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Abstract. In the framework of graph transformation, simulation rules are well-known to define
the operational behavior of visual models. Moreover, it has been shown already how to construct
animation rules in a domain specific layout from simulation rules. An important requirement of
this construction is the semantical correctness which has not yet been considered. In this paper
we give a precise definition for simulation-to-animation (S2A) model and rule transformations.
Our main results show under which conditions semantical correctness can be obtained. The
results are applied to analyze the S2A transformation of a Radio Clock model.

Keywords: graph transformation, model and rule transformation, semantical correct-
ness, simulation, animation

1 Introduction

In recent years, visual models represented by graphs have become very popular in model-based software
development, as the wide-spread use of UML and Petri nets proves. For the definition of an operational
semantics for visual models, the transformation of graphs plays a similar central role as term rewriting
in the traditional case of textual models. The area of graph transformation provides a rule-based setting
to express the semantics of visual models (see e.g. [Roz97]). The objective of simulation rules is their
application to the states of a visual model, deriving subsequent model states, thus characterizing system
evolution. A simulation scenario, i.e. a sequence of such simulation steps can be visualized by showing
the states before and after each simulation rule application as graphs.

For validation purposes, simulation may be extended to a domain specific view, called animation view
[EB04, EE05b, EHKZ05], which allows to define scenario visualizations in the layout of the application
domain. The animation view is defined by extending the alphabet of the original visual modeling lan-
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guage by symbols representing entities from the application domain. The simulation rules for a specific
visual model are translated to the animation view by performing a simulation-to-animation model and
rule transformation (S2A transformation), realizing a consistent mapping from simulation steps to an-
imation steps which can be visualized in the animation view layout. S2A transformation is defined by
a set of S2A graph transformation rules, and an additional formal construction allowing to apply S2A
rules to simulation rules, resulting in a new set of graph transformation rules, called animation rules.

Comparable theoretical research in the area of applying graph transformation rules to rules has been
done by Parisi-Presicce [PP96]. His approach has provided the basis of our definition of S2A trans-
formations which additionally allows to transform not only the rule interfaces, and which also treats
negative application conditions (NACs), both for the transforming rules and for the transformed rules.

An important requirement is the semantical correctness of the S2A transformation in the sense that the
behavior of the original model is preserved in the animation view. In this paper, we give a formal defini-
tion for S2A transformations and show under which conditions semantical correctness can be obtained.
In our approach, an S2A transformation generates one animation rule for each simulation rule. Hence,
our notion of semantical correctness implies that each animation step (obtained by applying an anima-
tion rule) corresponds to a simulation step of the original model. Please note that there are more general
definitions for the semantical correctness of model transformations which establish a correspondence
between one simulation step in the source model and a sequence of simulation steps in the target model.
For S2A transformation it is sufficient to relate single simulation and animation steps. Intermediate ani-
mation states providing smooth state transitions are possible nonetheless: They are defined by enriching
an animation rule by animation operations to specify continuous changes of object properties. Since
animation operations leave the states before and after a rule application unchanged, they do not influence
the semantical correctness of S2A transformation. Our approach has been implemented in the generic
visual modeling environment GENGED [Gen]. The implementation includes an animation editor to
define animation operations visually, and to export animation scenarios to the SVG format [WWW03].

There exist related tool-oriented approaches, where different visual representations are used to visualize
a model’s behavior. One example is the reactive animation approach by Harel [HEC03], where behavior
is specified by UML diagrams. The animated representation of the system behavior is implemented by
linking UML tools to pure animation tools like Macromedia FLASH or DIRECTOR [Mac04]. Hence, the
mapping from simulation to animation views happens at the implementation level and is not specified
formally. Analogously, different Petri net tools also offer support for customized Petri net animations
(e.g. the SimPEP tool [Gra99] to animate transition firings of low-level Petri nets). In general, approaches
to enhance the front end of CASE tools for simulating/animating the behavior of models are restricted to
one specific modeling language. In our approach we integrate animation views at model level with graph
transformation representations for different visual modeling languages based on a formal specification.
This provides the model designer with more flexibility, as the modeling language to be enhanced by
animation features, can be freely chosen.

