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Parsing of Adaptive Star Grammars

Mark Minas*
*Universität der Bundeswehr München, Germany

Abstract. In a recent paper, adaptive star grammars have been proposed as an extension of
node and hyperedge replacement grammars [4]. A rule in an adaptive star grammar is actually
a rule schema which, via the so-called cloning operation, yields a potentially infinite number of
concrete rules. Adaptive star grammars are motivated by application areas such as modeling
and refactoring object-oriented programs, and they are more powerful than node and hyperedge
replacement grammars by this mechanism. It has been shown that the membership problem
is decidable for a reasonably large subclass of adaptive star grammars, however no parser has
been proposed. This paper describes such a parser for this subclass motivated by the well-known
string parser by Cocke, Younger, and Kasami.

Keywords: Graph parser, adaptive star grammar

1 Introduction

Refactoring is a software engineering technique that aims at enhancing the structure of object-oriented
software while preserving its behavior. Hoffmann, Janssens, and Van Eetvelde have introduced cloning
and expanding graph transformations for refactoring [6]. Cloning is used in the context of multiple nodes
that may be copied (“cloned”) arbitrarily often. However, well-formedness of such graph transformations
could only be specified in terms of a meta-model. Meta-models, however, are not well suited for program
syntax specifications because of the recursive structure of program syntax. In a recent paper, adaptive
star grammars have been introduced as an extension of node and hyperedge replacement grammars and
based on the mechanism of cloning [4]. Such grammars are well suited for specifying the language
of graphs that are used for refactoring. It has been shown that the membership problem for a certain
subclass of those grammars is decidable. However, no parser usable in practice has been presented. This
paper proposes such a parser.

The running example of this paper consists of arithmetic expressions with variables that are used consis-
tently with their declaration. We allow to declare arbitrarily many integer and float variables. Expressions
are either variables or the sum of two expressions. However, an integer expression cannot be added to a
float expression directly. The integer expression has to be converted to a float expression by a conversion

VOLUME 4 1



PARSING OF ADAPTIVE STAR GRAMMARS

operator first. Graphs are used to represent such expressions together with variable declarations. The
language of such graphs cannot be described in a context-free way. But it can be specified with an adap-
tive star grammar. The example, hence, shows the usefulness of adaptive star grammars from a practical
point of view, too.

The next section briefly surveys other work on graph parsing. Sec. 3 then summarizes the concept of
adaptive star grammars as proposed in [4]. More restricted versions of these concepts better suited for
parsing are used in this paper. Sec. 4 proposes a Cocke-Younger-Kasami-style parser for adaptive star
grammars without isolated nodes in their rules’ right-hand sides. This additional restriction is dropped
in Sec. 5. Sec. 6 concludes the paper.

2 Related Work

Graph parsers have been used in different application areas, but mainly in the context of visual language
parsing. Rekers and Schürr have proposed a parser for context-sensitive graph grammars with an addi-
tional layering condition [10]. Visual language syntax is specified by such grammars, i.e., the parser can
be used for syntax checking. The paper also contains a nice survey of other parsing approaches. More
efficient extensions or modifications of this parser, also in the context of visual language recognition,
have been proposed more recently [1, 14]. The parser described in this paper has been motivated by the
parser for hypergraph grammars used in DIAGEN [9]. This parser is restricted to hypergraph grammars
being context-free with some extensions beyond context-freeness that allow for efficient parsing in prac-
tical cases. Other work on graph parsing, e.g., covers computer linguistics [12] or theoretical research
on the complexity of graph parsers [2].

3 Adaptive Star Grammars

Throughout the paper, let V be a set of labels partitioned into sets V̇ and V̄ of node and edge labels,
resp. A finite subset Σ of V is called a labeling alphabet. Its two components are Σ̇ = Σ ∩ V̇ and
Σ̄ = Σ ∩ V̄ . Node labels V̇ are partitioned into sets N and T of nonterminal resp. terminal labels. As
usual, a graph G = 〈Ġ, Ḡ, sG, tG, ˙̀

G, ¯̀
G〉 consists of finite sets Ġ of nodes and Ḡ of edges, of source and

target functions sG, tG : Ḡ → Ġ, and of node and edge labeling functions ˙̀
G : Ġ → V̇ and ¯̀

G : Ḡ → V̄ .
However, nonterminal nodes cannot be target of any edge, i.e., for all edges e ∈ Ḡ, it is required that
˙̀(tG(e)) /∈ N . The set of all graphs labeled over a labeling alphabet Σ is denoted by GΣ.
An edge is said to be incident with its source and target nodes, and makes these nodes adjacent to each

other. For n ∈ Ġ, IncG(n) denotes all edges of G incident with n. For A ⊆ Ġ, G \ A denotes the
subgraph of G induced by Ġ \ A. Morphisms and isomorphisms are defined as usual. And Z = X ∪ Y
where X and Y are graphs with disjoint edge sets, i.e., X̄ ∩ Ȳ = ∅, denotes the union of X and Y with
node set Ż = Ẋ ∪ Ẏ and edge set Z̄ = X̄ ∪ Ȳ .

