ELECTRONIC COMMUNICATIONS OF THEEASST

Volume 4

Proc. of 2nd International Workshop on Graph and Model
Transformation 2006

ISSN 1863-2122

Electronic Communications of the EASST

Search Trees for Distributed Graph Transformation Systems
Ulrike Ranger and Mathias L listraeten

12 pages, 2006

Guest Editors: Gabor Karsai, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

Homepage ofELECTRONIC COMMUNICATIONS OF THEEASST: http://www.easst.org/eceasst

ELECTRONIC COMMUNICATIONS OF THEEASST

Search Trees for Distributed Graph Transformation Systems

Ulrike Ranger and Mathias L Uistraeten*
*RWTH Aachen University, Department of Computer Science 3,
Ahornstrasse 55, 52074 Aachen, Germany
[rangefmatlug @i3.informatik.rwth-aachen.de

Abstract. Graph transformation systems, like PROGRES and Fujaba, can be used for modeling
software systems of various domains, and support the automatic generation of executable code. A
graph transformation rule is executed only if the pattern of the transformation’s left-hand side is
found in the graph. The search for the pattern has an exponential worst-case complexity. In many
cases, the average complexity can be reduced using search tree algorithms in the code generation
phase. When modeling distributed graph transformations, the communication overhead between
the coupled applications largely affects the pattern matching performance. Therefore, we present
an approach for adapting existing search tree algorithms for the efficient search of distributed
graph patterns. Our algorithm divides the distributed graph pattern into several sub-patterns
such that every sub-pattern affects solely the graph of exactly one coupled application. The
results of these sub-patterns are used to determine the match of the entire graph pattern.

Keywords: Graph Transformations, Search Trees, Distributed Systems

1 Introduction

Graph transformation systems (GTS), like PROGRES [Sch91] and Fujaba [FNTZ00], can be used to
model software systems in a visual way. Additionally, they facilitate the generation of executable code
like C or Java for the modeled software system. Several large projects of various domains have been
developed using GTS, but they lack support for specifying distributed systems. In our project, we extend
GTS for appropriate concepts including the visual specification of distributed graph transformations.

To support distributed graph transformations, we have to consider three aspects: First, the syntax and
semantics of distributed graph transformations has to be defapedification levgl Second, a concept
for the generation of efficient code has to be developed considering special requirements like communi-
cation costs¢ode generation level Third, a runtime environment must be designed and implemented,
which supports the execution of the generated applicatiamgifne level. This paper focuses on the
code generation level. The specification level is described in [RS06].

VOLUME 4 1

SEARCH TREES FORDISTRIBUTED GRAPH TRANSFORMATION SYSTEMS

Our code generation approach for distributed graph transformations is based on the segtihgree
algorithms of PROGRES and Fujaba. Search trees allow to reduce the complexity for searching graph
patterns specified within a graph transformation, as this search has an exponential worst-case complexity.

Regarding distributed graph transformations, also the high communication costs within a distributed
system have to be considered within the search trees. Therefore, we have to adapt the code generation al-
gorithm by the following approach: The distributed graph pattern specified within a graph transformation
is divided into several sub-patterns, such that every sub-pattern affects solely the graph of exactly one
coupled application. These sub-patterns are sent to the coupled applications, thus reducing the communi-
cation costs in comparison of querying the applications for every single remote element of the pattern. As
sub-patterns may depend on formerly queried pattern elements, the dependencies to other sub-patterns
have to be analyzed. Thus, the sub-patterns are executed with the former results as parameters, and their
results determine the match of the entire distributed graph pattern.

The paper is structured as follows: In section 2 we shortly introduce distributed graph transformations
considering a simple Publishing Trade as an example. Search trees, which are used to generate efficient
executable code for local graph transformations, are described in section 3. Section 4 presents our ap-
proach for adapting the presented search tree algorithm to distributed graph transformations. A summary
and an outlook on future work are given in section 5.