The paper is organized as follows: Section 2 presents the basic concepts of simulation and animation,
illustrated by our case study in Section 3. In Section 4, the main result on semantical correctness of S2A
transformation is given in the case without NACs. Extensions to cope with NACs are discussed. Explicit
proofs for the case with NACs, and the semantical correctness of the complete case study is presented in
the technical report [EEE06]. Section 5 discusses related work, and Section 6 concludes the paper.
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2 Basic Concepts of Simulation and Animation

We use typed algebraic graph transformation systems (TGTS) in the double-pushout-approach (DPO)
[EEPT06] which have proven to be an adequate formalism for visual language (VL) modeling. A VL is
modeled by a type graph capturing the definition of the underlying visual alphabet, i.e. the symbols and
relations which are available. Sentences or diagrams of the VL are given by graphs typed over the type
graph. We distinguish abstract and concrete syntax in alphabets and models, where the concrete syntax
includes the abstract symbols and relations, and additionally defines their layout. Formally, a VL can be
considered as a subclass of graphs typed over a type graph TG in the category GraphsTG.

For behavioral diagrams like Statecharts, an operational semantics can be given by a set of simulation
rules PS , using the abstract syntax of the modeling VL. A simulation rule p = (L← I → R) ∈ PS is a
graph transformation rule, consisting of a left-hand side L, an interface I , a right-hand side R, and two
injective morphisms. Applying rule p to a graph G means to find a match of L

m−→ G and to replace
the occurrence m(L) of L in G by R leading to the target graph G′. In the DPO approach, the deletion
of m(L) and the addition of R are described by two pushouts (a DPO) in the category GraphsTG of
typed graphs. A rule p may be extended by a set of negative application conditions (NACs) [EEPT06],
describing situations in which the rule should not be applied to G. Formally, match L

m−→ G satisfies
NAC L

n−→ N if there does not exist an injective graph morphism N
x−→ G with x ◦ n = m. A

sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of graph transformation steps is called transformation and denoted as
G0

∗⇒ Gn. A transformation G0
∗⇒ Gn, where rules from P are applied as long as possible (i.e. as long

as matches can be found satisfying the NACs), is denoted by G0
P !=⇒ Gn.

We define a model’s simulation language V LS , typed over the simulation alphabet TGS , as a sublan-
guage of the modeling language V L, such that all diagrams GS ∈ V LS represent different states during
simulation. Based on V LS , the operational semantics of a model is given by a simulation specification.

Definition 2.1 (Simulation Specification)
Given a visual language VLS typed over TGS , i.e. VLS ⊆ GraphsTGS

, a simulation specification
SimSpecVLS

= (VLS , PS) over VLS is given by a TGTS (TGS , PS) s.t. VLS is closed under simu-
lation steps, i.e. GS ∈ VLS and GS ⇒ HS via pS ∈ PS implies HS ∈ VLS . The rules pS ∈ PS are
called simulation rules. 4

In order to transform a simulation specification to an animation view, we define an S2A transformation
S2A = (S2AM ,S2AR) consisting of a simulation-to-animation model transformation S2AM , and a
corresponding rule transformation S2AR. The S2AM transformation applies S2A transformation rules
from a rule set Q to each GS ∈ V LS as long as possible, adding symbols from the application domain
to the model state graphs. The resulting set of graphs comprises the animation language V LA.

Definition 2.2 (S2AM -Transformation)
Given a simulation specification SimSpecV LS

= (V LS , PS) with VLS typed over TGS and a type
graph TGA, called animation type graph, with TGS ⊆ TGA, a simulation-to-animation model transfor-
mation, short S2AM -transformation,

