
E
le

ct
ro

ni
c 

C
om

m
un

ic
at

io
ns

 o
f 

th
e 

E
A

SS
T

ELECTRONIC COMMUNICATIONS OF THE EASST

Volume 4

Proc. of 2nd International Workshop on Graph and Model
Transformation 2006

ISSN 1863-2122

Using Semantic Anchoring to Verify
Behavior Preservation in Graph Transformations

Anantha Narayanan and Gabor Karsai

12 pages, 2006

Guest Editors: Gabor Karsai, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
Homepage of ELECTRONIC COMMUNICATIONS OF THE EASST: http://www.easst.org/eceasst



ELECTRONIC COMMUNICATIONS OF THE EASST

Using Semantic Anchoring to Verify
Behavior Preservation in Graph Transformations

Anantha Narayanan* and Gabor Karsai*
*Institute for Software Integrated Systems,

Vanderbilt University
Nashville, TN 37203 USA

Abstract. Graph transformation is often used to transform domain models from one domain
specific language (DSML) to another. In some cases, the DSMLs are based on a formalism that
has many implementation variants, such as Statecharts. For instance, it could be necessary to
transform iLogix Statechart models into Matlab Stateflow models. The preservation of behavior
of the models is crucial in such transformations. Bisimulation has previously been demonstrated
as an approach to verifying behavior preservation, and semantic anchoring is an approach to
specifying the dynamic semantics of DSMLs. We propose a method to verify behavior preserva-
tion, using bisimulation in conjunction with semantic anchoring. We will consider two hypothet-
ical variants of the Statecharts formalism, specifying the operational semantics of each variant
by semantic anchoring, using Abstract State Machines as a common semantic framework. We
then establish bisimulation properties to verify if the behavior models of the source and target
Statechart models are equivalent for a particular instance of the transformation.

Keywords: Semantic Anchoring, Behavior Preservation, Bisimulation

1 Introduction

The preservation of the behavior of a model is crucial in many kinds of graph transformations. Consider
a scenario where different users are exchanging information modeled through Statecharts. Since a for-
malism like Statecharts has many implementation variants [vdB94], it is often the case that the users use
different variants. It is then necessary to transform the models from one variant to the other, such as from
iLogix Statecharts to MATLAB Stateflow models. Such transformations could be accomplished through
Graph Transformations. One related example is [ASK04], which uses graph transformations to translate
Simulink/Stateflow models into Hybrid Automata. In all these cases, it is essential that the transformed
model preserves the behavior of the source model.

Defining the behavior formally is a first step to verifying its preservation. Semantic Anchoring [CSAJ05]

VOLUME 4 1



VERIFYING BEHAVIOR PRESERVATION USING SEMANTIC ANCHORING

is a technique to specify the operational semantics of DSMLs using a semantic framework and anchor-
ing rules. Bisimulation has been suggested as a method to check if a transformation preserves certain
behavioral properties [NK06]. In this paper, we propose a method to verify behavior equivalence by us-
ing bisimulation in conjunction with semantic anchoring. As the practical Statecharts implementations
vary in very subtle features that are not very suitable for a case study, we have devised two hypotheti-
cal variants with certain key differences that can better illustrate the complexities of the transformation.
We will first specify their operational semantics by semantic anchoring, using Abstract State Machines
as a common semantic framework. This will allow us to generate a behavior model for any instance
model. We will then show how we can use bisimulation to check if the behavior models are equivalent.
If the behavior models are equivalent, we can conclude that that particular instance of the transformation
preserved the behavior correctly.

Though the source and target domains considered here are very similar, this approach can be applied
to other types of transformations as long as the semantics of the source and the target languages can be
represented using a common semantic framework such as Abstract State Machines.