2 Specifying Distributed Graph Transformation Systems

In this section, we shortly introduce the visual modeling of distributed graph transformation systems at
specification level, which is described in [RS06]. This comprises the graph schema of the distributed
system, which will be described in section 2.1, and the visual specification of the dynamic behavior at
runtime presented in section 2.2.

In our approach, a distributed system is modeled by different specifications, each modeling one module
of the software system. At runtime, each specification is executed separately in an own application
storing the according host graphThese applications are coupled at runtime by executing distributed
graph transformations, which affect several applications simultaneously. The specificator only has to
develop appropriate transformations for the distributed system, as the GTS generates adequate executable
code, and the runtime environment automatically performs their execution.

2.1 Graph Schema of a Distributed Graph Transformation Systems

To illustrate our concepts, we use a simplablishing Tradeas example, whose static structure is de-
picted in figure 1. Here, we assume that a book publisher already has an existing Pollidieer,
managing alBooks and theiruthors®. As thePublisher has decided to sell hBooks in an online shop,

a new modulePublisher Shop for this purpose shall be developed, using the existing specification of
the Publisher module. The newiPublisher Shop manages the necessary data for selling@beks of the

1Until now, our approach has the restriction that every specification is executed exactly once within a distributed system.
We are developing appropriate concepts to fill this gap including the introductiosiesffor executed applications and the
usage of adequatele restrictionswithin graph transformations.

2For the sake of simplicity, everook is written by exactly onéuthor.

ProcC. OF 2ND GRAMOT 2

ELECTRONIC COMMUNICATIONS OF THEEASST

Publisher Publisher Shop Legend:
Specification Specification E Self-defined node class
Used node class
Graph Schema| Graph Schema — Self-defined edge type
Author Author: Customer o lé'SEd nedtge tyfe
. (3
+ Name +Name n likes p|+ Name xport stereotype
- Address + Account
T

<e> uses ! = i

1 1

<e> hasWritten ihasWritten ‘wishes has

n 1
Book “‘k 4

n
* Name noe Order
+ Price +:Name contains
+ Sellings + Price n n| + Amount
+:Sellings
<e>

Figure 1: Graph schema for the distributed Publishing Trade

Publisher including Customers and their accordin@rders. Additionally, aCustomer can have a wish
list for desiredBooks, which is modeled by theishes-edge. For advertisinBooks, thePublisher Shop
memorizes théuthors liked by theCustomers (likes-edge) when th€ustomer has bought 8ook.

ThePublisher and thePublisher Shop are modeled by different specifications shown in figure 1. As the
Publisher manages all information about tBeoks and theAuthors, thePublisher Shop needs access to
these data. Therefore, tReblisher defines arexport interfacéy using the stereotypee>. Each graph
schema element marked with this stereotype forms the interface of the specification. An exported node
class consists of the class name and the public attributes and methods defined within the node class.

The exported specification interface can umedby other specifications. Although the used graph
schema elements aread-only they can be used within the specification in nearly the same way as local,
self-defined schema elements. In this way, e.g. edges can be defined between self-defined and used node
classes or just between used node classes. To distinguish between used and self-defined schema elements,
the used elements are depicted as striped rectangles resp. dashed arrows within the specification. With
this mechanism, theublisher Shop uses the interface of theublisher and defines new edges between
self-defined and used node classes, e.gwthiges-edge between the self-defin€dstomer node class,
and the use@ook node class realizing the wish list.

2.2 Distributed Graph Transformations

The dynamic behavior of a distributed system has to be specified vdistinbuted graph transforma-

tions In distributed transformations, edges and nodes of used types can be applied in the same way as of
self-defined types but they address remote objects instead of local objects. At runtime, every node and
edge only exists once within a distributed system, i.e. in the host graph of the application, which is based
on the specification defining its type. Coupled applications only stdezence nodesn remote nodes
instead of copying remote nodes with their data into the local host graph. They are explicitly inserted
into the runtime graphs storing the location of their according remote nodes. As reference nodes are
only helper structures for accessing remote objects, they are implicitly managed by the runtime level and