S2AM : VLS → VLA
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is given by S2AM = (VLS , TGA, Q) where (TGA, Q) is a TGTS with non-deleting rules q ∈ Q,

and S2AM -transformations GS
Q !
=⇒ GA with GS ∈ VLS . The animation language VLA is defined

by VLA = {GA| ∃ GS ∈ VLS & GS
Q !
=⇒ GA}. This means GS

Q !
=⇒ GA implies GS ∈ VLS and

GA ∈ VLA, where each intermediate step Gi
qi=⇒ Gi+1 is called S2AM -step. 4

Our aim is not only to transform model states but to obtain a complete animation specification, including
animation rules, from the simulation specification. Hence, we define a construction allowing us to apply
the S2A transformation rules from Q also to the simulation rules. The following definition extends
the construction for rewriting rules by rules given by Parisi-Presicce in [PP96], where a rule q is only
applicable to a rule p if it is applicable to the interface graph of p. In this paper, we want to add animation
symbols to simulation rules even if the S2A transformation rule is not applicable to the interface of the
simulation rule. Hence, we distinguish three cases in Def. 2.3. Case (1) corresponds to the notion
of rule rewriting in [PP96], adapted to non-deleting S2A transformation rules. In Case (2), the S2A
transformation rule q is not applicable to the interface, but only to the left-hand side of a rule p, and in
Case (3), q is only applicable to the right-hand side of p.

Definition 2.3 (Transformation of Rules by Non-Deleting Rules)
Given a non-deleting rule q = (Lq → Rq) and a rule p1 = (L1

l1← I1
r1→ R1), then q is appicable to p1

leading to a rule transformation step p1
q _*4 p2 , if the precondition of one of the following three cases

is satisfied, and p2 = (L2
l2← I2

r2→ R2) is defined according to the corresponding construction.

Lq

h

��

q //

(1 )

Rq

��
I1

r1

��

l1
�����

qI // I2

l2
�����

r2

��
L1 qL

(1a) // L2

R1 qR

(1b) // R2

Lq

h′

��

q //

(2 )

Rq

��
L1

qL // L2

Lq

h′′

��

q //

(3 )

Rq

��
R1

qR // R2

Case (1)
Precondition (1): There is a match Lq

h−→ I1.
Construction (1): I2, L2, and R2 are defined by pushouts (1), (1a) and (1b), leading to injective

morphisms l2 and r2.
Case (2)
Precondition (2): There is no match Lq

h−→ I1, but a match Lq
h′−→ L1.

Construction (2): L2 is defined by pushout (2), and I2 = I1, R2 = R1, r2 = r1, and l2 = qL ◦ l1.

Case (3)
Precondition (3): There are no matches Lq

h−→ I1 and Lq
h′−→ L1, but there is a match Lq

h′′−→ R1.
Construction (3): R2 is defined by pushout (3), and L2 = L1, I2 = I1, l2 = l1, and r2 = qL ◦ r1. 4
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The transformation of rules defined above allows now to define an S2AR transformation of rules, lead-
ing to an S2A transformation S2A = (S2AM ,S2AR) from the simulation specification SimSpecV LS

to the animation specification AnimSpecV LA
.

Definition 2.4 (S2AR-Transformation)
Given a simulation specification SimSpecV LS

= (VLS , PS) and an S2AM -transformation S2AM =
(VLS , TGA, Q) then a simulation-to-animation rule transformation, short S2AR-trafo,

S2AR : PS → PA,

is given by S2AR = (PS , TGA, Q) and S2AR transformation sequence pS
Q !_*4 pA with pS ∈ PS ,

where rule transformation steps p1
q _ *4 p2 with q ∈ Q (see Def. 2.3) are applied as long as possible.

The animation rules PA are defined by PA = {pA| ∃ pS ∈ PS ∧ pS
Q !_*4 pA }.

This means pS
Q !_*4 pA implies pS ∈ PS and pA ∈ PA, where each intermediate step pi

qi _*4 pi+1

is called S2AR-step.
4

Definition 2.5 (Animation Specification and S2A Transformation)
Given a simulation specification SimSpecV LS

= (VLS , PS), an S2AM transformation S2AM : VLS →
VLA and an S2AR transformation S2AR : PS → PA, then

1. AnimSpecV LA
= (VLA, PA) is called animation specification, and each transformation step

GA
pA=⇒ HA with GA,HA ∈ VLA and pA ∈ PA is called animation step.

2. S2A : SimSpecV LS
→ AnimSpecV LA

, defined by S2A = (S2AM ,S2AR) is called simulation-
to-animation model and rule transformation, short S2A transformation.

