Composition and Independence of High-Level Net Processes

Hartmut Ehrig, Kathrin Hoffmann ${ }^{\star}$, Karsten Gabriel ${ }^{\star}$, Julia Padberg
Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

Abstract

Based on the notion of processes for low-level Petri nets we analyse in this paper high-level net processes defining the non-sequential behaviour of high-level nets. In contrast to taking low-level processes of the well known flattening construction for high-level nets our concept of high-level net processes preserves the high-level structure. The main results are the composition, equivalence and independence of high-level net processes under suitable conditions. Independence means that they can be composed in any order leading to equivalent high-level net processes which especially have the same input/output behaviour. All concepts and results are explained with a running example of the "House of Philosophers", a high-level net extension of the classical "Dining Philosophers".

Keywords: High-level net models, analysis of nets, behaviour of nets, high-level net processes, composition, equivalence, independence.

1 Introduction

For low-level Petri nets it is well known that processes are essential to capture their non-sequential truly concurrent behaviour (see e.g. [1-5]). Processes for high-level nets are often defined as processes of the low-level net which is obtained from flatting the high-level net. In [6, 7] we have defined high-level net processes for high-level nets based on a suitable notion of high-level occurrence nets which are defined independently of the flattening construction. The flattening of a highlevel occurrence net is in general not a low-level occurrence net due to so called assignment conflicts in the high-level net.

The essential idea is to generalise the concept of occurrence nets from the low-level to the high-level case. This means that the net structure of a high-level occurrence net has similar properties like a low-level occurrence net, i.e. unitarity, conflict freeness, and acyclicity. But we drop the idea that an occurrence net captures essentially one concurrent computation. Instead, a high-level occurrence net and a high-level process are intended to capture a set of different concurrent computations corresponding to different input parameters of the process. In fact, high-level processes can be considered to have a set of initial markings for the

[^0]input places of the corresponding occurrence net, whereas there is only one implicit initial marking of the input places for low-level occurrence nets.

In this paper we extend the notion of high-level net processes with initial markings by a set of corresponding instantiations. An instantiation is a subnet of the flattening defining one concurrent computation of the process. The advantage is that we fix for a given initial marking a complete firing sequence where each transition fires exactly once.

The main ideas and results in this paper concern the composition of highlevel net processes. In general the composition of high-level net processes is not a high-level net process, because the composition may contain forward and/or backward conflicts as well as the partial order might be violated. Thus we state suitable conditions, so that the composition of high-level processes leads to a high-level process.

We introduce the concept of equivalence of high-level net processes, where the net structures of these high-level net processes might be different, but they have especially the same input/output behaviour. Hence their concurrent computations are compared in the sense that they start and end up with the same marking, but even corresponding dependent transitions may be fired in a different order. The main problem in this context which is solved in this paper is to analyse the independence of high-level net processes, i.e. under which condition high-level processes can be composed in any order leading to equivalent processes.

The paper is organised as follows. In Section 2 we explain the concepts and results of this paper using the "House of Philosophers" from [8] as an example. In Section 3 on the one hand we review the notions for high-level net processes and on the other hand we introduce the new notion of high-level net processes with instantiations. In Section 4 we present our main theorems concerning the composition, equivalence and independence of high-level net processes. In this section we give proof sketches and the detailed proofs can be found in the Appendix. Finally we conclude with related work and some interesting aspects of future work in Section 5 .

2 House of Philosophers

In this section we review our example of the "House of Philosophers" [8] in order to illustrate the concepts in the following sections. This example is an extension of the well-known classical "Dining Philosophers" where in addition philosophers may move around e.g. by leaving and entering a table in the restaurant. For this reason three different locations, the library, the entrance-hall, and the restaurant, are represented by places in the algebraic high-level (AHL) net in Fig. 1 .

The marking of the AHL-net shows the distribution of the philosophers at different places in the house. Initially there are two philosophers at the library, one philosopher at the entrance-hall, and four additional philosophers are at the two tables in the restaurant. The mobility aspect of the philosophers is modeled by transitions termed enter and leave library as well as enter and leave restaurant
in Fig. 1, while the static structure of the net for philosophers is changed by rulebased transformations using the rules rule,\ldots, rule $_{4}$. The transitions start/stop reading and start/stop activities realise the well known token game.

Fig. 1. AHL-net $A N_{\text {House }}$ of the "House of Philosophers"

In the following we concentrate on the behaviour of the transitions start/stop activities and enter restaurant, while a detailed explanation of the other transitions and the corresponding formal framework can be found in Section 3, the Appendix A.1 and [8].