VOLUME 4 3

SEARCH TREES FORDISTRIBUTED GRAPH TRANSFORMATION SYSTEMS

Publisher Shop

Specification

transformation buyBook (C:Customer, B:Book) =

| h | h
: A Author C i : A likes |C i
= e |
: yhaswritten Wishes lhas : = : +hasWritten lhas :
| |B O : Order : | [B. contains [O :
i : i Sellings ++; AmB.OpUr'iWCl: :
'] i

Legend:
Specification: Host Graph:

Node of a self-
|:| defined node class |:|Loca| node
I:l Node of an DReTerence node
used node class
— Local edge

— Edge of a s.-d. edge type
- - Edge of an used edge t.

Figure 2: Graph transformatiduyBook

are not regarded in the graph transformations. Their usage supports the realization of self-defined edges
incident to remote nodes. In contrast to reference nodes, we do not store reference edges.

A remote node (and thus an appropriate reference node in the local host graph) can be created within
a distributed graph transformation by using the according node only in the transformation’s right-hand
side. This concept corresponds to creating a local node of a self-defined type. Analogously, the deletion
of a remote node (and thus of the corresponding reference node) is triggered by using the according node
only on the left-hand side of the transformation.

Furthermore, a reference node is automatically created in the local host graph if an appropriate node
is used in the left-hand side of the transformation, and no adequate reference node is locally available,
although an according remote node exists. In this case, the remote application defining the node’s type
is searched for an adequate node, and an according reference node is created. Additionally, all reference
nodes are automatically deleted if the actual remote node is deleted. Operations specified on remote
objects, like the deletion of a node or an attribute assignment, are propagated transparently to the remote
applications. To ensure the consistency of the host graphs by remote graph transformations, we will
introduce aule engine(cf. section 5).

Figure 2 shows an example of the distributed graph transformbtigBook of the Publisher Shop. In
this transformation, &ustomer buys aBook (given as input parameters), which has been orCiee
tomer’s wish list. This leads to the deletion of théshes-edge as it is not longer needed. Furthermore,
the two edgedikes andcontains are created. The attribu&ellings counting the number of sales Bf
is incremented. Below the transformation, two example host graphs eluthisher Shop are depicted
showing the host graph before and after the execution of the transformation. According to the transfor-
mation edges are created and deleted and a new referencé&hdalethe Author A is inserted. In the
Publisher’s host graph only the attributellings of nodeB1 is modified, which is not shown in figure 2.

3For propagating remote operations and the management of references, we develop an appropriate plug-in for the database
DRAGOS [Bbh04], which is used by PROGRES (and soon by Fujaba) prototypes for storing the graphs.

Proc. oF 2ND GRAMOT 4

ELECTRONIC COMMUNICATIONS OF THEEASST

3 Search Trees

After modeling a software system with a GTS, appropriate code has to be generated. As the matching of
the left-hand side of a graph transformation has an exponential worst-case complexity, PROGRES and
Fujaba useearch tree$Zn96] for their code generation. In the coarse of this section, we will describe
these search trees using the code generation plug-in CodeGen2 [GSR05] of Fujaba as an example. As
we present the current mechanism, we ignore the remote nature of operations concerning a coupled
application.

3.1 General Structure of Search Trees

To generate executable and efficient code for graph transformations, every transformation is translated
into a search tree. A search tree is a tree, hasperationsas nodes angdreconditionrelations between

an operation and its child operations. The search tree contains all operations, which have to be performed
for the modeled graph transformation in the right execution order. In this paper, we use a more general
notion of a search tree, since not only search operations are used. CodeGen2 uses over 20 different
operations, covering constraint checks and operations for creating and deleting nodes.

In general, an operation describes one runtime semantics of one or more modeling elements within
a graph transformation. There is feto-1-mapping between operations and modeling elements. One
modeling element may result in several different operations in the search tree, because its runtime se-
mantics is precisely defined in the code generation phase. On the other hand, one operation may also
cover several modeling elements, as the semantics of one modeling element may be determined only in
combination with other elements.