4

3 Case Study: Radio Clock

In this section, we illustrate the main concepts of Section 2 by the well-known Radio Clock case study
from Harel [Har87]. The behavior of a radio clock is modeled by the nested Statechart shown in Fig. 1
(a). The radio clock display can show alternatively the time, the date or allows to set the alarm time. The
changes between the modes are modeled by transitions labeled with the event Mode. The nested state
Alarm allows to change to modes for setting the hours and the minutes (transition Select) of the alarm
time. A Set event increments the number of hours or minutes which are currently displayed.

A domain-specific animation view of the Radio Clock is illustrated in Fig. 1 (b). The two snapshots
from a possible simulation run of the Statechart in Fig. 1 (a) correspond to the active state Set:Hours
before and after the set event has been processed. The animation view shows directly the current display
of the clock and indicates by a red light that in the current state the hours may be set. Furthermore,
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Figure 1: Radio Clock Statechart (a), and Animation View Snapshots (b)

buttons are shown either to proceed to the state where the minutes may be set (button Select), or to
switch back to the Time display (button Mode).

The abstract syntax graph of the Radio Clock Statechart is the given by the graph GI in Fig. 2.

Figure 2: Abstract Syntax Graph GI of the Radio Clock Statechart

The set of model-specific simulation rules PS = {paddObject, paddEvent, pdownTime, pdownDisp, pupAlarm,
pupClock, pmodeTD

, pmodeDA
, pmodeAD

, pselectH , pselectM , pselectD, psetH , psetM} to be applied to GI con-
tains initialization rules which generate the object node with attribute values for the initial alarm time, set
the current pointer to the top level state Radio Clock, and fill the event queue. Additional simulation rules
are defined which realize the actual simulation, processing the events in the queue. For each superstate
there is a rule moving the current pointer from the superstate down to its initial substate. Analogously,
there are rules moving the pointer from a substate to its superstate. For each transition there is a rule
which moves the pointer from the source state of the transition to its target state and removes the trig-
gering event from the queue. The full set PS of simulation rules is given in [EEE06]. Fig. 3 shows the
sample simulation rule psetH for the transition set whose source and target is the state Set:Hours. In
addition to processing the event set, this rule increments the hour value of the current alarm time.

Figure 3: A Simulation Rule psetH

The simulation specification SimSpecV LS
= (VLS , PS) for the Radio Clock consists of the simulation

language VLS typed over TGS , where TGS is the simulation alphabet depicted in the left-hand side of

PROC. OF WORKSHOP ON GRAPH AND MODEL TRANSFORMATION 6
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Fig. 4, PS is the set of simulation rules, and VLS consists of all graphs that can occur in any Radio Clock

simulation scenario: VLS = {GS |∃GI
PS∗=⇒ GS}, where GI is the initial graph shown in Fig. 2.

Fig. 4 shows the animation view type graph TGA, which is a disjoint union of the simulation alphabet
TGS , and the new visualization alphabet TGV shown in the right part of Fig. 4, which models the
visualization symbols for a domain-specific view of the radio clock behavior. The three modes of the

Figure 4: Simulation and Animation Alphabet

clock are visualized by five different displays: a date display, a time display, and three alarm displays
showing the alarm time but differing in the states of two red lights which indicate the states Display (both
lights off), Set:Hours (light SetH on), and Set:Minutes (light SetM on).

The S2A transformation rules Q = {qClock, qDate, qTime, qDisp, qSetH , qSetM} add visualization sym-
bols to the simulation rule graphs and to the initial radio clock graph. The initial S2A rule qClock adds
the root symbol Clock to all graphs it is applied to. The remaining S2A rules add visualization symbols
depending on the state of the current pointer. We visualize only basic states which do not have any
substates. Superstates are not shown in the animation view, as they are considered as transient, abstract
states which are active on the way of the current pointer up and down the state hierarchy between two
basic states, but have no concrete layout themselves.