2 Background

2.1 Statecharts

Statecharts [Har87] were first proposed by Harel to model the reactive behavior of systems. Statecharts
were presented as an extension to conventional state machines, allowing hierarchy, concurrency and
broadcast communication. Statecharts are constructed from states and transitions. States may be simple
(basic states), composite (OR states) or concurrent (AND states). If a system is in a composite state,
it is also in exactly one of its direct sub-states. If a system is in a concurrent state, it is also in all
of its direct sub-states. A state configuration is a maximal set of states that the system can be active
in simultaneously. Transitions take the system from one state configuration to another. Events are the
basic units of broadcast communication. Transitions may be annotated with triggers, guards and actions.
Triggers are the events required to activate the transition, actions are events that are broadcasted as a
result of taking the transition, and guards are boolean conditions that can enable or disable the transition.

Since the introduction of the Statecharts formalism, several variants have been proposed to overcome
specific difficulties. A number of them have been surveyed in [vdB94]. One feature that the variants may
differ on is whether inter-level transitions (which are transitions that cut across levels of hierarchy) are
allowed. Another difference may be whether instantaneous states are permitted.

2.2 Semantic Anchoring

Domain Specific Modeling Languages (DSMLs) capture concepts, relationships and integrity constraints
that will allow users to specify their systems declaratively. The meta-modeling step of designing a DSML
specifies the syntax and static semantics of the DSML. Semantic anchoring [CSAJ05] concentrates on
the specification of the dynamic semantics of the DSML. Semantic anchoring relies on the observation
that a broad category of component behaviors can be represented by a small set of basic behavioral
abstractions such as Finite State Machines, Timed Automata etc. We assume that the behavior of these

PROC. OF 2ND GRAMOT 2



ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 1: Tool Architecture for Semantic Anchoring

abstractions are well understood and precisely defined. These basic abstractions are called semantic
units. The behavioral semantics of the DSML is specified as a transformation from the DSML to the
selected semantic unit. This last step is called the semantic anchoring. For instance, FSMs can be chosen
as a semantic unit to represent the behavior of Statecharts.

Figure 1 [CSAJ05] shows the tool architecture for specifying operational semantics to DSMLs through
semantic anchoring. The GME [LBM+01] MIC toolset is used to define the static semantics and integrity
constraints of the DSML, and to design the domain models. The semantic anchoring transformation is
specified using GReAT [AKL03].

2.3 Bisimulation

Bisimulation [San04] is defined for Labeled Transitions Systems (LTS). Given an LTS (S, Λ, →), a
relation R over S is a bisimulation if:

(p, q) ∈ R and p α
→ p′ implies that there exists a q′ ∈ S such that q α

→ q′ and (p′, q′) ∈ R,

and conversely,

q α
→ q′ implies that there exists a p′ ∈ S such that p α

→ p′ and (p′, q′) ∈ R.

Bisimilarity is the union of all bisimulations. Bisimilarity is generally accepted as the finest form of
behavioral equivalence.

We can also consider different “flavors” of bisimulation by varying the definition of transitions and la-
bels. If we replace the transition→ by a weak transition⇒, we get the definition of a weak bisimulation
[HMS06]. Suitably defining what constitutes observable states and transitions, we can check if two tran-
sition systems have a weak bisimilarity. This will allow us to conclude whether the transition systems are
behaviorally equivalent for all practical purposes, though there may not be a fine-grain equivalence. For
instance, we may choose to ignore internal representations of data or intermediate states when comparing
the transition systems for equivalence.

VOLUME 4 3



VERIFYING BEHAVIOR PRESERVATION USING SEMANTIC ANCHORING

Figure 2: Architecture for verifying reachability preservation in a transformation

2.4 Verifying Instances of Graph Transformations

In an earlier work [NK06], we proposed a method for using bisimulation to verify each instance of a
graph transformation. We believe that the strategy to verify each instance is less complex and more prac-
tical, as opposed to devising a correctness proof for the transformation itself, which may be intractable.