For translating the graph transformation into a search tree, every node of the transformation’s left-hand
side @raph pattern) has to be identified in the host graph. As a first step, a search tree covering all bound
node$ is created. The second step regards all unbound nodes calculating a spanning forest for the graph
pattern. For every bound node, the forest contains a tree having the bound node as root node. Every
unbound node has to be searched in the host graph by traversing one edge of the pattern incident to a
bound node. The found unbound node together with its edge is inserted in the tree of the corresponding
bound node. After building the spanning forest for all pattern nodes, for all unbound nodes of the
spanning forest aearch operatiomepresenting the unbound node and the traversed edge is inserted into
the search tree. This operation is placed as child of the operation, which binds the edge’s source node.

Note that Fujaba does not allow isolated unbound nodes in graph patterns, because it uses the heap
of the JAVA runtime environment instead of a graph database. Other graph transformation systems like
PROGRES support this feature by querying the underlying database for nodes of a specific type. For the
sake of simplicity, we do not regard the search of isolated nodes and patterns although this is covered by
our approach using DRAGOS {B04].

After inserting the search operations into the search tree, the remaining modeling elements of the graph
transformation (like edges and attribute assertions) have to be inserted. The position of such an operation

4A bound nodés a node, which already has been uniquely identified in the host graph, for example nodes given as input
parameters of a transformation. In contrastbound nodesre nodes, which have to be searched in the host graph. If an
appropriate node for the unbound node is found, this node becomes a bound node.

VOLUME 4 5

SEARCH TREES FORDISTRIBUTED GRAPH TRANSFORMATION SYSTEMS

Publisher Shop RootNode

CheckBound
gy

Specification
query checkConsistency
(B:Book, C:Customer) =

: AAuthor likes |C i CheC"kCBnound
|
| I
i |
: yhasWritten Wishes lhas I Seamh‘ Search Che_ckEdge
| : ; ! "A", "hasWritten" "0", "has" "wishes"
| |B contains |O : Order : : ‘
: : CheckEdge CheckEdge
S "likes" "contains"
Figure 3: Graph quergheckConsistency Figure 4: Search tree for queckieckConsistency

is determined by the following overall invariant of the tree: All preconditions of an operation must be
fulfilled by preceding operations. To satisfy this invariant, the search tree may have to be reorganized
according to the invariant. The complete algorithm for the search tree generation is shown in [GSRO05].

To illustrate the generation of search trees, we introduce the gheciConsistency depicted in figure
3. This query may be used for consistency checks, e.g. to testwithes-edge has been deleted when
the Book has been bought by th&ustomer and is thus part of a@rder.

Figure 4 shows a possible search treectackConsistency. The generation of the tree starts with two
CheckBound-operations for parametes and C, which are inserted as children of tR®otNode. A
CheckBound-operation checks the validity of bound nodes, i.e. that they are not equal to

To determine all search operations needed to cover all unbound pattern nodes, a spanning forest has to
be computed, consisting of two trees: One tree Bitts root node and the other tree witlas root node.

For our example, we assume that the spanning forest is given by all nodes witisthigtten- and the
has-edge. According to this assumption, the search operations &dO using thehasWritten- resp.
has-edge are inserted into the search tree.

To cover the remaining edges, namebytains, wishes andlikes, CheckEdge-operations have to be in-
serted. ACheckEdge-operation must have at least those operations in their parent hierarchy, which cover
the source and the target node of the edge. To fulfill this invariant, the tree may have to be reorganized
before theCheckEdge-operations can be inserted.

In our example, theCheckBound-operation of nodeC (CheckC) is moved below theéheckBound-
operation of nod® (CheckB) and all children of CheckB are moved below CheckGter the reorga-
nization, theCheckEdge-operation of the edgeishes can be inserted into the search tree considering
the invariant. All othelCheckEdge-operations can be inserted without any further reorganization.