The central notion of adaptive star grammars is the star, a generalized version of the hyperedges known
from hyperedge replacement grammars [3]. A star is a graph S that consists of a nonterminal node x,
edges incident with x (called arms of x) and its adjacent nodes (called border nodes). By the definition
of graphs, each arm points from the center node to a border node. A star is straight if the target nodes of
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its arms are pairwise distinct. For a graph G and a node x ∈ Ġ, the star G(x) denotes the subgraph of G
consisting of x, all its incident edges, and all its adjacent nodes.

Adaptive star grammars are based on star rules. A star rule p = (L ::= R) is a rule which replaces the
star L (left-hand side) by a graph R (right-hand side). L and R share precisely the border nodes of L. A
star rule is called straight if the left-hand side and every star of the right-hand side is straight. A graph G
can be derived to graph H by p, written G ⇒p H , if G has some node x such that the left-hand side L is
isomorphic to G(x). The replacement of x by R yields the graph H which is obtained from the disjoint
union of G and R by removing x and its arms, and identifying every border node b of L in R with its
image m(b) ∈ Ġ.

So far, we have used regular nodes only. So-called multiple nodes, however, may be copied (“cloned”)
arbitrarily often. A similar mechanism can be found in the PROGRES graph transformation language
[11]. We use a special subset T of multiple node labels. The remaining node labels are said to be
singular ones. We assume that every singular node label l has a copy l̈ among the multiple node labels.
A node is said to be singular or multiple depending on its label. G̈ denotes the set of all multiple nodes
of graph G.

Cloning is performed by the cloning operation. Using this operation, a multiple node is turned into
any number of singular nodes, its clones. Thus, we define Gx

n to be obtained from G by replacing the
multiple node x of G with n ≥ 0 singular clones in the following way: Let G′(x) be obtained from G(x)
by replacing the label l̈ of x by l. Then take the disjoint union of the graph G \ {x} and n copies of
G′(x). Finally, identify the n + 1 copies of each node in Ġ(x) \ {x} with each other.

The result obtained by cloning a number of nodes is independent of the order in which those nodes
are treated as shown in [4]. We define a cloning operation for the set of multiple nodes in a graph. For
each multiple node in the set, the necessary information about the number of desired clones is given by
a so-called multiplicity function µ : G̈ → N. If G̈ = {x1, x2, . . . , xk} (where x1, . . . , xk are pairwise
distinct), then Gµ is the graph defined by Gµ = (. . . ((G x1

µ(x1))
x2

µ(x2)) . . . xk
µ(xk)).

Note that this definition of cloning is a variation of the definition in [4] where clones of multiple nodes
can be multiple nodes again. However, as shown in [4], this more general concept is not required for
parsing.

Finally an adaptive star grammar Γ = 〈Σ, N, P, Z〉 consists of a labeling alphabet Σ containing only
terminal labels, a finite set N ⊆ N of nonterminals, a finite set P of straight star rules over Σ∪N , and an
initial nonterminal Z ∈ N . Star rules may contain multiple nodes and, hence, cannot be used directly for
derivation. Instead, star rule clones have to be created first. A star rule clone of a rule p = (L ::= R) ∈ P
is a star rule p′ = (Lµ ::= Rµ) where µ is a multiplicity function for L and R, and Rµ does not contain
multiple nodes. Clearly, every star rule clone is a star rule. The (in general infinite) set of all star rule
clones of the set P is denoted by P∆. This allows to define the language generated by Γ as the set of all
terminal graphs without multiple nodes that can be derived by star rule clones in a finite number of steps
from a graph consisting of a single node labeled Z, i.e, L(Γ) = {G ∈ GΣ\Σ̈ | Z ⇒+

P∆ G}.
Note that this definition of adaptive star grammars is different from [4]. The definition in this paper

actually corresponds to the notion of so-called straight adaptive star grammars in [4], that is the sub-
class of adaptive star grammars whose membership problem is decidable.

