
• OS kernel stack bypass and zero-copy 
transfer.

• Message-oriented via one-sided and 
two-sided verbs API.

• Current DMS use RDMA to accelerate 
batch OLAP and OLTP.

What is Remote Direct Memory Access? How does it help?
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High-speed networks and RDMA have invalidated the common
assumption that network is often the bottleneck for scale-out SPEs.

Current SPEs design is RDMA-unfriendly, as it relies on costly data re-
partitioning to scale-out.

We propose Slash: an SPE suited for native RDMA acceleration that
scales out by omitting the expensive data re-partitioning demands

Overview and Motivation

Performance evaluation
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• We provide a new system design for RDMA-accelerated stateful 
stream processing. 

• We apply RDMA native acceleration by redesigning internal data 
structures to avoid data repartitioning and use lazy merge.

• We show that an up to a factor of 25 increase in throughput 
compared to the strongest baseline.

• We perform a drill-down analysis to explain why our solutions 
performs better than our strongest baseline.
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Why cant SPE benefit from RDMA acceleration?

Data repartitioning is costly.

Swapping socket-based with
RDMA communication does
not make SPEs faster.

Poor data and code locality
induced by message-passing.

YSB on 16-node cluster with 100Gbps RDMA network

Design Challenges and Solutions

• Efficient streaming computations: Replace data re-partitioning with
RDMA-enabled late merge.

• Efficient data transfer: RDMA depends on low-level factors.

• Consistent stateful computations: Progress tracking and exactly-
once state updates.

Guiding Design Principle: make the common case fast!

Eager computation of partial state and lazy merging to obtain a
consistent state.

Slash: our RDMA-enabled SPE

Performance gain explained

NebulaStream

Preprint is available!
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YSB on up to 16-nodes NeXMark Query 8 on up to 16-nodes

RDMA Up-Par is
bound by partitioning
and network speed.

Slash is bound by
memory performance.

Slash is part of NebulaStream: our Data Management Platform for the IoT.
Check out the preprint of our paper as well as the NebulaStream project!

https://nebula.stream
Follow us on Twitter @nebulastream

NebulaStream

Slash outperform baseline solutions on common streaming workloads.

https://nebula.stream/
https://twitter.com/nebulastream