3.2 Cost Model

A graph transformation may have several different valid search trees, because there are several ways to
cover all modeling elements by operations. To evaluate the different search trees, the code generation
uses acost modepresented in the following.

5These reorganizations are possible, because siblings in the search tree are independent of each other.

Proc. oF 2ND GRAMOT 6

ELECTRONIC COMMUNICATIONS OF THEEASST

| index | source| edge | target| cost|

1 C has (0] 25
2 B contains o] 25
3 B hasWritten A 1

4 C likes A 25

Table 1: Cost table for search operations of queigckConsistency

Search operations may have different runtime costs, which can be estimated by exploiting the cardi-
nalities of the graph schema, for example. Search operations, whichtaseetge for matching an
unbound node, are very costly compared to those usiogleedge. Considering ®-1-edge, the right
candidate node can be directly determined, whereas a search operation tingg@ge leads to n
possible candidate nodes.

However, the costs for search operations can only be estimated, since the exact cardinatibyrfor a
edge in the host graph is not known during the code generation phase. Therefore, CodeGen2 and the
PROGRES code generation use default values for the expected costs. [VVFO05] presents an approach
for adapting the edge cardinalities by analysis of sample instance graphs leading to very precise cost
estimations. So far, this approach is not considered by CodeGen2 and thus not regarded in this paper.

Even by considering only the static graph schema for cost estimations, the runtime behavior can be
greatly improved. Before generating the search tree, the costs for each operation of the graph transfor-
mation are estimated. Afterwards, a minimum spanning forest of the graph pattern is computed, leading
to a preliminary search tree. This preliminary tree is incrementally extended by operations until all
modeling elements are covered choosing the cheapest operation in each step.

In our examplecheckConsistency (cf. figures 3, 4), there are four possible search operations (cf. table
1), which have to be considered for the search tree generation. According to the target cardinalities of the
edges, the costs for the search operations are either 1 or n. Note that this cost model is highly simplified
and n has to be a real value greater than 1. CodeGen2 contains diffestritrategiegor assigning
concrete cost values. The default cost strategy for search operations baked-edges assumes a
maximal cardinality of 50. As result, it computes a cost of 25, since this is the expected value having 1
as lower and 50 as upper cardinality.

To minimize the costs of the search tree and thus get the best runtime efficiency of the generated
code, the algorithm chooses the cheapest search operations until all unbound nodes are covered. In our
example, search operation 3 is chosen first due to the smallest costs. Sinc® wvadebe covered
by two operations with the same costs, the algorithm chooses non-deterministically between the search
operation 1 and 2. Given that operation 1 is chosen, the search tree depicted in figure 4 is computed.

4 Search Trees for Distributed Graph Transformations

In section 2 we presented our syntax for modeling distributed graph transformations. To execute such
a transformation, it has to be translated into executable code. Therefore, we extend the CodeGen2-

VOLUME 4 7

SEARCH TREES FORDISTRIBUTED GRAPH TRANSFORMATION SYSTEMS

| index | source| edge | target| cost|

1 C has (0] 25
2 B contains o] 25
3 B hasWritten A 51
4 C likes A 25

Table 2: Modified cost table for search operations of quleckConsistency

approach presented in section 3, which uses search trees to generate efficient code.

In the following, only the code generation for queries is shown, because queries have the greatestimpact
on the runtime efficiency, and transforming operations can only be executed if the search of the pattern
has been successful. A distributed query requieesote operationdike remote check operations and
remote search operations. Each remote operation affects exactly one application which iearaked
application After searching the distributed pattern, the transforming operations are performed, which
require no modifications of CodeGenz2.

4.1 Remote Offset

Remote operations have additional costs compared to their local correspondents, which results from the
communication delay between the participating applications. The additional cost isreatiete offset

and depends on the network infrastructure. The remote offset is configurable for each pair of applications,
which participate in the communication. Its calculation is integrated into CodeGen2, using a different
cost strategy for remote operations.