The full set Q of S2A rules is given in [EEE06]. The top row of Fig. 5 shows the sample S2A trans-
formation rule qsetH which adds a SetHours symbol and links it to the clock symbol in the case that the
current pointer points to the state named ”Set:Hours”. The attributes are set accordingly. Note that each
S2A rule q has to be applied at most once at the same match, which is formalized by a NAC Lq → Nq,
such that Nq and Rq are isomorphic. The Radio Clock S2AM transformation S2AM : VLS → VLA is

given by S2AM = (VLS , TGA, Q) with animation language VLA = {GA|∃GS ∈ VLS : GS
Q !
=⇒ GA}.

The Radio Clock S2AR transformation S2AR : PS → PA is given by S2AR = (PS , TGA, Q) with

animation rules PA = {pA|∃pS ∈ PS : pS
Q !_ *4 pA }.

A sample S2AR transformation step p′setH
qsetH_*4 pA

setH is shown in Fig. 5. Here, S2A rule Lq
qsetH−→

Rq is applied to the rule p′setH , according to Case (1) of Def. 2.3. Rule p′setH = (L′ ← I ′ → R′) in
Fig. 5 corresponds to rule p1 = (L1 ← I1 → R1) in Def. 2.3. The result of the rule rewriting step
in Fig. 5 is rule pA

setH = (LA ← IA → RA), which corresponds to rule p2 = (L2 ← I2 → R2) in
Def. 2.3. Note that variables for node attributes can be assigned to other variables or to expressions. For
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Figure 5: S2A Transformation Step p′setH
qsetH−→ pA

setH

instance, in Fig. 5, the variable h for attribute AlarmH in I ′ is assigned to the expression incr(h) in R′

by the morphism I ′
r′−→ R′. Hence, a resulting animation rule can contain variables or expressions for

attributes to be assigned to corresponding attribute values in graphs when the animation rule is applied.
pA

setH is a completely transformed animation rule, since no more S2A rules are applicable to it.
The Radio Clock animation specification AnimSpecV LA

= (VLA, PA) based on the S2A transfor-
mation S2A = (S2AM , S2AR) is given by the animation language VLA, obtained by the Radio Clock
S2AM transformation, and the animation rules PA, obtained by the Radio Clock S2AR transformation.
The full set PA of animation rules is given in [EEE06].

Fig. 6 shows a sample animation scenario in the concrete notation of the animation view, where an-
imation rules from PA are applied. The first state of the scenario in Fig. 6 is obtained by applying
the initial animation rules setting the alarm time and initializing the event queue with the events mode,
mode, select, set, mode. The subsequent animation steps result from applying animation rules for event
processing or for moving up and down the state hierarchy.

Figure 6: Animation Scenario

PROC. OF WORKSHOP ON GRAPH AND MODEL TRANSFORMATION 8
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4 Semantical Correctness of S2A Transformations

In this section, we continue the general theory of Section 2 and study semantical correctness of S2A-
transformations. In our case, semantical correctness of an S2A-transformation means that for each sim-
ulation step GS

pS=⇒ HS there is a corresponding animation step GA
pA=⇒ HA where GA (resp. HA) are

obtained by S2A model transformation from GS (resp. HS), and pA by S2A rule transformation from
pS . Note that this is a special case of semantical correctness defined in [EE05a], where instead of a single
step GA

pA=⇒ HA more general sequences GA
∗=⇒ HA and HS

∗=⇒ HA are allowed.

Definition 4.1 (Semantical Correctness of S2A Transformations)
An S2A-transformation S2A : SimSpecV LS

→ AnimSpecV LA
given by S2A = (S2AM : VLS →

VLA,S2AR : PS → PA) is called semantically correct, if for each simulation step GS
pS=⇒ HS with

GS ∈ VLS and each S2AR-transformation sequence pS
Q !_ *4 pA (see

Def. 2.4) we have

1. S2AM -transformation sequences GS
Q !
=⇒ GA and HS

Q !
=⇒ HA,

and

2. an animation step GA
pA=⇒ HA

GS
Q ! +3

pS

��

GA

pA

��

Q ! _*4

HS
Q ! +3 HA

4

Before we prove semantical correctness in Theorem 4.4, we first show local semantical correctness in
Theorem 4.2 where only one S2AM -step (resp. S2AR-step) is considered.