On the left hand side of Fig. 2 the P / T-system of the table table $_{45}$ is depicted, where both the philosophers 4 and 5 are in the state thinking. The P / T-system is used as a token on the place Restaurant in Fig. 1. To start eating we use the transition start/stop activities of the AHL-net in Fig. 1. First we give an assignment of the variables v_{1} and assign the table table e_{5} to the variable n and the transition that realises the eating of philosopher 5 to the variable t. The firing condition checks that the philosopher 5 has his left and right forks. The evaluation of the net inscription fire (n, t) realises the well-known token game by computing the follower marking of the P / T-system and we obtain the new P / T system table ${ }_{45}^{\prime}$ depicted on the right hand side of Fig. 2, where the philosopher 5 is eating.

Fig. 2. P/T-systems table e_{45} and table e_{45}^{\prime} of philosophers 4 and 5

Assume the philosopher 3, consisting of one marked place and one transition with corresponding arrows, would like to enter the restaurant in order to take place as a new guest at the table table $_{45}$ (see left hand side of Fig. 2), so that the seating arrangement of the table has to be changed. Formally, we apply the rule rule $_{2}$, which is depicted in the upper row of Fig. 3 and used as token on place Rule 2 . In general a rule $r=\left(L \stackrel{i_{1}}{\leftarrow} I \xrightarrow{i_{2}} R\right)$ is given by three P / T-systems called left-hand side, interface, and right-hand side respectively and the application of a rule discussed below describes the replacement of the left-hand side by the right-hand side preserving the interface.

The philosopher 3 sits down at table table $_{45}$ by firing the transition enter restaurant in the AHL-net in Fig. 1 using the following assignment of the variables n_{1}, n_{2}, r and m given in the net inscriptions of the transition enter restaurant: $v_{2}\left(n_{1}\right)=$ table $_{45}, v_{2}\left(n_{2}\right)=p h i_{3}, v_{2}(r)=$ rule $_{2}$, and $v_{2}(m)=g$ (see match morphism $g: L_{2} \rightarrow\left(\right.$ phi $_{3}$, table $\left._{45}\right)$ in Fig. 3). In our case the match g maps thinking j_{j} and eating ${ }_{j}$ in L_{2} to thinking ${ }_{5}$ and eating ${ }_{5}$ in $\left(p h i_{3}\right.$, table $\left._{45}\right)$. In
the first step we compute the disjoint union of the P / T-system $p h i_{3}$ and the P / T-system table $_{45}$ as denoted by the net inscription n_{1} coproduct n_{2} resulting in the P / T-system $\left(p h i_{3}\right.$, table $\left._{45}\right)$ in Fig. 3 . The firing conditions makes sure that on the one hand the rule is applied to the P / T-system $\left(p h i_{3}, t a b l e_{45}\right)$ and on the other hand the rule is applicable with match g to this P / T-system provided that a suitable gluing condition holds which is essential for the construction of the intermediate P / T-system.

Finally we evaluate the term transform (r, m) resulting in the direct transformation shown in Fig. 3, where we delete in a first step $g\left(L_{2} \backslash I_{2}\right)$ from $\left(p h i_{3}\right.$, table $\left._{45}\right)$ leading to P / T-system C. In a second step we glue together the P / T-systems C and R_{2} along I_{2} leading to P / T-system table e_{345} in Fig. 3, where the philosophers 3,4 , and 5 are sitting at the table, all of them in state thinking. The effect of firing the transition enter restaurant in the AHL-net in Fig. 1 with assignments of variables as discussed above is the removal of P / T-systems $p h i_{3}$ from place Entrance Hall and table $_{45}$ from place Restaurant and adding the P/T-System table 345 to the place Restaurant.

Fig. 3. Transformation of $p h i_{3}$ and table $_{45}$ using rule rule $_{2}$

Consider now a different situation where the table table ${ }_{45}^{\prime}$ (see right hand side of Fig. 22) is in place Restaurant in Fig. 1. Using a different variable assignment v_{3} the philosopher 3 sits down at table table ${ }_{45}^{\prime}$ where the philosopher 5 is in the state eating $_{5}$. In this case the variable n_{1} is assigned to the table table $_{45}^{\prime}$, the variable m to a suitable match morphism g^{\prime} (i.e. from L_{2} in Fig. 3 to $\left(p h i_{3}\right.$, table $\left.e_{45}^{\prime}\right)$ in Fig. 5
similar to g in Fig. 3) and the evaluation of the net inscription transform (r, m) of the transition enter restaurant in the AHL-net in Fig. 1 leads to the direct transformation depicted in Fig. 5. As a result we have now table ${ }_{345}^{\prime}$ on place Restaurant.