Reuvisit the querygonsistencyCheck introduced in section 3. Every search tree that is computed without
regarding a remote offset uses tiesWritten-edge as first search operation. Thus, a remote operation is
performed even it is not necessary, sicean also be found via the local ediges.

In many cases, a remote operation is more costly than every local operation. Considering this in our
cost model, we introduce a remote offset for every remote operation, which is larger than the maximal
cardinality of any local edge. Thus, assuming a cost of 25 for a search operation tsingdge, we
set the remote offset to 50. The modified costs are depicted in table 2.

Figure 5 shows the search tree for the quergckConsistency, which is computed according to the
modified cost table (cf. table 2). Search operation 4 is chosen first instead of search operation 3 due to
the remote offset. The only remote operation in the modified search treeGhéiekEdge-operation of
likes, which is depicted striped in the search tree.

4.2 Boundary Nodes

In many cases, there exists a number of operations, which have the same home application and are
dependent on each other. Instead of formulating queries for every operation, operations may be processed
en blocleading to one single query. Thus, the number of communications can be heavily reduced.

The crucial question is how to cut the graph pattern into separate sub-pattenosg blocks such that

Proc. oF 2ND GRAMOT 8

ELECTRONIC COMMUNICATIONS OF THEEASST

RootNode

CheckBound
gy
CheckBound
nen

=
|
I
Name=n;
Search Search CheckEdge : e
"A", "likes" "O", "has" "wishes" | Twishes
|
|
|
|
L

Publisher Shop

Specification
query AdvertiseAuthor
(C:Customer, n:String, m:String, out A2:Author) =

B:::Book:haswrittenfAL i Author| likes |C1 : Cust.

\ I A2::Author

CheckEdge CheckEdge Namel=m:
"hasWritten' "contains"

Figure 5: Modified search tree for query
checkConsistency

Figure 6: Graph quendvertiseAuthor

every sub-pattern concerns solely one home application. To illustrate this, the grapidustiseAu-
thor is depicted in figure 6. The query can be used to advertigautior to a givenCustomer C, using
thelikes-relation of anotheCustomer with the same interests.

For searching an unbound node like, the search iparameterizedy the edge’s source node needed
for the search operation, i.&1. Due to this parametrizatio§1 can only be searched & andA1 are
found. Furthermor@2 can be searched only #, A1 andC1 are found. Consequently, it is not always
possible to create only one remote block per affected home application.

To define the boundary of a block, we introduce the notiomaindary nodes A boundary node
is a node which needs at least one remote operation for its identification, and is incident to a local
edge. In figure 6B andA2 are boundary nodes due to the remote attribute check. Without the attribute
check, the nodeB andA2 can be covered without remote operations. A block is defined as the largest
connected graph pattern, which is limited by its boundary nodes and is covered only by remote operations
concerning the same home application. Revisit the gadvgrtiseAuthor, there exists two blocks: Block
1 contains the attribute condition of noBethe nodeAl and thehasWritten-edge. Block 2 contains the
attribute check o”A2. These blocks are sent to their home application separately preserving this order
and are parameterized Byresp.A2.

4.3 Realization of Remote Blocks

In the following, we describe how the creation of remote blocks can be integrated into the search tree
approach of CodeGen2 (cf. section 3) considering the remote offset. We develop an algorithm for
creating remote blocks using the generated search tree as input. This algorithm uses the following two
propositions: LetR be the set of all remote operations concerning the same home application forming
one remote block. Then

1. every element oR is contained in a common subtree with rgaiv®
2. every element oR is reachable byR N by only traversing other elements Bf

We do not provide a formal proof of these propositions, but want to discuss their plausibility.

®The following abbreviations are useR:N for root node, andzO for remote operations havingN as direct predecessor.

VOLUME 4 9

SEARCH TREES FORDISTRIBUTED GRAPH TRANSFORMATION SYSTEMS

To 1: Since a remote block is connected, all element’d afe somehow dependent on each other. Due
to the tree structure of the search tree, these operations must have a common root operation. This root
operation must cover a boundary node. Then, the elemeritsané contained in the subtrees having a
child of RN as their root.