As an example, we consider graphs that represent arithmetic expressions with variables that are used
consistently with their declaration as described in Sec. 1. Graph G6 in Fig. 2 shows how declarations and
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Figure 1: Star rules of an adaptive star grammar for the running example.
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Figure 2: Sample derivation using the grammar in Fig. 1.

expressions are represented by a graph: Three variable are declared, represented by V nodes adjacent
to the declaration node D. The label of the connection indicates whether it is an integer variable (i) or
a float variable (f ). Expressions are represented by x nodes. An x node, if it is a variable access, is
connected by a v edge with a V node. Otherwise, it is connected by an r edge with the operator (+ or
IF for integer-float conversion). Arguments of an operator are indicated by a and b edges. G6 in Fig. 2
represents the expression v7 + IF (v9) with integer variable v9 and float variables v7 and v8.

Fig. 1 shows the rules of an adaptive star grammar for our running example. Terminal nodes are drawn
as circles, nonterminal ones as squares. Multiple nodes (e.g., nodes 1 and 2 in rule P4) are drawn with a
shadow. L ::= R1|R2 is a shorthand notation for two rules L ::= R1 and L ::= R2. Border nodes are
indicated by integers, corresponding border nodes of the left-hand side and the right-hand side carry the
same integers.

Nonterminals Ei and Ef represent an integer resp. float expression. The resulting x is connected by an
r edge, and all accessible variables are connected by i and f edges indicating integer resp. float variables.
Productions P1 and P2 create an integer resp. a float expression together with variable declarations from
the initial graph. The sets of all integer and float variables are indicated by the multiple V nodes being
connected by an i-labeled resp. f -labeled edge with the D node. P3 and P4 create a sum expression
of type integer resp. float, whereas P5 creates a type conversion expression that converts an integer
expression to a float expression. P6 and P7 create expressions that consists of just an access to an integer
resp. float variable. Note that P6 contains two V nodes (node 1 and 2) representing integer variables (P7
is similar but with float variables). Node 1 is multiple whereas node 2 singular. That way, node 2 matches
the variable being accessed whereas node 2 matches the set of all other integer variables. Therefore, it
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Figure 3: Star rules of the sample grammar in Fig. 1 transformed into ACNF

is essential that a parser must not try to match only the maximum number of all “fitting” nodes when a
production contains a multiple node.

Fig. 2 shows a derivation of a graph (G6) representing the sample expression v7 + IF (v9) as described
above. The derivation shows that the expression is well-typed and that its result is of type float. Note that
the derivation does not contain any graph with multiple nodes. Multiple nodes in productions are cloned
as soon as a production is applied.

4 Parsing without Isolated Nodes

The parser considered in this paper requires adaptive star grammars to be in a certain normalform, in-
spired by the Chomsky normalform for context-free string grammars [7]:

Definition 4.1 (Adaptive Chomsky normal form)
An adaptive star grammar Γ = 〈Σ, N, P, Z〉 is in adaptive Chomsky normal form (ACNF) iff each rule
p = (L ::= R) ∈ P is of one of the following three forms:
Terminal rule: every node n ∈ Ṙ has a terminal label ˙̀

R(n) ∈ Σ̇.
Nonterminal rule: R = S1 ∪ S2 consists of two stars S1 and S2 that do not share their center nodes.
Chain rule: R is a star.

An example of a grammar in ACNF is shown in Fig. 3. Rules P3, P9, P10, P11, and P12 are terminal
rules. The other rules are nonterminal. Fig. 3 does not contain chain rules.

Obviously, each adaptive star grammar can be transformed into ACNF. The transformation is similar
as for context-free string grammars that are transformed into Chomsky normal form (CNF). Fig. 3 actu-
ally shows the rules after transforming the grammar in Fig. 1 into ACNF. Note that context-free string
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grammars in CNF contain terminal and nonterminal rules only. Chain rules are not allowed; it is always
possible to transform a context-free string grammar with chain rules into an equivalent one without. It
can be shown that this is not possible for every adaptive star grammar with chain rules. Therefore, ACNF
has to allow chain rules.

Before parsing adaptive star grammars in ACNF that may contain rules with isolated nodes in their
right-hand sides, we consider a sub-class of adaptive star grammars in ACNF in this section:

Definition 4.2 (Restricted adaptive Chomsky normal form)
An adaptive star grammar Γ = 〈Σ, N, P, Z〉 is in restricted adaptive Chomsky normal form (RACNF) iff
Γ is in ACNF and P does not contain any terminal rule with an isolated node in its right-hand side.