Fig. 4. P/T-systems table e_{345} and table e_{345}^{\prime} of philosophers 3,4 and 5

Fig. 5. Transformation of $p h i_{3}$ and table e_{45}^{\prime} using rule rule e_{2}

Summarising, we have explained two different firing sequences of the AHLnet in Fig. 1. The first one starts with the token firing of table e_{45} leading to the P / T-system table ${ }_{45}^{\prime}$ (see Fig. 2) before philosopher 3 sits down at the table table ${ }_{45}^{\prime}$, so that we get the table table e_{345}^{\prime} (see Fig. 5). The second one begins by philosopher 3 sitting down at table table $_{45}$ (see Fig. 3) before the philosopher 5 starts eating (see Fig. 4).

According to the spirit of processes for low-level nets we want to consider now processes for AHL-nets based on AHL-occurrence nets. In fact the two firing sequences considered above correspond to different AHL-occurrence nets. An AHL-occurrence net is similar to a low-level occurrence net concerning unitarity, conflict freeness, and acyclicity. However, in contrast to a low-level occurrence net an AHL-occurrence net realises more than one concurrent computation depending on different initial markings and variable assignments. For this reason we consider AHL-occurrence nets with a set of initial markings of the input places and corresponding instantiations of places and transitions by data and consistent variable assignments, respectively. For more details we refer to Section 3

For the two different firing sequences we get the two different AHL-occurrence nets with initial markings $K_{\text {Eat/Enter }}$ and $K_{\text {Enter/Eat }}$ with corresponding instantiations $L_{E a t / E n t e r}$ and $L_{E n t e r / E a t}$ depicted in Fig. 6 and Fig. 7. Note that the AHL-occurrence nets $K_{E a t / E n t e r}$ and $K_{\text {Enter/Eat }}$ have the same input and output places as well as the same initial marking. But due to the firing of the transitions start/stop activities and enter restaurant in opposite order we use different variable evaluations v_{1} and v_{3} in $L_{E a t / E n t e r}$ and v_{2} and v_{4} in $L_{E n t e r / E a t}$, respectively. Nevertheless, the AHL-occurrence nets have the same input/output behaviour, i.e. the two different firing sequences end up with the same marking of the output places where the philosopher 3 sits together with the philosopher 4 and 5 at the table and philosopher 5 has started to eat (see table table ${ }_{345}^{\prime}$ on the right hand sides of Fig. 4 and Fig. 5).

Fig. 6. AHL-occurrence net $K_{\text {Eat/Enter }}$ with instantiation $L_{\text {Eat } / \text { Enter }}$

Moreover we will show in Section 4 that there are basic AHL-occurrence nets $K_{\text {Eat }}$ and $K_{\text {Enter }}$, s.t. $K_{\text {Eat/Enter }}$ and $K_{\text {Enter/Eat }}$ can be obtained as compo-

Fig. 7. AHL-occurrence net $K_{\text {Enter/Eat }}$ with instantiation $L_{\text {Enter } / E a t}$
sition in different order of $K_{E a t}$ and $K_{E n t e r}$. This allows to consider the corresponding processes of $K_{E a t}$ and $K_{\text {Enter }}$ with instantiations as independent processes of the AHL-net $A N_{\text {House }}$ in Fig. 1.

3 Algebraic High-Level Net Processes

In this section we review the concept of algebraic high-level nets and we give a formal definition of high-level processes $[6,7]$ based on high-level occurrence nets. Moreover we extend this definition by a suitable notation of instantiations for each initial marking. As net formalism we use place/transition nets following the notation of "Petri nets are Monoids" in [9].

Definition 1 (Place/Transition Net). A place/transition (P / T) net $N=$ (P, T, pre, post) consists of sets P and T of places and transitions respectively, and pre- and post domain functions pre, post : $T \rightarrow P^{\oplus}$ where P^{\oplus} is the free commutative monoid over P.

A P/T-net morphism $f: N_{1} \rightarrow N_{2}$ is given by $f=\left(f_{P}, f_{T}\right)$ with functions $f_{P}: P_{1} \rightarrow P_{2}$ and $f_{T}: T_{1} \rightarrow T_{2}$ satisfying

$$
f_{P}^{\oplus} \circ p r e_{1}=p r e_{2} \circ f_{T} \text { and } f_{P}^{\oplus} \circ \text { post }_{1}=\text { post }_{2} \circ f_{T}
$$

where the extension $f_{P}^{\oplus}: P_{1}^{\oplus} \rightarrow P_{2}^{\oplus}$ of $f_{P}: P_{1} \rightarrow P_{2}$ is defined by $f_{P}^{\oplus}\left(\sum_{i=1}^{n} k_{i}\right.$. $\left.p_{i}\right)=\sum_{i=1}^{n} k_{i} \cdot f_{P}\left(p_{i}\right)$. A $P /$ T-net morphism $f=\left(f_{P}, f_{T}\right)$ is called injective if f_{P} and f_{T} are injective and is called isomorphism if f_{P} and f_{T} are bijective.