To 2: This is valid, because all remote operations inside the remote block are dependent on each other.
In the following, we present the algorithm depicted in listing 1, which calculates the remote blocks. It
rearranges all remote operations in a chain within the search tree, from which the blocks for the remote
applications and their parameterization can be directly derived. The algorithm needs two sets, which are
defined as follows: LeRO be the set of remote operations, which h@&& as direct predecessor and
the same home application &sV. If RO is empty,RO is recomputed containing all remote operations
based on the home application of one direct childid¥. Let LO be a set of subtrees within the search

tree, which aggregates all direct subtree®df whose root node is not containedR0. The algorithm
linearize (cf. listing 1) starts with the root node of the search tre&asand LO = ().

linearize(Node RN, TreeSet LO)X
RO:=all subtrees of RN regarding one HA
LO:=LO+all remaining subtrees of RN
if (ROI= ()
for (i=2 to [RQ) move RO; below RO;
RN:=root node of RO ;
linearize(RN, LO)
} else{
for (each | € LOY
insert | below RN
RN:=root node of |
linearize(RN, 0)
}
}

Listing 1: Pseudocode difhearize

If RO +# (), all subtrees contained iRO except ofRO; are moved below the root node 80;. Then
the algorithm is called with the root node Bf); as new parametdt N andLO. If RO = (), all subtrees
contained inL.O are inserted belovi NV and the algorithm is called recursively for all of their root nodes
asRN andLO := {.

Due to proposition 1, every subtree containing a remote operation of Blétlks considered. Accord-
ing to proposition 2, every remote operation is considered by the algorithm. All needed rearrangements
are possible, because siblings — and hence disjoint subtrees — in the search tree are independent of each
other. The algorithm terminates, as every node of the search tree is once used as pd&ameter

The algorithmlinearize ~ does not improve the worst-case complexity of a distributed pattern match-
ing. A worst-case scenario consists of many remote blocks each covering only one remote operation.
On the other hand, a best-case scenario consists of a chaimerhote objects, which are connected by
to-nedges, and the chain is connected lig-d4-edge with a local object. Without optimization, at most
n(™=1) communication steps are necessary to determine the match of the remote block; sidiaks
have to be traversed and there exighossible candidates for each node in the pattern. With the block
creation, the whole query can be done within one communication step.

Proc. oF 2ND GRAMOT 10

ELECTRONIC COMMUNICATIONS OF THEEASST

RootNode

Op, : CheckBound
ner
Op,: Search
"B" "wishes"
Opy:i.CheckAttr
“name==n"

RootNode

Op, : CheckBound
e

Op,: Search
"B", "wishes"

Op,+.Search
VALY "hasWritten®

Ops : Search
"C1", "likes"

Op;:.CheckAttr
‘name==n"

Op,:-Search
"ALY "hasWritten®

Opg : Search
"A2", likes"

Op;.:.CheckAttr
‘namel=m"

Ops : Search
"C1" "likes"

Opg : Search
"A2", likes"

Op;.:.CheckAttr
‘namel=m"

Figure 7: Search tree for quefylvertiseAuthor

We will now illustrate the behavior dinearize considering the quenylockExample, whose search
tree is shown in figure 7. The algorithm starts withv = RootNode and LO = (). Since all subtrees
of RN start with a local operatiolRO = () and LO = {ST(Op;)}’. Due toRO = (), linearize s
called withRN = {Op;} andLO = (. Now, RO and LO are recomputed, resulting iRO = () and
LO = {ST(Op2)}. linearize is called again withRN = Op, andLO = (). RO is recomputed as
{ST(Op3), ST(Op4)} and LO remaing). The search tree is rearranged, i99"(Op,) is moved below
Op3. Afterwards,linearize is called withRN = Op3 and LO = (). The algorithm has already
computed the desired chain, and thus performs no further rearrangements of the search tree. Now it
contains two chains of remote operations representing two remote blocks (cf. section 4.2).

