
Guided State Space Exploration using
Back-annotation of Occurrence Vectors?

Ábel Hegedüs and Dániel Varró

Budapest University of Technology and Economics, Hungary
{hegedusa,varro}@mit.bme.hu

Introduction Model transformation is a common technique in Model Driven
Engineering to design, analyze and simulate various kinds of models. In case
of model analysis, forward transformations usually carry out an abstraction to
enable efficient formal validation. However, mapping the information gathered
from validation back to the original models (i.e. back-annotation) is a challenge
due to the abstraction gap between the source and target languages.

Graph transformation systems (GTS) are highly relevant at many applica-
tion areas (e.g. creating models or modeling the behavior of systems) and their
abstraction, e.g. as Place-Transition (P/T) nets, are often used for termination
analysis [1], optimization [2], verification [3, 4] or finding errors in the imple-
mentation (debugging) [5]. However, the results of these analysis methods are
usually not execution paths (ordered sequence of rule applications or transition
firings) for the GTS but a more abstracted information, such as an occurrence
vector (vo) containing only the number of transition executions instead of their
exact order.

In order to successfully retrieve the rule application sequence (execution path
or trajectory) on the GTS-level, the state space of the GTS is explored using
the information collected by back-annotating the analysis results. Our goal is
to efficiently identify a feasible execution path of a GTS corresponding to a
given occurrence vector (if such path exists). During the exploration of the state
space, possible execution paths are examined to check their compliancy with the
analysis information.

Occurrence vector-based search strategy approach In [2], the computation of an
optimal rule application sequence is performed by encoding the P/T net ab-
straction (detailed in [1]) of the GTS into an integer linear programming (ILP)
problem. The solution of this problem is a candidate transition occurrence vec-
tor, which counts the number of rule applications. Since the abstraction does
not guarantee that this vector corresponds to an executable execution, its feasi-
bility should be checked on the GTS-level. However, in the original approach, vo
was used in the GTS state space exploration by only allowing occurrence vector
compliant execution paths to be explored. Therefore, it did not help in selecting
the most promising execution path or cutting the search on a given path when
it is guaranteed to be infeasible.

? This work was partially supported by the ICT FP7 SecureChange (ICT-FET-231101)
European Project and CertiMoT.



2

Selection and cut-off criteria for search strategy In this paper, we propose addi-
tional techniques, which use the occurrence vector as a hint, to guide the state
space exploration to further increase the performance of the algorithm. The main
features of these new techniques are (a) using the rule (or transition) dependency
graph (Gd) computed from the GTS (or P/T net) [6] to have a global view on the
effects of rule applications; (b) defining selection criteria Crsel on the applicable
rules (transitions) at a given state; and (c) defining cut-off criteria Crcut on the
paths. Criteria defined in both (b) and (c) depend on Gd and the application
numbers for the rules (transitions) in vo.

Definitions Let us assume that we have a GTS including a set of GT rules (ri)
and an initial graph (GI). Furthermore, as a result of critical pair analysis [7]
we have the dependency graph (Gd, illustrated in Fig. 1) of the rules, where
each ri is a node (ni) and there is a directed arc from ni to nj if rj has casual
dependency on ri (i.e. the application of ri may affect the match set of rj). Note
that there may be arcs in both direction between two nodes.

In this paper, ni• refers to the set of nodes which have casual dependency
on ni, while •ni refers to nodes on which ni has casual dependency (both sets
illustrated for nc in Fig. 1).

Fig. 1. Example dependency graph

Finally, we have a candidate transition occurrence vector (vo) as a solution
of the state equation in the P/T net, where vo[i] is the number of times that ri is
applied during the execution. During the state space exploration, the number of
times ri has been applied in a given path is stored in the application vector (va)
as va[i]. Obviously, an execution path of the state space exploration is compliant
with vo if va ≤ vo.

Using these definitions, we can define the following cut-off and selection cri-
teria for the search strategy:

CrcutNcp Non-compliant path (Look-ahead) When the application of any GT
rule would make the current execution path non-compliant with the occur-
rence vector of its corresponding P/T net, it can be cut.

CrcutPdr Permanently disabled rule When there is a disabled rule ri which
still has to be applied based on vo, but the application of any rule in •ni

would violate CrcutNcp, the current path can be cut.



3

CrselMfd Maximum forward-dependant application path Among the appli-
cable GT rules at any given state of the exploration, the one with the most
(transitively) dependant rule applications (ni•) should be executed first. The
selection is based on calculating the effect of each applicable rule using Gd.

Crselmbd Minimum backward-dependant application path In order to guide
the exploration towards a state where one of the cut-off criteria may be ap-
plicable, the rule selection is based on calculating the remaining rule appli-
cations for backward-dependant rules (•(ni•)).

Additional notes on the criteria The applicability of these criteria highly depends
on the structural properties of the dependency graph. First, if most dependencies
between rules are bidirectional or if the graph is almost strongly connected, the
selection criteria will be less effective. Furthermore, we suggest using transitive
closure for path computation as a first approximation, but we believe that more
sophisticated algorithms may be defined by handling cycles in the graph differ-
ently from simple paths. Although only the dependency graph was used when
defining the criteria, we suggest that a graph created from critical pairs could
be used as well.

The application of the presented techniques can increase the efficiency of the
state space exploration, while extensions may help to further refine the approach.

References

1. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination Anal-
ysis of Model Transformations by Petri Nets. In Corradini, A., Ehrig, H., Montanari,
U., Ribeiro, L., Rozenberg, G., eds.: Proc. Third International Conference on Graph
Transformation (ICGT 2006). Volume 4178 of LNCS., Natal, Brazil, Springer (2006)

2. Varró-Gyapay, S., Varró, D.: Optimization in Graph Transformation Systems Using
Petri Net Based Techniques. Electronic Communications of the EASST (ECEASST)
2 (2006) Selected papers of Workshop on Petri Nets and Graph Transformations.

3. König, B., Kozioura, V.: Counterexample-Guided Abstraction Refinement for the
Analysis of Graph Transformation Systems. In Hermanns, H., Palsberg, J., eds.:
Tools and Algorithms for the Construction and Analysis of Systems. Volume 3920
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2006) 197–211

4. Baresi, L., Spoletini, P.: On the Use of Alloy to Analyze Graph Transformation
Systems. In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.,
eds.: Graph Transformations. Volume 4178 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg (2006) 306–320

5. Wimmer, M., Kappel, G., Schoenboeck, J., Kusel, A., Retschitzegger, W.,
Schwinger, W.: A Petri Net Based Debugging Environment for QVT Relations. In:
Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM International
Conference on. (2009) 3 –14

6. Mens, T., Kniesel, G., Runge, O.: Transformation dependency analysis - a com-
parison of two approaches. In Rousseau, R., Urtado, C., Vauttier, S., eds.: LMO,
Hermès Lavoisier (2006) 167–184

7. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of Typed Attributed Graph
Transformation Systems. In: In: Proc. ICGT 2002. LNCS, Springer (2002)


	Guided State Space Exploration using Back-annotation of Transition Occurrence Vectors