In this approach, we use bisimilarity to check if a reachability property is preserved by a certain in-
stance of a transformation. Figure 2 shows the basic architecture used for the verification. The model
transformation creates temporary associations between the source and target elements, which are used
to trace the equivalence relation R. These links are then used by a bisimilarity checker, to check if this
particular instance of input and output models preserve the same reachability behavior. If this check
succeeds, the results of a model checker on the output model instance will be valid for the input model
instance as well.

3 Verifying Behavior Preservation

Our approach to verifying behavior preservation relies on establishing a weak bisimilarity between
the transition systems representing the behaviors of the source and target models. Figure 3 shows an
overview of our approach. We would like to verify the graph transformation instance that transforms

Figure 3: Framework for verifying behavior preservation

PROC. OF 2ND GRAMOT 4



ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 4: A sample Variant 1 Statechart model Figure 5: A sample Variant 2 Statechart model

the Variant 1 Statechart model SC-1 into a Variant 2 Statechart model SC-2. We generate the behavior
models of both the source and target instances using semantic anchoring. We will use non-hierarchical
FSMs as a semantic unit to represent the behavior of the source and target DSMLs. The semantic an-
choring process will result in flat FSM representations of the source and target instances. We will then
verify if there is a weak bisimulation based on some criteria which will be explained in the following
sub-sections.

3.1 The Source and Target Languages

The popular Statecharts variants used currently vary in a number of subtle issues. We conjecture that
a case study will be most useful if we consider two hypothetical variants, lets call them Variant 1 and
Variant 2, which differ in a small set of features that can be defined clearly. For this case study, we will
only consider the synchronous time model. We will now list these features and their semantics.

3.1.1 Compositional Semantics

A language is said to have compositional semantics if the semantics of a compound object is completely
defined by the semantics of its subcomponents. In other words, we do not have to look at the internal
syntactical structure of the subcomponents. Such semantics are useful in verification. Compositional
semantics are violated by allowing inter-level transitions and state references. Inter-level transitions are
transitions that cut across levels of hierarchy. State references are a mechanism to allow the execution of
a transition based on whether a certain parallel component is active, expressed as trigger conditions such
as in(State). In our case study, we will allow Variant 1 to have inter-level transitions and state references,
and not allow them in Variant 2.

Figure 4 shows a Variant 1 Statechart, where transition T2 is inter-level. Figure 5 shows a Variant 2
Statechart, which tries to simulate the semantics of the Variant 1 Statechart, by using a self-termination
state to replace the inter-level transition. What happens if the transition T2 in Figure 4 has an action E?
In Variant 1, E will be active when the system enters state C, but in Variant 2, E will not be available
when the system enters state C (since events are available only in the step following the one in which
they occur, and not in subsequent steps1). The semantics will be better reproduced if state D in Figure 5
is an instantaneous state. Instantaneous states will be discussed in the next subsection.

We must note that it may not be possible to represent all Variant 1 Statecharts as Variant 2 Statecharts.
Our objective is not to find a Variant 2 representation of any Variant 1 Statechart. Rather, it is to verify

1The durability of events is itself an issue that Statecharts variants may differ on, and is explained in [vdB94]

VOLUME 4 5



VERIFYING BEHAVIOR PRESERVATION USING SEMANTIC ANCHORING

Figure 6: GME Meta-model for Statechart Variant 1

whether a Variant 2 Statechart generated by a graph transformation can be accepted as behaviorally
equivalent to the Variant 1 Statechart that was the input to the transformation.