5 Conclusion

In this paper, we presented our approach for generating efficient code for distributed graph transfor-
mations. Our approach is based on existing search tree algorithms used by the code generations of
PROGRES and Fujaba. The usage of search trees is advantageous for reducing the average complexity
of searching graph patterns, as this search has an exponential worst-case complexity. To reduce also the
communication costs arising in distributed systems, we extended the existing code generations: We have
integrated a remote offset for remote operations in the cost table giving priority to the execution of local
operations. Additionally, we extract sub-patterns, which are sent to the appropriate remote applications.
Thus, the remote applications are not queried for every single element of the graph pattern, decreasing
the communication overhead.

As the coupled specifications export only schema parts, distributed graph transformations may be mod-
eled, which violate certain local constraints. Thus, the execution of distributed graph transformations

ST (Opy) stands for subtree with root no@e; .

VOLUME 4 11

SEARCH TREES FORDISTRIBUTED GRAPH TRANSFORMATION SYSTEMS

may lead to inconsistent host graphs within the distributed system. Therefore, we will introdulee a
engineas next step, which will facilitate the execution repair actions[Win00]. Furthermore, this
engine will be able to prevent the creation or deletion of a certain node as described in [HEET99].

References

[B6h04]

[FNTZ00]

[GSRO5]

[HEET99]

[RS06]

[Sch91]

[VVFO5]

[Win0O]

[ZUNn96]

B. Bohlen. Specific graph models and their mappings to a common model. In J. L. Pfaltz,
M. Nagl, and B. Bhlen, editors Applications of Graph Transformations with Industrial
Relevance2™? Intern. Workshop, AGTIVE 2008olume 3062 of_ect. Notes in Comp. Sgi.
pages 45-60. Springer-Verlag, 2004.

T. Fischer, J. Niere, L. Torunski, and Alddorf. Story diagrams: A new graph rewrite
language based on the Unified Modelling Language and Java. In H. Ehrig, G. Engels, H.-J.
Kreowski, and G. Rozenberg, editofBheory and Application of Graph Transformations,

6" Intern. Workshop, TAGT'9&0lume 1764 oL ect. Notes in Comp. Sgpages 296-3009.
Springer-Verlag, 2000.

L. Geiger, C. Schneider, and C. Reckord. Template- and model-based code generation for
MDA-tools. In H. Giese and A. dndorf, editorsProc. of the Fujaba Days 200%0olume
259 of Technical ReportUniversity of Paderborn, Germany, 2005.

R. Heckel, H. Ehrig, G. Engels, and G. Taentzer. A view-based approach to system modeling
based on open graph transformation systems. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editorsjandbook on Graph Grammars and Computing by Graph Transfor-
mation: Applications, Languages, and Tqol®lume 2, pages 639-668. World Scientific,
Singapore, 1999.

U. Ranger and E. Schultchen. Specifying distributed graph transformation systems. 2006.
Submitted to th&™ International Workshop on Graph-Based Tools (GraBaTs 2006).

A. Schirr. Operationales Spezifizieren mit programmierten Graphersetzungssystehizn
Thesis, RWTH Aachen, 1991.

G. Varro, D. Varo, and K. Friedl. Adaptive graph pattern matching for model transformations
using model-sensitive search plans. In G. Karsai and G. Taentzer, eBitocs|nternational
Workshop on Graph and Model Transformati@nlume 125 oElectr. Notes in Theor. Comp.
Sci.Elsevier Science, 2005.

A. J. Winter. Visuelles Programmieren mit Graphtransformationel®hD-Thesis, RWTH
Aachen, 2000.

A. Zundorf. Graph pattern matching in PROGRES. In J. E. Cuny, H. Ehrig, G. Engels,
and G. Rozenberg, editor&raph Grammars and Their Application to Computer Science,
5" Intern. Workshopvolume 1073 oLect. Notes in Comp. Sgpages 454—-468. Springer-
Verlag, 1996.

Proc. oF 2ND GRAMOT 12