The grammar with rules shown in Fig. 3 is not in RACNF since rules P11 and P12 contain isolated
nodes in their right-hand sides (nodes 1 and 3).

The parsing algorithm in Fig. 4 (called ∗-parser in the following) requires an adaptive star grammar
Γ = 〈Σ, N, P, Z〉 in RACNF and parses a terminal graph G ∈ GΣ\Σ̈ without isolated nodes and with a
number n = |Ḡ| of edges. The algorithm uses as global data structures n “levels” L1, L2, . . . , Ln and a
working set Q ⊆

⋃n
i=1 Li at every point of time. Each element of a level Li is a pair 〈S, E〉 consisting

of a star S and a set E ⊆ Ḡ with i edges of G. Each border node of S is a node of G.
The parsing algorithm is inspired by the parsing algorithm by Cocke, Younger, and Kasami (CYK)

for context-free string grammars in Chomsky normalform [13, 8]. Given a string w = a1a2 · · · an,
the CYK-parser uses an n × n-matrix M = (mij)i,j as a global data structure; however, only those
matrix elements mij with i + j ≤ n + 1 are used. Each matrix element mij , after the parser has
finished, contains those nonterminal symbols that can be derived to the substring ajaj+1 · · · aj+i−1, i.e.,
the substring starting at character j and having length i. The levels (Li)i of the ∗-parser correspond to the
matrix elements (mij)i,j : The CYK-parser classifies substrings by their length and the index of their first
character and assigns them to corresponding matrix elements. Graphs, other than strings, do not have a
linear structure that allows to classify substrings by the index of their first character. Hence, the ∗-parser
classifies subgraphs by the number of their edges only and, therefore, maintains an array L1, . . . , Ln of
sets instead of a matrix of sets. Each level Li, after the parser has finished, contains those stars (together
with a set of edges) that can be derived to a subgraph of G containing i edges. The specific subgraph of
G that can be derived from a star in one of the levels is encoded by the set of edges that, together with the
star, is actually stored in the level. Note that, if G is a member of the language of Γ, each subset E ⊆ G
uniquely identifies a subgraph of G since Γ is in RACNF, i.e., G must not contain isolated nodes.

The structure of the ∗-parser in Fig. 4 is similar to the structure of the CYK-parser. Step 1 creates those
stars (together with their sets of edges) that can be derived to the corresponding subgraph in a single
derivation step. This derivation step must use a terminal rule because nonterminal rules and chain rules
produce nonterminal nodes that are not contained in G. Step 2 then fills the array of levels by combining
pairs of stars and reducing them by nonterminal and chain rules.

In detail, the algorithm in Fig. 4 works as follows: Lines 1–9 try every terminal rule that may have
created a subgraph of G. Such a subgraph must be isomorphic to a clone of the terminal rule’s right-
hand side. Lines 2–8 iterate over each of those clones (specified by its multiplicity function µ) and each
subgraph H (specified by the image of morphism m). Line 4 checks whether H is correctly connected
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Step 1:
1 for each terminal rule (L ::= R) ∈ P do
2 for each multiplicity function µ and injective morphism m : Rµ → G do
3 H := m(Rµ) and k = |H̄|;
4 if IncG(m(n)) ⊆ H̄ for each non-border node n of Rµ then
5 let m′ be an extension of m that maps the center node of Lµ to a fresh node;
6 call procedure add(m′(Lµ), H̄)
7 end if
8 end do
9 end do

Step 2:
10 while Q 6= ∅ do
11 select a pair 〈X, EX〉 ∈ Q and remove 〈X, EX〉 from Q;
12 for i := 1 to n− |EX | do
13 for each pair 〈Y, EY 〉 ∈ Li such that EX ∩ EY = ∅ do
14 for each nonterminal rule (L ::= R) ∈ P , multiplicity function µ, and
15 isomorphism m : Rµ → X ∪ Y do
16 if IncG(m(n)) ⊆ EX ∪ EY for each non-border node n of Rµ then
17 let m′ be an extension of m that maps the center node of Lµ to a fresh node;
18 call procedure add(m′(Lµ), EX ∪ EY )
19 end if
20 end do
21 end do
22 end do
23 end do

24 procedure add(X, E)
25 { X is a star; each border node of X is a node of G; E ⊆ Ḡ is a set of edges }
26 begin
27 k := |E|;
28 if Lk does not contain a pair 〈S, E〉 such that S ∼= X then
29 add 〈X, E〉 to Lk and Q;
30 for each chain rule (L ::= R) ∈ P , multiplicity function µ,
31 and isomorphism m : Rµ → X do
32 let m′ be an extension of m that maps the center node of Lµ to a fresh node;
33 call procedure add(m′(Lµ), E)
34 end do
35 end if
36 end