3.1.2 Instantaneous States

An instantaneous state is a state that can be simultaneously entered and exited in a single step. Instan-
taneous states are not allowed in most common Statecharts variants. We will allow instantaneous states
in Variant 2 Statecharts, with the semantics that a step is not complete until there are no instantaneous
states in the final state configuration of that step. The sequence of transitions leading to the final state
configuration constitute a macro step, which is considered to be executed in zero time2. Events available
at the start of the macro step are available throughout the macro step, and actions on any of the transitions
in the macro step will be available in the step following the macro step. For providing finer semantics, we
introduce the notion of instantaneous actions to Variant 2 Statecharts, which will be available in the same
step. In Figure 5, D will be an instantaneous state, and i will be an instantaneous action. The sequence
T21, T22 will form a macro step, with B as the starting state and C as the ending state. To an external
observer, the instantaneous state D and instantaneous action i will not be visible, and the macro step will
appear to be a transition whose triggers and actions will be the aggregate of the triggers and actions of
the sequence of transitions. In other words, the macro step will be identical to a transition whose trigger
is the conjunction of the triggers for each micro step, and all the trigger events must be enabled at the
start of the macro step. The conjunction of all the non-instantaneous actions will be available for the
step following the macro step. The effect of the macro step (T21, T22) in Figure 5 will be identical to
transition T2 in Figure 4.

3.1.3 State References

Some Statecharts variants allow triggers to be specified by referencing the activity of other, parallel
states. For instance, the condition in(S) is true when state S is active, and entering or exiting S will result
in events en(S) and ex(S) respectively. We will allow state references in Variant 1, and not in Variant 2.
The graph transformation that will generate the Variant 2 Statechart will replace the events for en(S) and

2For the purposes of this case study, we will not go into the issues of infinite sequences of transition executions.

PROC. OF 2ND GRAMOT 6



ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 7: GME Meta-model for Statechart Variant 2 Figure 8: GME Meta-model for FSM semantic unit

ex(S) when necessary, but will not handle the condition in(S). The replaced events will be considered
equivalent when verifying behavior preservation. Variant 1 Statecharts which use the condition in(S)
cannot be transformed by the graph transformation which we will consider in the case study (in(S) can
be simulated by a system of self loops, but we chose not to implement it in the case study, to avoid overly
complicating the transformation).

Figures 6 and 7 show the GME meta-models for the two Statechart variants for the case study. The
GME modeling environment allows connections to only reside under a single parent. Thus, inter-level
transitions must be represented by using references to states that are under another parent. The absence
of a ConnectionRef prohibits inter-level transitions in Variant 2. States can be marked as instantaneous
in Variant 2. The absence of state references in Variant 2 is enforced by the operational semantics
specification by semantic anchoring for this variant.

3.2 Operational Semantics Using Semantic Anchoring

We will use a flat FSM as the semantic unit to represent the behavior of the Statecharts variants. The
meta-model of the semantic unit is shown in Figure 8. The FSM model allows instantaneous states and
events, and can model the behavior of both the Statecharts variants discussed above. The semantics of
this FSM semantic unit is defined in AsmL [Asm], the Abstract State Machine Language developed by
Microsoft Research. This is done by specifying an Abstract Data Model in AsmL, corresponding to the
constructs of the FSM semantic unit. For instance, Events are modeled as below:
interface Event
structure ModelEvent implements Event
structure LocalEvent implements Event
structure InstantEvent implements Event

ModelEvent models events input to the model, LocalEvent models the events generated in a step, and
InstantEvents models events generated by instantaneous actions, which will be available in the same step.

The FSM itself, the states and the transitions are modeled using AsmL class constructs:
class FSM
id as String
var outputEvents as Seq of ModelEvent
var localEvents as Set of LocalEvent
...

VOLUME 4 7



VERIFYING BEHAVIOR PRESERVATION USING SEMANTIC ANCHORING

Figure 9: FSM semantic model 1 Figure 10: FSM semantic model 2

class State
id as String
var active as Boolean = false
var instantaneous as Boolean
var outTransitions as Set of Transition
...
class Transition
...

The step semantics are modeled using operational rules. The AsmL model of the instances can be
obtained by instantiating the states and transitions based on the model. The details of creating the AsmL
abstract model can be found in [CSAJ05].