Theorem 4.2 (Local Semantical Correctness of S2A-Transformations)
Given an S2A-transformation S2A : SimSpecV LS

→ AnimSpecV LA with S2A = (S2AM : VLS →

VLA,S2AR : PS → PA) and an S2AR-transformation sequence pS
Q !_ *4 pA with intermediate

S2AR-step pi
q _ *4 pi+1 with q ∈ Q. Then for each graph transformation step Gi

pi=⇒ Hi with
Gi,Hi ∈ GraphsTGA

we have

1. Graph transformation steps Gi
qi=⇒ Gi+1 in Cases (1) and (2),

Gi
id=⇒ Gi+1 in Case (3), Hi

q
=⇒ Hi+1 in Cases (1) and (3), and

Hi
id=⇒ Hi+1 in Case (2) of Def. 2.3.

2. Graph transformation step Gi+1
pi+1=⇒ Hi+1 with Gi+1, Hi+1 ∈

GraphsTGA

Gi
q / id +3

pi

��

Gi+1

pi+1

��

q _*4

Hi
q / id +3 Hi+1

4

Proof: We consider the respective pushout diagrams for pi
q _*4 pi+1 according to the three rule

transformation cases in Def. 2.3, and show by pushout composition/decomposition that in each case we
obtain the commuting double cube below where the two back squares comprise the given DPO for the
transformation step Gi

pi=⇒ Hi, and in the front squares we get the required DPO for the transformation

VOLUME 4 9
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step Gi+1
pi+1=⇒ Hi+1. In Case (1) of Def. 2.3, we obtain the top squares as pushouts and then construct

Gi+1, Ci+1, Hi+1 as pushouts in the diagonal squares, leading to unique induced morphisms Ci+1 →
Gi+1 and Ci+1 → Hi+1 s.t. the double cube commutes. By pushout composition/decomposition also
the front and the bottom squares are pushouts. Furthermore, we obtain pushouts for the transformation
steps Gi

q
=⇒ Gi+1 and Hi

q
=⇒ Hi+1 by composing pushout (POI) below with the respective pushouts

from the double cube. Cases (2) and (3) are handled similarly, with the difference that some morphisms
in the respective double cubes are identities.

Li

����� mi

��

Ii
lioo

��

�����

ri // Ri

��

�����

Li+1

mi+1

��

Ii+1
oo

��

// Ri+1

��
Gi

�����
Ci

oo

�����
// Hi

�����

Gi+1 Ci+1
oo // Hi+1

Lq

h

��

q //

(POI )

Rq

��
Ii

qi+1 // Ii+1

2

The following notions are used for proving the main Theorem 4.4.

Definition 4.3 (Termination of S2AM and Rule Compatibility of S2A)
An S2AM transformation S2AM : VLS → VLA is terminating if each transformation GS

Q ∗
=⇒ Gn can

be extended to GS
Q ∗
=⇒ Gn

∗=⇒ Gm such that no q ∈ Q is applicable to Gm anymore.
An S2A-transformation S2A = (S2AM : VLS → VLA,S2AR : PS → PA) with S2AM =

(VLS , TGA, Q) is called rule compatible, if for all pA ∈ PA and q ∈ Q we have that pA and q are
parallel and sequential independent.

More precisely for each G
pA=⇒ H with GS

Q ∗
=⇒ G and HS

Q ∗
=⇒ H for some GS , HS ∈ VLS and

each G
q

=⇒ G′ (resp. H
q

=⇒ H ′) we have parallel (resp. sequential) independence of G
pA=⇒ H and

G
q

=⇒ G′ (resp. H
q

=⇒ H ′). 4

Theorem 4.4 (Semantical Correctness of S2A)
Each S2A transformation S2A = (S2AM ,S2AR) is semantically correct, provided that S2A is rule
compatible, and S2AM is terminating. 4

Proof:
Given S2A = (S2AM : VLS → VLA,S2AR : PS → PA) with terminating S2AM = (VLS , TGA, Q),

a simulation step GS
pS=⇒ HS with GS ∈ VLS , and an S2AR transformation sequence pS

Q !_*4 pA

with pS = p0
q0 _*4 p1

q1 _*4 ..
qn−1_*4 pn = pA with n ≥ 1, then we can apply the Local Semantical

Correctness Theorem 4.2 for i = 0, .., n − 1, leading to the diagram below, which includes the case
n = 0 with GS = G0,HS = H0 and pS = p0 = pA, where no q ∈ Q can be applied to pS = p0 = pA.

