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What is this talk about?

Enable robust scale-out performance of 
stateful streaming queries using high-speed networks

Rhino: Efficient Management of Very Large Distributed State for Stream Processing Engines 2



Motivation
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Distributed Stream Processing 
Engines are network-hungry!

Data Repartitioning as primitive 
for aggregations and joins. 

Often the network is a 
bottleneck!
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What is RDMA?
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• OS kernel stack bypass and 
zero-copy transfer

• Message-oriented via verbs API

• Current DBMS use RDMA to 
accelerate batch OLAP and OLTP 
workloads
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What is RDMA?
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• OS kernel stack bypass and 
zero-copy transfer

• Message-oriented via verbs API

• Current DBMS use RDMA to 
accelerate batch OLAP and OLTP 
workloads

Can I apply RDMA acceleration to Stream Processing Engines (SPEs)? 
If SPEs are often network-bound, adding a fast network is a good idea!  
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Can SPEs benefit from a fast network?
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YSB Benchmark on a 16-node cluster with 100 Gbit Mellanox NICs
using FlinkIB and RDMA UpPar



Can SPEs benefit from a fast network?
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Adding a fast network to an SPE does not generally make it 
run faster, if execution is CPU-Bound.



Can we reuse any insight from scale-up SPEs?
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Source: Analyzing efficient stream processing on modern hardware, S. Zeuch, B. Del Monte, et al., VLDB 2019
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Can we reuse any insight from scale-up SPEs?
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Source: Analyzing efficient stream processing on modern hardware, S. Zeuch, B. Del Monte, et al., VLDB 2019Partitioning makes SPEs CPU-Bound, when processing high-speed data streams.
Use alternative processing model for scale-up SPEs.



Architectural Change: Design Challenges
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1. Efficient streaming computations
• Replace data re-partitioning with RDMA-enabled late merge
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2. Efficient data transfer
• RDMA performance depends on low-level factors



Architectural Change: Design Challenges
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1. Efficient streaming computations
• Replace data re-partitioning with RDMA-enabled late merge

2. Efficient data transfer
• RDMA performance depends on low-level factors

3. Consistent stateful computations
• Progress tracking and exactly-once state updates



Our prototype: Slash

Rethinking Stateful Stream Processing with RDMA 18

Slash’s design principle: make the common case fast
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Slash: Stateful Query Execution
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Eager computation of partial states followed by
lazy late merging of partial states in a consistent state 
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Slash in action: Window Aggregation
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Slash in action: Window Aggregation
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Slash in action: Window Aggregation
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Worker 1

Worker 2

(key=3, sum=5)
(key=1, sum=2)

(key=1, sum=3)
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Worker 3Async RDMA Write

Async RDMA Write (key=3, sum=5)        
(key=7, sum=2)
(key=1, sum=5)

Slash relies on log-structured storage, epoch-based
synchronization, and CRDT for late lazy merging.



Performance Evaluation
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Slash outperforms the baselines by a factor up to 25x.



Performance gain explained
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Slash requires less instructions and cycles to process a single record.
Partitioning for RDMA UpPar is an expensive operation.

• RDMA UpPar needs to execute partitioning
logic on every record. Next, it computes a
thread-local result on pre-partitioned data.

• Slash computes thread-local results that
lazily merges (less data moved around).



Performance gain explained
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Performance gain explained
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FE+CB

Execution of RDMA UpPar’s sender suffers from complex code and spin waiting.
Reason: data partitioning.



Performance gain explained
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FE+CB
CB

The execution of RDMA UpPar’s receiver stalls due to spin waiting on sender.
RDMA UpPar is bound by partitioning speed (CPU).



Performance gain explained
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Slash is memory-bound: it waits for data to be materialized into registers.
Slash is ultimately bound by memory speed. 

FE+CB
CB

MB



Lesson learned
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• Apply RDMA native acceleration and redesign internal data structures

• Avoid data-repartitioning: it induces performance issues!

• Use instead lazy merging of eagerly computed partial state/results 



Summary and take-home
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• We provide a new system design for RDMA-accelerated stateful 
stream processing. 

• Slash attains up to a factor of 25 increment in throughput compared 
to the strongest baseline.

• Our drill-down analysis shows that Slash is mainly memory-bound, 
whereas our strongest baseline is limited by partitioning speed.



Show us more numbers

Rethinking Stateful Stream Processing with RDMA 35

Slash outperforms baseline executing join operators and real-world workloads

Nexmark Query 8 Google Cluster Monitoring