Figure 4: ∗-parser
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to the rest of G, i.e., that there is no edge from a node that does not belong to H to a node created by
this rule. Parsing, i.e., applying this rule in reverse direction, would produce dangling edges otherwise.
Morphism m maps Rµ and, hence, border nodes of Lµ to G. Line 5 extends morphism m to m′ such
that m′ maps border nodes of Lµ in the same way as m, but additionally maps the center node of Lµ to
a fresh, new node. The m′-image of Lµ is the star that can be derived to H by applying the current rule
clone.

Procedure add(X, E) (line 24–36) is responsible of adding this star to its corresponding level if the
level does not yet contain an isomorphic star that derives to the same subgraph H (line 28). Moreover,
add(X, E) recursively follows all chain rules that may be applied deriving m′(Lµ) and, hence, H (line
30–34). Note that we need not check for dangling edges as in line 4 since the right-hand side of a chain
rule is a star and, therefore, cannot have non-border nodes. And since chain rules do not create new
terminal edges, all results from this process must be added to the same level Lk.

If procedure add(X, E) adds a new pair to a level Li, this pair is added to working set Q, too. Q,
therefore, contains exactly those pairs that have not yet been considered. Hence, step 2 iterates over Q
as long as Q is not yet empty (line 10-23). 〈X, EX〉 is the current pair. If the star of the current pair is
contained in a derivation of G and derived by application of a nonterminal rule1, it must be combined
with another star Y that derives to a subgraph of G that does not have any edges in common with the
subgraph that is derived from the current star X . Dangling edges would be created otherwise. This
condition is checked by EX ∩ EY = ∅ in line 13. In a CYK-like manner, the combination of X and
Y must be isomorphic to some clone of a nonterminal rule’s right-hand side. Since the border nodes of
X and Y are nodes of G, too, X ∪ Y denotes this combination. Like in step 1, the clone of the rule
is represented by a multiplicity function. Again, dangling edges must be avoided. This is checked in
line 16. The star that derives to X ∪Y is the m′-image of Lµ where morphism m′ is the extension of the
isomorphism m such that the border nodes of Lµ are mapped in the same way as by m, but the center
node of Lµ is mapped to a fresh new node. Procedure add(X, E), again, takes care of adding the star
with its set of eventually derived edges, i.e., the disjoint union of those sets associated with the stars X
and Y , to the corresponding level and considering chain rules.

Correctness of the ∗-parser can be shown (see appendix). Because of these results, a graph G without
isolated nodes belongs to the language of an adaptive star grammar in RACNF iff the ∗-parser, applied
to G, terminates with a pair 〈Z, Ḡ〉 in level L|Ḡ|.

The ∗-parser would actually work with adaptive star grammars in plain ACNF, too, i.e., with grammars
that may have isolated nodes in some of its rules’ right-hand sides. However, parsing would be really
expensive because of line 2 in Fig. 4. If the right-hand side R of a rule L ::= R contains an isolated
singular node, any node of G with a suitable label has to be considered. The number of possible mor-
phisms, therefore, grows exponentially with the number of isolated singular nodes. The situation gets
even worse if R contains an isolated multiple node. This node can be cloned arbitrarily, i.e., any subset
of G nodes with a suitable label must be considered. As a consequence, the number of pairs 〈X, E〉
grows exponentially in the number of isolated nodes and exponentially in the number of G nodes.

A slight modification of the parser in the following section allows to avoid this combinatorial explosion
by avoiding to explicitly consider each possibility and avoiding to create each possible pair 〈X, E〉.

1The case that this star is derived by a chain rule is handled by procedure add(X, E).
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5 Parsing with Isolated Nodes

We now drop the requirement of an adaptive star grammar to be in RACNF. However, we still require
the grammar to be in ACNF. It can be shown that the class of adaptive star grammars in RACNF is less
powerful than the class of all adaptive star grammars which is the same as the ones in ACNF. Hence,
transformation of a grammar in ACNF into an equivalent one in RACNF is not possible in general.
Instead, we follow the idea of avoiding the combinatorial explosion by encoding all possibilities in a
single graph and dealing with such graphs instead of plain stars in the ∗-parser. This will require another
transformation of the grammar. However, the encoding may be imprecise; graphs may represent proper
supersets of all possibilities. The bottom-up ∗-parser, hence, will find derivations that are not correct. A
subsequent top-down phase has to filter out those wrong derivations.