PROC. OF WORKSHOP ON GRAPH AND MODEL TRANSFORMATION 10
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GS = G0
q0 +3

pS=p0

��

G1
q1 +3

p1

��

G2
q2 +3

p2

��

... +3 Gn−1
qn−1 +3

pn−1

��

Gn

pn=pA

��

Q! _*4

HS = H0 q0

+3 H1 q1

+3 H2 q2

+3 ... +3 Hn−1 qn−1

+3 Hn

If no q ∈ Q can be applied to Gn and Hn anymore, we are ready, because the top sequence is GS
Q !
=⇒

Gn = GA, and the bottom sequence is HS
Q !
=⇒ Hn = HA.

Now assume that we have qn ∈ Q which is applicable to Gn leading to Gn
qn=⇒ Gn+1. Then, rule

compatibility implies parallel independence with GA
pA=⇒ HA, and the Local Church Rosser Theo-

rem [EEPT06] leads to square (n):

Gn
qn +3

pA

��
(n)

Gn+1
+3

pA

��

... +3 Gm−1 qm−1

+3

pA

��

Gm = GA

pA

��
Hn

qn +3 Hn+1
+3 ... +3 Hm−1

qm−1+3 Hm = HA

This procedure can be repeated as long as rules qi ∈ Q are applicable to Gi for i ≥ n. Since S2AM is
terminating, we have some m > n such that no q ∈ Q is applicable to Gm anymore, leading to a sequence

GS = G0
Q !
=⇒ Gm = GA. Now assume that there is some q ∈ Q which is still applicable to Hm leading

to Hm
q

=⇒ Hm+1. Now rule compatibility implies sequential independence of Gm
pA=⇒ Hm

q
=⇒ Hm+1.

In this case, the Local Church Rosser Theorem would lead to a sequence Gm
q

=⇒ Gm+1
pA=⇒ Hm+1

which contradicts the fact that no q ∈ Q is applicable to Gm anymore. This implies that also H0
Q ∗
=⇒

Hn
Q ∗
=⇒ Hm is terminating, leading to the required sequence HS = H0

Q !
=⇒ Hm = HA. 2

Extension by Negative Application Conditions

Considering rules with NACs both for the S2A rules in Q (now of the form q = (Nq ← Lq → Rq)),
and for the simulation rules in PS (now of the form pS = (Ni ← L ← I → R)), has the following
consequences on the construction of the animation specification by S2A transformation: Def. 2.3 has to
be extended to deal with the additional transformation of NACs in Cases (1) and (2) (in Case (3), the
NACs remain unchanged). Moreover, a new Case (4) has to be added covering the case that preconditions
(1) - (3) are not satisfied, but there are matches into Ni. Furthermore, the preconditions for all cases now
also require the satisfaction of NACq = (Lq

n−→ Nq). To extend rule compatibility (Def. 4.3), in
addition to parallel and sequential independence in the case without NACs, we have to require that the
induced matches satisfy the corresponding NACs. The proof of local semantical correctness of S2A
transformations with NACs requires also NAC-compatibility of S2AM and S2AR for all q ∈ Q and
Gi

pi=⇒ Hi. NAC-compatibility of S2AM means that if q is applicable to a rule pS , then each match of
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q in Gi (resp. Hi) satisfies NACq. NAC-compatibility of S2AR means that if pi
q _*4 pi+1 satisfies

NACq , and Gi
pi=⇒ Hi satisfies NAC (pi) then Gi+1

pi+1=⇒ Hi+1 satisfies NAC (pi+1 ).
Considering these additional requirements, we can show that each S2A-transformation S2A = (S2AM ,