The category defined by P / T-nets and P / T-net morphisms is denoted by PTNet where the composition of P / T-net morphisms is defined componentwise for places and transitions.

Because the notion of pushouts is essential for our main results we state the construction of pushouts in the category PTNet of place/transition nets. Intuitively a pushout means the gluing of two nets along an interface net. The construction is based on the pushouts for the sets of transitions and places in the category SET. In the category SET of sets and functions the pushout object D for given $f_{1}: A \rightarrow B$ and $f_{2}: A \rightarrow C$ is defined by the quotient set $D=B \uplus C / \equiv$, short $D=B \circ_{A} C$, where $B \uplus C$ is the disjoint union of B and C and \equiv is the equivalence relation generated by $f_{1}(a) \equiv f_{2}(a)$ for all $a \in A$. In fact, D can be interpreted as the gluing of B and C along A : Starting with the disjoint union $B \uplus C$ we glue together the elements $f_{1}(a) \in B$ and $f_{2}(a) \in C$ for each $a \in A$.

The pushout object N_{3} in the category PTNet is constructed componentwise for transitions and places in SET with corresponding pre- and post domain functions. For given P / T-net morphisms $f_{1}: N_{0} \rightarrow N_{1}$ and $f_{2}: N_{0} \rightarrow N_{2}$ the pushout of f_{1} and f_{2} is defined by the pushout diagram (PO) in PTNet and is denoted by $N_{3}=N_{1} \circ_{\left(N_{0}, f_{1}, f_{2}\right)} N_{2}$. For details we refer to [10].

Definition 2 (Pushouts of Place/Transition Nets). Given P / T-net morphisms $f_{1}: N_{0} \rightarrow N_{1}$ and $f_{2}: N_{0} \rightarrow N_{2}$ then the pushout diagram (1) and the pushout object N_{3} in the category $\mathbf{P T N e t}$, written $N_{3}=N_{1} \circ_{\left(N_{0}, f_{1}, f_{2}\right)} N_{2}$, with $N_{x}=\left(P_{x}, T_{x}\right.$, pre $_{x}$, post $\left._{x}\right)$ for $x=0,1,2,3$ is constructed as follows:

- $T_{3}=T_{1} \circ_{T_{0}} T_{2} \quad$ with $f_{1, T}^{\prime}$ and $f_{2, T}^{\prime}$ as pushout (2) of $f_{1, T}$ and $f_{2, T}$ in $\mathbf{S E T}$.
$-P_{3}=P_{1} \circ_{P_{0}} P_{2}$ with $f_{1, P}^{\prime}$ and $f_{2, P}^{\prime}$ as pushout (3) of $f_{1, P}$ and $f_{2, P}$ in SET
$-\operatorname{pre}_{3}(t)= \begin{cases}{\left[\text { pre }_{1}\left(t_{1}\right)\right]} & \text {; if } f_{1, T}^{\prime}\left(t_{1}\right)=t \\ {\left[\text { pre }_{2}\left(t_{2}\right)\right]} & \text {; if } f_{2, T}^{\prime}\left(t_{2}\right)=t\end{cases}$
- post $_{3}(t)= \begin{cases}{\left[\text { post }_{1}\left(t_{1}\right)\right]} & ; \text { if } f_{1, T}^{\prime}\left(t_{1}\right)=t \\ {\left[\text { post }_{2}\left(t_{2}\right)\right]} & ; \text { if } f_{2, T}^{\prime}\left(t_{2}\right)=t\end{cases}$

Two examples of the pushout construction of $\mathrm{P} / \mathrm{T}-$ nets are depicted in Fig. 3 , where the pushouts describes the gluing of the nets L_{2} and C along I_{2} and the gluing of the nets R_{2} and C along I_{2}, respectively.