If a terminal rule L ::= R contains isolated nodes in its right-hand side R, we consider the maximal
sub-graph R′ of R without isolated nodes and search for multiplicity functions µ and morphisms m as
shown in line 2 of Fig. 4, however based on R′ instead of R. These µ and m are called core multiplicity
functions resp. core morphisms. In order to take into account the isolated nodes in R, µ and m must
then be extended. We obtain different stars m′(Lµ) with the same set H̄ . However, the set of all those
stars based on the same core multiplicity function and core morphism have a common subgraph S with
common center node x (up to isomorphism). The stars differ in nodes of G that may be or may be not
present in the star. If a node is present, it is adjacent to the center node. We encode the set of all those
stars by adding to S all nodes that are present in one of those stars and connect them with x in the same
way. If the same node may be connected to x by edges with different labels in different stars, we add
different copies of the node to S. Each copy is connected with x by an edge with one of these different
edge labels. Each node that does not belong to the common subgraph and its incident edge are marked
as optional. The other nodes and labels are called mandatory in the following.

As an example, let the graph G6 in Fig. 2 be graph G, and P11 in Fig. 3 be the terminal rule. R′ consists
of nodes 2 and 4 with their incident edge labeled v. A possible core morphism maps node 2 and 4 of P11
to node 7 resp. 3 of G. The set of all possible stars has those nodes 7 and 3 as well as a new nonterminal
center node with label Ei as common subgraphs. Nodes 8 and 9 of G are optional, and they can be
connected with the center node either by an i or an f edge. The encoding of all of those stars is shown as
star S4 in Fig. 6. Nodes marked optional are drawn as diamonds, and edges marked optional by dashed
arrows. Note that nodes 8 and 9 are contained twice each as 81 and 82 resp. 91 and 92 since both nodes
can be connected with the center nodes by edges with different labels.

It is clear that this encoding may represent a proper superset of all possible stars because the encoding
is the same for isolated singular and multiple nodes, i.e., we cannot tell from the encoding how many of
the optional nodes have to be selected to obtain a member of the set of all possible stars. This problem is
solved by a subsequent top-down phase after the bottom-up ∗-parser (see below).

Step 2 of the ∗-parser has to deal with those star encodings that may contain nodes and edges marked
optional. And step 2 has to create new stars that encode possibly large sets of stars, too, without explicitly
creating all represented stars. This is done by transforming each nonterminal rule into a rule that can be
immediately applied to such encoding graphs. Step 2 then uses those transformed rules instead of the
original nonterminal ones.

The transformation is explained for rule P5 in Fig. 3. The result is shown in Fig. 5. When using P5 (or

VOLUME 4 9



PARSING OF ADAPTIVE STAR GRAMMARS

1
::=

i

r

x x

VVVV VV VVVVVVVVVV x VVVV VV VVVVVVVVVV

Ef

Ef Pf

r

i i bf f f i f

r

i i if f f i f

i i if f f i f
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

9 9

1
::=

i

r

x x

VVVV VV VVVVVVVVVV x VVVV VV VVVVVVVVVV

Ef

Ef Pf

r

i i bf f f i f

r

i i if f f i f

i i if f f i f
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

9 9

::=

i

r

1
VV x

Efi if f f i f

VV
2

VV
3

VV
4

VV
5

VV
6

VV
7

VV
8

x9

i

r

1
VV

Pfi if f f i f

VV
2

VV
3

VV
4

VV
5

VV
6

VV
7

VV
8

x9

b

Ef

i i if f f i fr

Figure 5: Transformed rule P5 of Fig. 3.

its transformed version) in step 2, two stars X and Y are combined to X ∪Y . Without loss of generality,
let X have a center node labeled Pf and Y a center node labeled Ef . Each V node adjacent to the center
nodes may be marked optional. And each node, optional or mandatory, can be connected with the center
node by an i edge or an f edge. Each V node in the right-hand side of P5 is connected to both nonterminal
nodes by edges with the same labels. The transformed rule must be applicable to combinations of stars
X ∪ Y where a node is optional in X and Y , or mandatory in X and Y , or optional in either X or Y ,
and mandatory in the other star. This is reflected in the right-hand side in Fig. 5: Instead of two multiple
nodes labeled V in the original rule P5, there are eight of them. For i and f edges, each of those four
combinations of optional/mandatory are represented. The left-hand side contains those eight multiple V
nodes as border nodes, too. However, only those nodes resp. edges that are optional in X and Y remain
optional after creating the new star from the left-hand side (node 7 and 8). This is so because a node that
is mandatory in X or Y has to mandatory in the combination X ∪ Y , too.