The specification of the behavior of the Statecharts variants will be expressed via semantic anchoring, as
a transformation from the Statechart model to the FSM semantic unit. Figure 9 shows the FSM behavior
model of the Statechart in Figure 4. The first step in the transformation will to convert the hierarchical
Statechart model into a non-hierarchical FSM model, by enumerating all possible state configurations.
Each legal state configuration of the Statechart will be represented by a unique state in the FSM. For
instance, the state P Q A in Figure 9 represents the state configuration consisting of the states P, Q
and A in Figure 4. The next step is to transform the transitions. The transitions are extracted from the
Statecharts model, and the source and target state configurations are determined. The corresponding
unique states in the FSM are located, and a transition is constructed between them. The trigger, action
and guards are then updated in the FSM model.

This transformation is a behavior specification, and itself is not verified. We may use the technique
described in [NK06] to verify the behavior model by bisimulation if necessary, but the behavior specifi-
cation may be considered straightforward enough to not require further verification.

3.3 Setting up the Transformation

We will now describe the graph transformation for our case study. This transformation will take a Vari-
ant 1 Statechart and convert it into a Variant 2 Statechart.

The main tasks of this transformation will be to convert inter-level transitions in Variant 1 into normal
transitions in Variant 2 and to replace any state referencing actions by regular actions. Compositional
semantics can be developed by replacing inter-level transitions with concepts called self-start and self-
termination. In Figure 5, the state D can be thought of as a self-termination state, with the help of which
the sequence of transitions T21, T22 replace an interlevel transition. Similarly, self-start states can be
used in the case of interlevel transitions entering a state and terminating in one of its substates.

Every state in the input Statechart is first copied on to the output. Figure 11 shows a simple graph
transformation rule in GReAT, where a new state is created in the Variant 2 Statechart (indicated by the
tick mark) for a child state found in the Variant 1 Statechart. The Attribute Mapping block is a special

PROC. OF 2ND GRAMOT 8



ELECTRONIC COMMUNICATIONS OF THE EASST

Figure 11: Sample GReAT rule

construct in GReAT that allows us to perform additional functions, used in this case to set up the label
of the state. We also track the equivalent states by creating a direct link between them. The transitions
are extracted one by one, and if the source and destination states are contained in the same parent, they
are constructed in the output between the corresponding source and destination states. If the transition
is inter-level, then a self-start or self-termination state is added to the deeper of the two states, and the
parent is marked as the source or target. The process is repeated until the source and target states are
under the same parent. An automatic system of naming and numbering the intermediate instantaneous
states and actions will ensure that each inter-level transition is reproduced uniquely.

If there are state references in the input model, they will be copied in the output model as normal events,
using a special naming convention for identification. All such events will then be added as actions to all
transitions into or out of the respective states being referenced. For instance, if a trigger en(S) is used in
a Variant 1 Statechart, it will be replaced by en S in the output, and the action en S will be added to all
the transitions into state S in the output. The occurrence of in(S) in the input model will be flagged as an
error.

3.4 Verifying Behavior Preservation

Our objective here is to verify if a certain instance of the transformation produced a Variant 2 Statechart
that preserved the behavior of the Variant 1 Statechart given as input. To verify this, we get the semantic
model of the input instance and the semantic model of the output instance, and check if they are behav-
iorally equivalent. This is done by establishing a weak bisimulation relation between the two behavior
models.

3.4.1 Weak Bisimulation

According to the semantics we have described, we consider the two Statechart models in figures 4 and 5
to be behaviorally equivalent. But it is obvious that the two behavior models in Figures 9 and 10 are not
bisimilar. We thus turn to a practically useful notion of bisimilarity that will help us in this scenario, the
notion of weak bisimilarity.

