation as FONDA (ref. 414984028).

Acknowledgements

• We provide a new system design for RDMA-accelerated stateful
stream processing.

• We apply RDMA native acceleration by redesigning internal data
structures to avoid data repartitioning and use lazy merge.

• We show that an up to a factor of 25 increase in throughput
compared to the strongest baseline.

• We perform a drill-down analysis to explain why our solutions
performs better than our strongest baseline.

Take Home

Sender

Data
Buffer

TCP/UDP
Socket

Receiver

Data
Buffer

OS

Data
Buffer

OS

Data
Buffer

Eth
NIC

Data
Buffer

Eth
NIC

Data
Buffer

RDMARNIC RNIC

PC
I-Ex PC

I-E
x

bdelmonte@tu-berlin.de · steffen.zeuch@dfki.de · tilmann.rabl@hpi.de · volker.markl@tu-berlin.de

Why cant SPE benefit from RDMA acceleration?

Data repartitioning is costly.

Swapping socket-based with
RDMA communication does
not make SPEs faster.

Poor data and code locality
induced by message-passing.

YSB on 16-node cluster with 100Gbps RDMA network

Design Challenges and Solutions

• Efficient streaming computations: Replace data re-partitioning with
RDMA-enabled late merge.

• Efficient data transfer: RDMA depends on low-level factors.

• Consistent stateful computations: Progress tracking and exactly-
once state updates.

Guiding Design Principle: make the common case fast!

Eager computation of partial state and lazy merging to obtain a
consistent state.

Slash: our RDMA-enabled SPE

Performance gain explained

NebulaStream

Preprint is available!

Slash Instance

Slash Instance

Slash Instance

Slash
RDMA Channel

Slash State Backend

Slash
Multithreaded

Executor
Slash

RDMA Channel Input Stream
Flow

Pre-
Processing

Window
Assignment Window

Triggering
Post-

Processing

Slash State
Backend

Input Stream
Flow

Pre-
Processing

Window
Assignment

Window
Triggering

Post-
Processing

Partial Global

Processing Instance #1

Processing Instance #2

Filter WindowSource Sink

YSB on up to 16-nodes NeXMark Query 8 on up to 16-nodes

RDMA Up-Par is
bound by partitioning
and network speed.

Slash is bound by
memory performance.

Slash is part of NebulaStream: our Data Management Platform for the IoT.
Check out the preprint of our paper as well as the NebulaStream project!

https://nebula.stream
Follow us on Twitter @nebulastream

NebulaStream

Slash outperform baseline solutions on common streaming workloads.

https://nebula.stream/
https://twitter.com/nebulastream