In the following we review the definition of AHL-nets from $[6,7]$.
Definition 3 (Algebraic High-Level Net). An algebraic high-level (AHL) net $A N=(S P, P, T$, pre, post, cond, type, $A)$ consists of

- an algebraic specification $S P=(\Sigma, E ; X)$ with signature $\Sigma=(S, O P)$, equations E, and additional variables X;
- a set of places P and a set of transitions T;
- pre- and post domain functions pre, post : $T \rightarrow\left(T_{\Sigma}(X) \otimes P\right)^{\oplus}$;
- firing conditions cond $: T \rightarrow \mathcal{P}_{\text {fin }}(\operatorname{Eqns}(\Sigma ; X))$;
- a type of places type : $P \rightarrow S$ and
- a (Σ, E)-algebra A
where the signature $\Sigma=(S, O P)$ consists of sorts S and operation symbols $O P$, $T_{\Sigma}(X)$ is the set of terms with variables over $X,\left(T_{\Sigma}(X) \otimes P\right)=\{($ term, $p) \mid$ term $\left.\in T_{\Sigma}(X)_{\text {type }(p)}, p \in P\right\}$ and $\operatorname{Eqns}(\Sigma ; X)$ are all equations over the signature Σ with variables X.

An AHL-net morphism $f: A N_{1} \rightarrow A N_{2}$ is given by $f=\left(f_{P}, f_{T}\right)$ with functions $f_{P}: P_{1} \rightarrow P_{2} \quad$ and $\quad f_{T}: T_{1} \rightarrow T_{2}$ satisfying
(1) $\left(i d \otimes f_{P}\right)^{\oplus} \circ$ pre $_{1}=$ pre $_{2} \circ f_{T}$ and $\left(i d \otimes f_{P}\right)^{\oplus} \circ$ post $_{1}=$ post $_{2} \circ f_{T}$,
(2) cond $_{2} \circ f_{T}=$ cond $_{1}$ and
(3) type ${ }_{2} \circ f_{P}=$ type $_{1}$.

The category defined by AHL-nets and AHL-net morphisms is denoted by AHLNet where the composition of AHL-net morphisms is defined componentwise for places and transitions.

In the following we omit the indices of functions f_{P} and f_{T} if no confusion arises. An example of an AHL-net is given in Section 2, where the "House of Philosophers" in Fig. 1 is an AHL-net with data type part consisting of the signature $H L R N$-System-SIG and algebra A according to [8] (see Appendix A.1).

The construction of pushouts in the category AHLNet of AHL-nets with fixed specification $S P$ and algebra A can be analogously defined to the construction of pushouts in PTNet described above (for details see [10]).

Now we introduce high-level occurrence nets and processes according to [6,7]. The net structure of a high-level occurrence net has similar properties like a lowlevel occurrence net, but it captures a set of different concurrent computation due to different initial markings. In fact, high-level occurrence nets can be considered to have a set of initial markings for the input places, whereas there is only one implicit initial marking of the input places for low-level occurrence nets.

Definition 4 (AHL-Occurrence Net). An AHL-occurrence net K is an $A H L$ -net $K=(S P, P, T$, pre, post, cond, type, $A)$ such that for all $t \in T$ with pre $(t)=$ $\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, p_{i}\right)$ and notation $\bullet t=\left\{p_{1}, \ldots, p_{n}\right\}$ and similarly t \bullet we have

1. (Unarity): $\bullet t, t \bullet$ are sets rather than multisets for all $t \in T$, i.e. for \bullet the places $p_{1} \ldots p_{n}$ are pairwise distinct. Hence $|\bullet t|=n$ and the arc from p_{i} to t has a unary arc-inscription term ${ }_{i}$.
2. (No Forward Conflicts): $\bullet t \cap t^{\prime}=\emptyset$ for all $t, t^{\prime} \in T, t \neq t^{\prime}$
3. (No Backward Conflicts): $t \bullet \cap t^{\prime} \bullet=\emptyset$ for all $t, t^{\prime} \in T, t \neq t^{\prime}$
4. (Partial Order): the causal relation $<\subseteq(P \times T) \cup(T \times P)$ defined by the transitive closure of $\{(p, t) \in P \times T \mid p \in \bullet t\} \cup\{(t, p) \in T \times P \mid p \in t \bullet\}$ is a finitary strict partial order, i.e. the partial order is irreflexive and for each element in the partial order the set of its predecessors is finite.

The notion of high-level net processes generalises the one of low-level net processes, where a P / T-process of a P / T-net N is a P / T-net morphism $p: K \rightarrow$ N and K is a low-level occurrence net, i.e. a net satisfying conditions 1.-4. in Def. 4. Examples of high-level and low-level occurrence nets are given in Fig. 6 and Fig. 7 in Section 2

Definition 5 (AHL-Process). An AHL-process of an AHL-net AN is an AHL-net morphism $p: K \rightarrow A N$ where K is an AHL-occurrence net.

Because in general there are different meaningful markings of an AHL-occurrence net K, we introduce a set of initial markings of the input places of K.