Note that no nodes in Fig. 5 are drawn as optional since this may cause conflicts for a combination of a
node being optional and mandatory at the same time.

Step 2 now uses such transformed nonterminal rules. However, combinations of X and Y need not
be isomorphic to a clone Rµ of a rule’s right-hand side because X ∪ Y may contain optional nodes
and edges that cannot be matched with Rµ. When searching for an isomorphism, the parser may drop
optional components, but no mandatory ones.

When the ∗-parser terminates and a pair 〈Z, Ḡ〉 is contained in L|Ḡ|, we must check whether this really
indicates that G belongs to the grammar’s language. This can be checked top-down by following the
rules from Z to G. The ∗-parser must keep track of all derivations for that purpose. This is easily done
by not only storing pairs 〈X, E〉, but also the stars that have been used when creating 〈X, E〉.

Fig. 6 shows the ∗-parser working on G6 in Fig. 2. Actually, it shows what stars the ∗-parser creates,
organized as pairs U

Pi=⇒ S. The left column depicts the (maximal) subgraphs U of G matched by right-
hand sides of terminal rules. The rule is indicated by Pi. S shows the created star. The right column
depicts the results of step 2. Dashed areas in U indicate which stars are combined. Levels Li that contain
those stars have been omitted to avoid cluttering of the figure. The bottom right pair that contains Z as a
star proves (after the top-down check) that G6 belongs into the grammar’s language.

6 Conclusions

This paper has outlined a parsing algorithm for adaptive star grammars, an extension of node and hy-
peredge replacement grammars. A previous paper had shown that the membership problem for a certain
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Figure 6: Reductions performed by the ∗-parser when parsing G6 in Fig. 2.

subclass of adaptive star grammars is decidable, however, no efficient parser had been proposed [4]. This
subclass of adaptive star grammars can be analyzed by the proposed parser that is based on the ideas of
the well-known parser by Cocke, Younger, and Kasami for context-free string grammars.

However, this is still work in progress as the parser has not yet been implemented. Experimental
results, hence, are missing. It is clear the parser may show exponential behavior for certain grammars.
However, it is very similar to the parser for hyperedge replacement grammars used for parsing diagrams
in DIAGEN [9]. This parser may show exponential behavior, too, but for applications in practice, it is
polynomial.

The parser will be implemented shortly, based on the existing parser in DIAGEN. It will then become a
component in the planned implementation of the programming language DIAPLAN [5] for shape analy-
sis, and likewise for refactoring of object-oriented programs [6].
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A Appendix

Lemma A.1 (Termination)
Given an adaptive star grammar Γ = 〈Σ, N, P, Z〉 in RACNF and a terminal graph G ∈ GΣ\Σ̈ without
isolated nodes, the ∗-parser always terminates.

Proof:
The algorithm computes stars m′(Lµ) whose border nodes are nodes of the original graph G. Hence,
the numbers of members of each set Li is finite, and each recursive invocation of procedure add must
terminate. The union of all levels Li is a superset of Q, and no member is added to Q twice. Hence, the
number of cycles of the while-loop in step 2 must be finite, too. The proposition now follows from the
fact that each for-loop iterates over finite domains.

√

Lemma A.2 (Partial correctness)
Let Γ = 〈Σ, N, P, Z〉 be an adaptive star grammar in RACNF and G ∈ GΣ\Σ̈ a terminal graph with a
number n = |Ḡ| of edges, but without isolated nodes. The following proposition holds after termination
of the ∗-parser for every star S without multiple nodes:

S
∗=⇒

P∆
G ⇔ 〈S, Ḡ〉 ∈ Ln

In order to proof this lemma, we make use of the following two elementary lemmata:

Lemma A.3 (Independence of derivations 1)
Let Γ = 〈Σ, N, P, Z〉 be an adaptive star grammar, X1, X2 stars with disjoint edge sets and different
center nodes, and G a graph such that X1 ∪X2 ⇒k

P∆ G. Then G has two subgraphs G1 and G2 that do
not share any nonterminal node, G = G1 ∪G2, such that X1 ⇒k1

P∆ G1, X2 ⇒k2

P∆ G2, and k = k1 + k2.