S2AR) is semantically correct including NACs, provided that S2A is rule compatible, S2AM is ter-
minating and S2A is NAC-compatible. This extends Theorem 4.4, where now rule compatibility and
termination have to be required with NACs (for the complete extended theorem see [EEE06, Erm06]).
Using the extended theorem, we show the semantical correctness of our Radio Clock case study in [EEE06].
Termination is shown to be fulfilled for general S2A transformation systems with suitable rule layers and
applied to our case study in [EEE06]. Moreover, it is shown that each S2AR transformation is NAC-
compatible provided that we have suitable rule layers as in our case study. Thus, it suffices to show only
NAC-compatibility of S2AM explicitly for the Radio Clock.

5 Related Work

To ensure the correctness of model transformations, Varrò et al. [SV03, Var04] use graph transforma-
tion rules to specify the dynamic behavior of systems and generate a transition system for each instance
model. Based on the transition system, a model checker verifies certain dynamic consistency properties
by model checking the source and target models. In [NK06], a method is presented to verify the seman-
tical equivalence for particular model transformations. It is shown by finding bisimulations that a target
model preserves the semantics of the source model with respect to a particular property. This technique
does not prove the correctness of the model transformation rules in general, as we propose in this paper
for the restricted case of S2A transformation rules. The formal background of bisimulations for graph
transformations has been considered also in e.g. [EK04].

For the specification of model transformations, triple graph grammars [Sch94] have been frequently
used. These grammars are based on a coupling of the syntax rules for the source and target language,
which allows derivations in the source language to be translated into derivations of the target language.
A third grammar in between source and target produces a mapping structure to keep track of the relation
between the source and target structures. Triple graph grammars have been recently used also to model
tool integration [KS06] and the integration of multiple views on a system [GDdL05]. Here, views are
(possibly overlapping) parts of a global alphabet, and graph triples are made of one repository (the
complete integrated model), one view and an intermediate graph that relates objects of both. The triple
graph grammar specifies the gluing of the views in the repository. This approach has similarities to our
approach concerning the relation of simulation and animation alphabets. But the restriction to subtypes
of a VL type graph alone is usually not enough to define views which abstract from model details. Given
a type graph for Petri nets, for example, it would not be possible to define a view which shows only the
markings of particular states and hides the others. In this respect, our approach of S2A transformation is
much more flexible. Moreover, our notion of S2AR transformation allows to relate views with behavior.

The animation specification resulting from an S2A transformation provides a good basis for user inter-
action when defining scenarios in the animation view (e.g. by clicking on a radio clock button to apply
an animation rule). Here lies the central advantage of coding the animation view information into the
rules instead of translating directly simulation steps into animation steps (as realized e.g. in [HEC03]).
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6 Conclusion and Ongoing Work

In this paper we have given a precise definition for simulation-to-animation (S2A) model and rule trans-
formations. The main results show under which conditions an S2A transformation S2A : SimSpecV LS

→
AnimSpecV LA

is semantically correct in the cases without and with negative application conditions.
The results have been used to show semantical correctness of a radio clock case study.

For simplicity, the theory has been presented in the DPO-approach for typed graphs, but it can also be
extended to typed attributed graphs, where injective graph morphisms are replaced by suitable classes
M and M ′ of typed attributed graph morphisms for rules and NACs, respectively [EEPT06]. Non DPO-
based approaches have not yet been considered.

In addition to analyzing the semantical correctness of S2A, it may be interesting to construct also a
backward model and rule transformation A2S : AnimSpecV LA

→ SimSpecV LS
, essentially given by

restriction of all graphs and rules to the type graph TGS . Semantical correctness of A2S means that
for each animation step GA

pA=⇒ HA there is also a corresponding simulation step GS
pS=⇒ HS using

the restrictions GS ,HS and pS of GA,HA and pA, respectively. Finally, we can consider semantical
equivalence of SimSpecV LS

and AnimSpecV LA
, which requires existence and semantical correctness

of S2A and A2S , such that both are inverse to each other, i.e. A2S ◦ S2A = Id and S2A ◦A2S = Id .
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