Definition 6 (AHL-Occurrence Net with Initial Markings). An AHLoccurrence net with initial markings (K,INIT) consists of an AHL-occurrence net K and a set INIT of initial markings init $\in I N I T$ of the input places $I N(K)$, where the input places of K are defined by $I N(K)=\{p \in P \mid \bullet p=\emptyset\}$ and similarly the output places of K are defined by $\operatorname{OUT}(K)=\{p \in P \mid p \bullet=\emptyset\}$.

The following notion of instantiation defines one concurrent execution of a marked high-level occurrence net. In more detail an instantiation is a subnet of the flattening of the AHL-occurrence net corresponding to the initial marking. In $[6,7]$ it is shown that for a marked AHL-occurrence net there exists a complete firing sequence if and only if there exists an instantiation which net structure is isomorphic to the AHL-occurrence net and has the initial marking of the AHL-occurrence net as input places. Note that in general we may have different instantiations for the same initial marking.

The flattening $F l a t(A N)$ of an AHL-net $A N$ results in a corresponding lowlevel net N, where the data type part $(S P, A)$ and the firing behaviour of the AHL-net $A N$ is encoded in the sets of places and transitions of N. Thus the flattening $\operatorname{Flat}(A N)$ leads to an infinite P / T-net N if the algebra A is infinite. In contrast the skeleton $\operatorname{Skel}(A N)$ of an AHL-net $A N$ is a low-level net N^{\prime} preserving the net structure of the AHL-net but dropping the net inscriptions. While there is a bijective correspondence between firing sequences of the AHLnet and firing sequences of its flattening, each firing of the AHL-net implies a firing of the skeleton, but not vice versa. For details we refer to $[6,7]$ and to the Appendix A. 2

Definition 7 (Instantiations of AHL-Occurrence Net). Given an AHLoccurrence net with initial markings (K,INIT) with init $\in I N I T$. An instantiation $L_{\text {init }}$ of $(K$, init $)$ is a low-level occurrence net $L_{\text {init }} \subseteq$ Flat (K) with input places $I N\left(L_{\text {init }}\right)=$ init such that the projection proj : $L_{\text {init }} \rightarrow \operatorname{Skel}(K)$ defined by $\operatorname{proj}_{P}(a, p)=p$ and $\operatorname{proj}_{T}(t, v)=t$ is an isomorphism of low-level occurrence nets.

As mentioned above for a given initial marking of an AHL-occurrence net there exist in general more than one instantiation and thus different firing
sequences resulting in different markings of the output places of the AHLoccurrence net. For this reason we introduce the new notion of AHL-occurrence nets and AHL-processes with instantiations, where we fix exactly one instantiation for a given initial marking, i.e. one concurrent execution of the marked AHL-occurrence net.

Definition 8 (AHL-Occurrence Net with Instantiations). An AHL-occurrence net with instantiations $K I=(K, I N I T, I N S)$ is an AHL-occurrence net with initial markings ($K, I N I T$) and a set INS of instantiations, such that for each init $\in I N I T$ we have a distinguished instantiation $L_{\text {init }} \in I N S$, i.e. $I N S=\left\{L_{\text {init }} \mid\right.$ init $\left.\in I N I T\right\}$.

An AHL-occurrence net with instantiations KI defines for each init $\in I N I T$ with $I N\left(L_{\text {init }}\right)=$ init an output out $=O U T\left(L_{\text {init }}\right)$ with $\operatorname{proj}_{P}($ out $)=\operatorname{OUT}(K)$. Let EXIT be the set of all markings of the output places $\operatorname{OUT}(K)$, then we obtain a function inout : INIT \rightarrow EXIT by inout $($ init $)=O U T\left(L_{\text {init }}\right)$.

Definition 9 (AHL-Process with Instantiations). An instantiated AHLprocess of an AHL-net $A N$ is an AHL-occurrence net with instantiations $K I=$ $(K, I N I T, I N S)$ together with an AHL-net morphism mp:K AN.

Fig. 8. AHL-occurrence net $K_{E a t}$ with instantiations $L_{E a t}$ and $L_{E a t^{\prime}}$

As an example the AHL-occurrence net with instantiations $K I_{\text {Eat }}=\left(K_{\text {Eat }}\right.$, $I N I T_{E a t}, I N S_{E a t}$) is depicted in Fig. 8 according to the discussion in Section 2. The AHL-occurrence net $K_{E a t}$ is the AHL-net on the left hand side of Fig. 8 without the marking of the place Restaurant ${ }_{1}$. There are two different initial markings, i.e the set of initial markings is defined by $I N I T_{E A T}=$ $\left\{\left(\right.\right.$ table $_{45}$, Restaurant $\left._{1}\right),\left(\right.$ table $_{345}$, Restaurant $\left.\left._{1}\right)\right\}$ and the set of instantiations by $I N S_{E a t}=\left\{L_{E a t}, L_{E a t^{\prime}}\right\}$ (see the two instantiations on the right hand side of Fig. 8).