Proof:
We proof the lemma by induction over k. The proposition is true for k = 0. For k > 0, we assume
X1 ∪X2 ⇒k−1

P∆ G′ ⇒P∆ G. By the induction hypothesis, there are two graphs G1 and G2 that do not
share any nonterminal node, G′ = G1 ∪G2, such that X1 ⇒k1

P∆ G1, X2 ⇒k2

P∆ G2, and k− 1 = k1 + k2.
G′ ⇒P∆ G is defined by replacing a star in G′ by a graph. As G1 and G2 do not share any nonterminal
node, either G1 ⇒P∆ G′

1 and G = G′
1 ∪G2, or G2 ⇒P∆ G′

2 and G = G1 ∪G′
2.

√

Lemma A.4 (Independence of derivations 2)
Let Γ = 〈Σ, N, P, Z〉 be an adaptive star grammar, X1, X2 stars with disjoint edge sets and different
center nodes, and G1, G2 arbitrary graphs such that X1 ⇒∗

P∆ G1 and X2 ⇒∗
P∆ G2. Then X1∪X2 ⇒∗

P∆

G1 ∪G2.

Proof:
We proof the lemma by induction over n = n1 + n2 in X1 ⇒n1

P∆ G1 and X2 ⇒n2

P∆ G2. The proposition
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is true for n = 0. Without loss of generality, assume n1 > 0 if n > 0, and X1 ⇒n1−1
P∆ G′

1 ⇒P∆ G1,
X2 ⇒n2

P∆ G2. X1∪X2 ⇒∗
P∆ G′

1∪G2 follows from the induction hypothesis, and G′
1∪G2 ⇒P∆ G1∪G2

from the definition of star replacements.
√

Proof of Lemma A.2:
We assume S ⇒k

P∆ G for some k ≥ 1 first and prove 〈S, Ḡ〉 ∈ Ln by induction over k. If k = 1, 〈S, Ḡ〉
is added to Ln in step 1. For k > 1, consider the derivation sequence

S =⇒
P∆

G′ k−1=⇒
P∆

G. (1)

The first step in (1) cannot use a terminal rule as k − 1 > 0 and, hence, G′ must contain a nonterminal
node. If the first step in (1) uses a nonterminal rule, there are two stars X1 and X2 that do not share
their center nodes such that G′ = X1 ∪ X2. By lemma A.3, there are two graphs G1 and G2, such
that G = G1 ∪ G2, X1 ⇒k1

P∆ G1, X2 ⇒k2

P∆ G2, and k1 + k2 = k − 1. By the induction hypothesis,
〈X1, Ḡ1〉 ∈ L|Ḡ1| and 〈X2, Ḡ2〉 ∈ L|Ḡ2|. Without loss of generality, 〈X1, Ḡ1〉 has been added to Q when
〈X2, Ḡ2〉 was already member of L|Ḡ2|. Therefore, 〈S, Ḡ〉 is added to Ln in step 2. If, however, the first
step in (1) uses a chain rule, G′ is a star, and by the induction hypothesis, 〈G′, Ḡ〉 ∈ Ln. Hence, 〈S, Ḡ〉
is added to Ln in the procedure invocation add(G′, Ḡ).

We now assume 〈S, Ḡ〉 ∈ Ln and prove S ⇒∗
P∆ G by induction over n = |Ḡ|. Since G does not

have isolated nodes, n > 0. If n = 1, 〈S, Ḡ〉 must have been added to Ln by invocation of add(S, Ḡ)
that has been recursively invoked by the first non-recursive invocation of add(S′, Ḡ) in step 1. Hence,
S ⇒∗

P∆ S′ ⇒P∆ G. If n > 1, 〈S, Ḡ〉 has been added to Ln either in the same way as described for
n = 1, and hence S ⇒∗

P∆ G, or by invocation of add(S, Ḡ) that has been recursively invoked by the
first non-recursive invocation of add(S′, Ḡ) in step 2. In the latter case, there are 〈X1, E1〉 ∈ L|E1| and
〈X2, E2〉 ∈ L|E2| such that E1 ∩ E2 = ∅, |E1| + |E2| = n, and S′ ⇒P∆ X1 ∪ X2. By the induction
hypothesis, there are graphs G1 and G2 with Ḡ1 = E1, Ḡ2 = E2, X1 ⇒∗

P∆ G1, and X2 ⇒∗
P∆ G2. And

by lemma A.4, X1 ∪X2 ⇒∗
P∆ G1 ∪G2 where Ḡ′ = E1 ∪ E2 = Ḡ. G = G′ follows from the fact that

G does not have isolated nodes.
√
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