In Figure 10, the state P Q D and the action i are instantaneous. To an external observer, the sequence
of transitions T21, T22 will appear identical to the transition T2 in Figure 9. To the observer, the two

VOLUME 4 9



VERIFYING BEHAVIOR PRESERVATION USING SEMANTIC ANCHORING

systems are behaviorally equivalent, even though they may vary internally. Weak bisimulation allows
us to weaken the notion of what constitutes a transition, allowing us to set the granularity at which we
accept two systems as behaviorally equivalent. In our scenario, we argue that it is acceptable to consider
only non-instantaneous states as states of the transition system, and a transition as one that goes from
one non-instantaneous state to another, passing through any number of instantaneous states. We consider
such transitions as a single weak transition, whose trigger and action are the aggregate of the series of
transitions, disregarding all instantaneous states and actions.

We now rephrase our earlier definition of bisimulation, to define a weak bisimulation for FSM models.
We define an equivalence relation R between the non-instantaneous states of two FSM models, for the
current study, by simply stating that two states p and q are in R if they have the same label. Given this
equivalence relation, we define a somewhat novel definition of weak bisimulation that is useful for our
purpose:

∀ (p, q) ∈ R and ∀α: p α
⇒ p′, ∃ q′ such that q α

⇒ q′ and (p′, q′) ∈ R,

and conversely,

∀α: q α
⇒ q′, ∃ p′ such that p α

⇒ p′ and (p′, q′) ∈ R.

where p, q, p′, q′ are all non-instantaneous states, the transition ⇒ is from one non-instantaneous state
to another, and α is the aggregate of the events for the transition, disregarding instantaneous states and
actions (The label α constitutes both the cause of a transition and its effect. In our implementation, we
represent α as a comma separated list of the events that are the triggers and the actions of the transition.
In the case of a weak transition, this list will include all the non-instantaneous events that are the triggers
and the actions of the sequence of transitions which constitute the weak transition). According to this
definition, the FSM models in Figurers 9 and 10 are weakly bisimilar.

3.4.2 Checking for Weak Bisimulation

To verify weak bisimulation, we will first reduce the FSM into non-instantaneous states and weak tran-
sitions. This is done by tracing through the FSM model, and aggregating any sequence of transitions
through instantaneous states. In this case, only Variant 2 Statecharts will result in FSM models with
instantaneous states, and the reduction step is not required for FSM models of Variant 1 Statecharts.

The next step is to establish the equivalence relation R. For this study, we will consider two states p
and q to be in R if they have the same label. Our transformation is set up in such a way that newly
created states in the Variant 2 Statechart model are labeled depending upon the Variant 1 state they were
created from. The FSM states are similarly labeled depending on the labels of the states in the Statechart
state-configuration that they represent. We will consider that two states are equivalent if they represent
the same configuration in the two Statecharts.

After these two steps, for each of the FSMs, we list all the states in a table, followed by all the outgoing
transitions for each of these states. We then step through the states one by one, verifying that the weak
bisimulation holds according to the definition above. After stepping through the list of states for both
the FSMs, we can conclude whether the generated Variant 2 Statechart is behaviorally equivalent to the
input Variant 1 Statechart.

PROC. OF 2ND GRAMOT 10



ELECTRONIC COMMUNICATIONS OF THE EASST

4 Related Work

4.1 Graph Transformation Based Operational Semantics

[CHM00] and [Var04] present approaches to specify the operational semantics of DSMLs using graph
transformations. [Var04] presents a meta-level analysis technique where the semantics of a modeling
language are defined using graph transformation rules. A transition system is generated for each instance
model, which can be verified using a model checker. This is an alternative to the semantic anchoring
approach. We find the semantic anchoring approach easier to use, as we can choose a semantic unit such
as non-hierarchical FSMs, and use that to verify weak bisimulation. But as long as the semantics of
the input and output languages can be specified in terms of a common representation, and we define the
equivalence relation and rules for weak bisimulation appropriately, behavior preservation can be verified.

