
Rethinking Stateful Stream 
Processing with RDMA

Bonaventura Del Monte · Steffen Zeuch · Tilmann Rabl · Volker Markl
ACM SIGMOD 2022



What is this talk about?

Enable robust scale-out performance of 
stateful streaming queries using high-speed networks

Rhino: Efficient Management of Very Large Distributed State for Stream Processing Engines 2



Motivation

Rethinking Stateful Stream Processing with RDMA 3

Distributed Stream Processing 
Engines are network-hungry!

Data Repartitioning as primitive 
for aggregations and joins. 

Often the network is a 
bottleneck!



Motivation

Rethinking Stateful Stream Processing with RDMA 4

Source: InfiniBandTA

Distributed Stream Processing 
Engines are network-hungry!

Data Repartitioning as primitive 
for aggregations and joins. 

Often the network is a 
bottleneck!



What is RDMA?

Rethinking Stateful Stream Processing with RDMA 5

• OS kernel stack bypass and 
zero-copy transfer

• Message-oriented via verbs API

• Current DBMS use RDMA to 
accelerate batch OLAP and OLTP 
workloads

Sender

Data 
Buffer

TCP/UDP
Socket

Receiver

Data 
Buffer

OS 

Data 
Buffer

OS

Data 
Buffer

Eth 
NIC 

Data 
Buffer

Eth
NIC

Data 
Buffer

RDMARNIC RNIC 

PCI-Ex PC
I-E

x



What is RDMA?

Rethinking Stateful Stream Processing with RDMA 6

• OS kernel stack bypass and 
zero-copy transfer

• Message-oriented via verbs API

• Current DBMS use RDMA to 
accelerate batch OLAP and OLTP 
workloads

Can I apply RDMA acceleration to Stream Processing Engines (SPEs)? 
If SPEs are often network-bound, adding a fast network is a good idea!  

Sender

Data 
Buffer

TCP/UDP
Socket

Receiver

Data 
Buffer

OS 

Data 
Buffer

OS

Data 
Buffer

Eth 
NIC 

Data 
Buffer

Eth
NIC

Data 
Buffer

RDMARNIC RNIC 

PCI-Ex PC
I-E

x



Can SPEs benefit from a fast network?

Rethinking Stateful Stream Processing with RDMA 7

YSB Benchmark on a 16-node cluster with 100 Gbit Mellanox NICs
using FlinkIB and RDMA UpPar



Can SPEs benefit from a fast network?

Rethinking Stateful Stream Processing with RDMA 8

Adding a fast network to an SPE does not generally make it 
run faster, if execution is CPU-Bound.



Can we reuse any insight from scale-up SPEs?

Rethinking Stateful Stream Processing with RDMA 10

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

pushP C

pushP C

Upfront 
Partitioning

Source: Analyzing efficient stream processing on modern hardware, S. Zeuch, B. Del Monte, et al., VLDB 2019



Can we reuse any insight from scale-up SPEs?

Rethinking Stateful Stream Processing with RDMA 12

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

pushP C

pushP C

Upfront 
Partitioning

pullP C

P Cpull

Late Local
Merge

pullP C

P Cpull

Late Global
Merge



Can we reuse any insight from scale-up SPEs?

Rethinking Stateful Stream Processing with RDMA 13

Input 
Stream

Output 
Stream

Data 
Flow

StateConsumerProducer

pushP C

pushP C

Upfront 
Partitioning

pullP C

P Cpull

Late Local
Merge

pullP C

P Cpull

Late Global
Merge

Source: Analyzing efficient stream processing on modern hardware, S. Zeuch, B. Del Monte, et al., VLDB 2019Partitioning makes SPEs CPU-Bound, when processing high-speed data streams.
Use alternative processing model for scale-up SPEs.