The instantiated AHL-process is the AHL-occurrence net with instantiations $K I_{\text {Eat }}$ together with the AHL-net morphism $m p_{\text {Eat }}: K_{\text {Eat }} \rightarrow A N_{\text {House }}$. The
morphism $m p_{E a t}$ consists of an obvious inclusion of the transition start/stop activities, while the places named Restaurant ${ }_{1}$ and Restaurant R $_{2}$ are mapped to the place Restaurant of the AHL-net $A N_{\text {House }}$ in Fig. 1 .

Further examples are given in Section 2, where in Fig. 6 we have the AHLoccurrence net with instantiations $K I_{\text {Eat/Enter }}$ and in Fig. 7 the AHL-occurrence net with instantiations $K I_{\text {Enter/Eat }}$.

4 Composition, Equivalence and Independence of Algebraic High-Level Net Processes

Based on the construction of pushouts of low-level and high-level nets introduced in the previous section we define in this section the composition of AHLoccurrence nets and AHL-processes with instantiations and we introduce the concept of equivalence and independence of high-level net processes. Two independent high-level net processes can be composed in any order leading to equivalent high-level net processes which especially have the same input/output behaviour.

The composition of two AHL-occurrence nets K_{1} and K_{2} is defined by merging some of the output places of K_{1} with some of the input places of K_{2}, so that the result of the composition definitely is an AHL-occurrence net. In general the composition of AHL-occurrence nets is not an AHL-occurrence net, because the result of gluing two high-level occurrence nets may contain forward and/or backward conflicts as well as the partial order might be violated. Thus we state suitable conditions, so that the composition of AHL-occurrence nets leads to an AHL-occurrence net. Moreover we generalise this construction on the one hand to corresponding instantiations and on the other hand to AHL-net morphisms, so that the composition of AHL-processes with instantiation leads to an AHL-process under suitable conditions.

Definition 10 (Composability of AHL-Occurrence Nets). Given the AHLoccurrence nets $K_{x}=\left(S P, P_{x}, T_{x}\right.$, pre $_{x}$, post $_{x}$, cond $_{x}$, type $\left._{x}, A\right)$ for $x=1,2$ and $I=\left(S P, P_{I}, T_{I}\right.$, pre $_{I}$, post $_{I}$, cond $_{I}$, type $\left._{I}, A\right)$ with $T_{I}=\emptyset$ and two injective AHLnet morphisms $i_{1}: I \rightarrow K_{1}$ and $i_{2}: I \rightarrow K_{2}$. Then $\left(K_{1}, K_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$ if $i_{1}\left(P_{I}\right) \subseteq O U T\left(K_{1}\right)$ and $i_{2}\left(P_{I}\right) \subseteq I N\left(K_{2}\right)$.

Theorem 1 (Composition of AHL-Occurrence Nets). Given the AHLoccurrence nets K_{1}, K_{2} and I as above and two injective AHL-net morphisms $i_{1}: I \rightarrow K_{1}$ and $i_{2}: I \rightarrow K_{2}$ such that $\left(K_{1}, K_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$. Then the pushout digram (PO) exists in the category AHLNet and the pushout object K, with $K=K_{1}{ }_{\left(I, i_{1}, i_{2}\right)} K_{2}$, is an AHL-occurrence net and is called composition of $\left(K_{1}, K_{2}\right)$ w.r.t. $\left(I, i_{1}, i_{2}\right)$.

Proof. (Sketch) The detailed proof can be found in Appendix A.3.
For the existence and construction of pushouts in AHLNet we refer to [10]. As mentioned in Section 3 it can be constructed componentwise similar to
pushouts in PTNet. It remains to show that the result of the composition of $\left(K_{1}, K_{2}\right)$ w.r.t. $\left(I, i_{1}, i_{2}\right)$ given by $K=(S P, P, T$, pre, post, cond, type, A) is an occurrence net indeed:

1. Unarity: is obtained as the set of transitions T is obtained by disjoint union.
2. No forward conflicts: Since AHL-net morphisms preserve the adjacencies of transitions (i.e. pre and post domain), in case of $t_{1} \neq t_{2}$ and $p \in \bullet t_{1} \cap \bullet t_{2}$ for $t_{1}, t_{2} \in T$ both transitions have a preimage in T_{1} and T_{2}, respectively. Moreover, p has a preimage in both P_{1} and P_{2}, so one of the preimages is in the corresponding $O U T$ set. But this contradicts the fact that this place has to be in the preset of the corresponding transition.
3. No backward conflicts: Analogously.
4. Partial Order: follows from the partial order of K_{1} and K_{2} and from the composability condition.