4.2 Certifiable Program Generation

[DF05] considers the problem of verification of generated code by focusing on each individual generated
program, instead of verifying the program generator itself. The generator is extended such that it pro-
duces all logical annotations that are required for formal safety proofs in a Hoare-style framework. These
proofs certify that the program does not violate certain conditions during its execution. While the proofs
in this case are not related to semantic correctness, the idea of providing an instance level certificate of
correctness instead of proving the correctness of the generator has been a great motivation for our ideas.

5 Conclusions and Future Work

Semantic anchoring is a useful method for formally specifying the dynamic semantics of DSMLs. We
have shown here that it allows us to use bisimulation to verify behavior equivalence across a transfor-
mation. This technique is especially useful in cases where it is hard to compare the source and target
languages directly. As long as their behavior can be specified using a common semantic framework, we
can verify behavioral equivalence by using bisimulation. We have also shown that weak bisimulation is
a practical way to determine acceptable behavioral equivalence. As in [NK06], we believe that it is more
practical to verify whether an instance of a transformation succeeded in preserving behavior, instead of
providing a proof of correctness for the transformation itself.

Further research in determining semantic units that can represent a wide variety of DSMLs will allow
us to use this technique for a larger range of transformations. We may also consider representing a
specific behavioral property using semantic anchoring, as opposed to the complete operational semantics
of the language. This will allow us to check the preservation of a specific behavior in languages that are
otherwise very different. The checking of weak bisimulation may also be refined to be more efficient.

6 Acknowledgement

This material is based upon work supported by the National Science Foundation under Grant No. 0509098.

VOLUME 4 11



VERIFYING BEHAVIOR PRESERVATION USING SEMANTIC ANCHORING

References

[AKL03] Aditya Agrawal, Gabor Karsai, and Akos Ledeczi. An end-to-end domain-driven software
development framework. In OOPSLA ’03: 18th annual ACM SIGPLAN conference on OOP,
systems, languages, and applications, pages 8–15, New York, NY, USA, 2003. ACM Press.

[ASK04] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic translation of
simulink/stateflow models to hybrid automata using graph transformations. Electr. Notes
Theor. Comput. Sci., 109:43–56, 2004.

[Asm] The abstract state machine language. http://www.research.microsoft.com/fse/asml.

[CHM00] Andrea Corradini, Reiko Heckel, and Ugo Montanari. Graphical operational semantics. In
ICALP Satellite Workshops, pages 411–418, 2000.

[CSAJ05] Kai Chen, Janos Sztipanovits, Sherif Abdelwahed, and Ethan K. Jackson. Semantic anchor-
ing with model transformations. In ECMDA-FA, pages 115–129, 2005.

[DF05] Ewen Denney and Bernd Fischer. Certifiable program generation. In GPCE, pages 17–28,
2005.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[HMS06] W. Harwood, F. Moller, and A. Setzer. Weak bisimulation approximants. In CSL’06: The
15th International Conference on Computer Science Logic, Szeged, Hungary, 2006. Lecture
Notes in Computer Science.

[LBM+01] Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gabor Karsai. Composing domain-specific design environments. Computer,
34(11):44–51, 2001.

[NK06] A. Narayanan and G. Karsai. Towards Verifying Model Transformations. In R. Bruni and
D. Varro, editors, Graph Transformation and Visual Modeling Techniques GT-VMT 2006,
Electronic Notes in Theoretical Computer Science, pages 185–194, 2006.

[San04] Davide Sangiorgi. Bisimulation: From the origins to today. In LICS ’04: Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science (LICS’04), pages 298–302,
Washington, DC, USA, 2004. IEEE Computer Society.

[Var04] Dániel Varró. Automated formal verification of visual modeling languages by model check-
ing. Journal of Software and Systems Modeling, 3(2):85–113, May 2004.

[vdB94] Michael von der Beeck. A comparison of statecharts variants. In ProCoS: Proceedings of the
Third International Symposium Organized Jointly with the Working Group Provably Correct
Systems on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 128–148,
London, UK, 1994. Springer-Verlag.

PROC. OF 2ND GRAMOT 12