Architectural Change: Design Challenges

Rethinking Stateful Stream Processing with RDMA 15

1. Efficient streaming computations
• Replace data re-partitioning with RDMA-enabled late merge



Architectural Change: Design Challenges

Rethinking Stateful Stream Processing with RDMA 16

1. Efficient streaming computations
• Replace data re-partitioning with RDMA-enabled late merge

2. Efficient data transfer
• RDMA performance depends on low-level factors



Architectural Change: Design Challenges

Rethinking Stateful Stream Processing with RDMA 17

1. Efficient streaming computations
• Replace data re-partitioning with RDMA-enabled late merge

2. Efficient data transfer
• RDMA performance depends on low-level factors

3. Consistent stateful computations
• Progress tracking and exactly-once state updates



Our prototype: Slash

Rethinking Stateful Stream Processing with RDMA 18

Slash’s design principle: make the common case fast

Slash Instance 

Slash Instance 

Slash Instance 

Slash
RDMA Channel

Slash State Backend

Slash
Multithreaded

Executor 
Slash

RDMA Channel



Slash: Stateful Query Execution

Rethinking Stateful Stream Processing with RDMA 19

Eager computation of partial states followed by
lazy late merging of partial states in a consistent state 

Input Stream 
Flow

Pre-
Processing

Window 
Assignment Window 

Triggering 
Post-

Processing

Slash State 
Backend

Input Stream 
Flow

Pre-
Processing

Window 
Assignment

Window 
Triggering 

Post-
Processing

Partial Global

Processing Instance #1

Processing Instance #2

Filter WindowSource Sink



Slash in action: Window Aggregation

Rethinking Stateful Stream Processing with RDMA 20

Worker 1

3,51,2

Worker 2

1,37,2

Worker 3

Window 
Trigger



Slash in action: Window Aggregation

Rethinking Stateful Stream Processing with RDMA 21

Worker 1

1,2

Worker 2

7,2

(key=3,  sum=5)

(key=1, sum=3)
Worker 3

Window 
Trigger



Slash in action: Window Aggregation

Rethinking Stateful Stream Processing with RDMA 22

Worker 1

Worker 2

(key=3, sum=5)
(key=1, sum=2)

(key=1, sum=3)
(key=7, sum=2)

Worker 3Async RDMA Write

Async RDMA Write (key=3, sum=5)        
(key=7, sum=2)
(key=1, sum=5)

Slash relies on log-structured storage, epoch-based
synchronization, and CRDT for late lazy merging.



Performance Evaluation

Rethinking Stateful Stream Processing with RDMA 27

Slash outperforms the baselines by a factor up to 25x.



Performance gain explained

Rethinking Stateful Stream Processing with RDMA 28

Slash requires less instructions and cycles to process a single record.
Partitioning for RDMA UpPar is an expensive operation.

• RDMA UpPar needs to execute partitioning
logic on every record. Next, it computes a
thread-local result on pre-partitioned data.

• Slash computes thread-local results that
lazily merges (less data moved around).



Performance gain explained

Rethinking Stateful Stream Processing with RDMA 29



Performance gain explained

Rethinking Stateful Stream Processing with RDMA 30

FE+CB

Execution of RDMA UpPar’s sender suffers from complex code and spin waiting.
Reason: data partitioning.



Performance gain explained

Rethinking Stateful Stream Processing with RDMA 31

FE+CB
CB

The execution of RDMA UpPar’s receiver stalls due to spin waiting on sender.
RDMA UpPar is bound by partitioning speed (CPU).



Performance gain explained

Rethinking Stateful Stream Processing with RDMA 32

Slash is memory-bound: it waits for data to be materialized into registers.
Slash is ultimately bound by memory speed. 

FE+CB
CB

MB



Lesson learned

Rethinking Stateful Stream Processing with RDMA 33

• Apply RDMA native acceleration and redesign internal data structures

• Avoid data-repartitioning: it induces performance issues!

• Use instead lazy merging of eagerly computed partial state/results 



Summary and take-home

Rethinking Stateful Stream Processing with RDMA 34

• We provide a new system design for RDMA-accelerated stateful 
stream processing. 

• Slash attains up to a factor of 25 increment in throughput compared 
to the strongest baseline.

• Our drill-down analysis shows that Slash is mainly memory-bound, 
whereas our strongest baseline is limited by partitioning speed.



Show us more numbers

Rethinking Stateful Stream Processing with RDMA 35

Slash outperforms baseline executing join operators and real-world workloads

Nexmark Query 8 Google Cluster Monitoring


