
Formal Relationship between Petri Net and
Graph Transformation Systems based on
Functor between M-adhesive Categories

Maria Maximova, Hartmut Ehrig, and Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany
{mascham,ehrig,lieske}@cs.tu-berlin.de

Motivation

For typed attributed graph transformation systems the tool environment AGG
[5] implements the execution and analysis of graph transformations [1]. A corre-
sponding tool for Petri net transformation systems, called RON-Environment [4],
simulates Petri net transformations based on corresponding graph transforma-
tions using AGG. Unfortunately, the correspondence between Petri net and
graph transformations is handled at an informal level up to now. A first ap-
proach to relate Petri nets and graph transformation systems has been proposed
by Kreowski in [2], where the Petri net firing behavior is expressed by graph
transformation rules. We now want to consider Petri net transformations in ad-
dition. The purpose of this work is to establish a formal relationship between two
corresponding M-adhesive transformation systems enabling us in particular to
translate Petri net transformations into graph transformations and, vice versa, to
create Petri net transformations from graph transformations. This should work
for different kinds of Petri nets. For this reason we propose to define suitable
functors, calledM-functors, between differentM-adhesive categories and to in-
vestigate properties, which allow to translate and create transformations of the
corresponding M-adhesive transformation systems.

Translation and Creation of Transformations using M-Functors

A weak adhesive HLR category (C,M) [1], short M-adhesive category, consists
of a category C together with a suitable class M of monos. In order to study
translation and creation of transformations between differentM-adhesive trans-
formation systems we introduce the notion of an M-functor.

Definition 1 (M-Functor).
A functor F : (C1,M1) → (C2,M2) between M-adhesive categories is called
M-functor, if we have F(M1) ⊆ M2 and F preserves pushouts along M-
morphisms.

We want to translate transformations from AS1 = (C1,M1, P1) to AS2 =
(C2,M2, P2) with M-adhesive category (C2,M2) and suitable productions P2.
This can be done using anM-functor F : (C1,M1)→ (C2,M2) for P2 = F(P1).

2

Theorem 1 (Translation of Transformations).
An M-functor F : (C1,M1) → (C2,M2) translates productions, applicability
of productions, construction of (direct) transformations, as well as parallel and
sequential independence of transformations.

Vice versa, we have the following result for the creation of transformations.

Theorem 2 (Creation of Transformations).
Given anM-functor F : (C1,M1)→ (C2,M2) with initial pushouts in (C1,M1),
which creates morphisms and preserves initial pushouts, then F creates appli-
cability of productions, direct transformations, as well as parallel and sequential
independence of transformations.

If we want to consider only (direct) transformations with injective matches, as
in the case of Petri net transformations in the next section, then it is sufficient to
define the functor F on injective morphisms only and to show modified conditions
for the translation and creation of transformations.

Translation and Creation of Petri Net Transformations

According to our overall aim outlined in the last section, we want to construct
a functor from Petri nets to typed attributed graphs, such that we are able to
apply the results in Theorem 1 and Theorem 2.

For (C1,M1) we take the category (PTINet,M1) of Petri nets with individ-
ual tokens and class M1 of injective morphisms, which is defined and shown to
beM-adhesive in [3]. Other choices for (C1,M1) would be place/transition nets
without initial marking or algebraic high-level nets [3]. For (C2,M2) we take the
category of typed attributed graphs (AGraphsATG,M2), which is shown to be
M-adhesive in [1] with specific attributed Petri net type graph ATG = PNTG.

An example for the application of a functor F on objects is shown in Figure 1,
where NI is a Petri net with a and b being individual tokens on place p1.

We can construct a functor F : PTINet|M1 → AGraphsPNTG|M2 , but
not an M-functor F : (PTINet,M1) → (AGraphsPNTG,M2), because F is
not well-defined on non-injective morphisms.

However, we are able to obtain translation and creation of Petri net trans-
formations with injective matches in the sense of Theorem 1 and Theorem 2,
because we can show the following non-trivial constructions and results:

1. Construction of functor F : PTINet|M1 → AGraphsPNTG|M2 ,

2. F translates pushouts ofM1-morphisms in (PTINet,M1) into pushouts of
M2-morphisms in (AGraphsPNTG,M2),

3. F creates M1-morphisms,

4. F preserves initial pushouts over M1-morphisms.

3

a b

p1

t1

p2

NI 2

1

a : Token b : Token

F(NI)

p1 : Place

t1 : Trans

in = 1
out = 1

p2 : Place

(a, p1) : token2place (b, p1) : token2place

(p1, t1) : place2trans

weightpre = 2

(t1, p1) : trans2place

weightpost = 1

Fig. 1. PTI net NI and its translation into a typed attributed graph F(NI)

Conclusion and Future Work

In addition to Theorem 1 and Theorem 2 above, we are able to show that the
functor F translates and creates applicability of productions, direct transforma-
tions, as well as parallel and sequential independence.

In the long run, this should enable us to analyze interesting properties of Petri
net transformation systems, like independence, termination and local confluence,
using corresponding results and analysis tools like AGG for graph transformation
systems. Moreover, it is interesting to study the relationship between other M-
adhesive transformation systems using this approach.

References

1. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science, Springer (2006),
http://www.springer.com/3-540-31187-4

2. Kreowski, H.J.: A Comparison between Petri Nets and Graph Grammars. In: 5th
International Workshop on Graph-Theoretic Concepts in Computer Science. LNCS,
vol. 100, pp. 1–19. Springer (1981)

3. Modica, T., Gabriel, K., Ehrig, H., Hoffmann, K., Shareef, S., Ermel, C., Golas,
U., Hermann, F., Biermann, E.: Low- and High-Level Petri Nets with Individual
Tokens. Tech. Rep. 2009/13, Technische Universität Berlin (2009), http://www.eecs.
tu-berlin.de/menue/forschung/forschungsberichte/2009

4. TFS-Group, TU Berlin: Reconfigurable Object Nets Environment (2007), http://
www.tfs.cs.tu-berlin.de/roneditor

5. TFS-Group, TU Berlin: AGG (2009), http://tfs.cs.tu-berlin.de/agg