Note that the order of K_{1} and K_{2} in the pair $\left(K_{1}, K_{2}\right)$ and the result $K=$ $K_{1}{ }_{\left(I, i_{1}, i_{2}\right)} K_{2}$ is important because i_{1} and i_{2} relate output places of K_{1} with input places K_{2}. The composition of two AHL-occurrence nets is called strict parallel if $P_{I}=\emptyset$ and is called strict sequential if $i_{1}\left(P_{I}\right)=O U T\left(K_{1}\right)$ and $i_{2}\left(P_{I}\right)=I N\left(K_{2}\right)$.

Definition 11 (Composition of Instantiations). Given the AHL-occurrence nets K_{1}, K_{2} and I as above and two injective AHL-net morphism $i_{1}: I \rightarrow K_{1}$ and $i_{2}: I \rightarrow K_{2}$ such that $\left(K_{1}, K_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$. Let $K I_{x}=$ $\left(K_{x}, I N I T_{x}, I N S_{x}\right)$ for $x=1,2$ be two AHL-occurrence nets with instantiations and $L_{\text {init }_{1}} \in I N S_{1}$ and $L_{\text {init }_{2}} \in I N S_{2}$. Then $\left(L_{\text {init }_{1}}, L_{\text {init }_{2}}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$ if for all $(a, p) \in A_{\text {type }(p)} \otimes P_{I}:\left(a, i_{1}(p)\right) \in \operatorname{OUT}\left(L_{\text {init }_{1}}\right) \Rightarrow$ $\left(a, i_{2}(p)\right) \in I N\left(L_{\text {init }_{2}}\right)$.

From $\left(I, i_{1}, i_{2}\right)$ we construct the induced instantiation interface $\left(J, j_{1}, j_{2}\right)$ of $\left(L_{\text {init }_{1}}, L_{\text {init }_{2}}\right)$ with $J=\left(P_{J}, T_{J}\right.$, pre $_{J}$, post $\left._{J}\right)$ by
$-P_{J}=\left\{(a, p) \mid\left(a, i_{1}(p)\right) \in O U T\left(L_{\text {init }_{1}}\right)\right\}$,
$-T_{J}=\emptyset$,

- pre $_{J}=$ post $_{J}=\emptyset$ (the empty function) and
$-j_{x}: J \rightarrow L_{\text {init }_{x}}$ for $x=1,2$ defined by $j_{x, P}=i d_{A} \otimes i_{x, P}$ and $j_{x, T}=\emptyset$.

The composition of $\left(L_{\text {init }_{1}}, L_{\text {init }_{2}}\right)$ w.r.t. the instantiation interface $\left(J, j_{1}, j_{2}\right)$ induced by $\left(I, i_{1}, i_{2}\right)$ is defined by the pushout diagram (PO) in PTNet and is denoted by $L_{\text {init }}=L_{i n i t_{1}} \circ_{\left(J, j_{1}, j_{2}\right)} L_{\text {init }_{2}}$.

The AHL-occurrence net with instantiations $K I_{\text {Enter }}=\left(K_{\text {Enter }}, I N I T_{\text {Enter }}\right.$, $I N S_{\text {Enter }}$) is given in Figs. 9 and 10 . The sequential composition of $K_{\text {Eat }}$ (see Fig. 8 in Section 3) and $K_{\text {Enter }}$ is defined by merging the output place Restaurant $_{2}$ of $K_{\text {Eat }}$ and the input place Restaurant ${ }_{3}$ of $K_{\text {Enter }}$ leading to the AHL-occurrence net $K_{\text {Eat/Enter }}$ (see Fig. 6 in Section 22 . In more detail $K_{\text {Eat/Enter }}=K_{\text {Eat }} \circ_{\left(I, i_{1}, i_{2}\right)} K_{\text {Enter }}$ is the gluing of the two basic AHLoccurrence nets along I with $P_{I}=\{$ Restaurant $\}, i_{1}($ Restaurant $)=$ Restaurant $_{2}$

Fig. 9. AHL-occurrence net $K_{\text {Enter }}$ with instantiation $L_{\text {Enter }}$

Fig. 10. AHL-occurrence net $K_{\text {Enter }}$ with instantiation $L_{\text {Enter }}{ }^{\prime}$
and i_{2} (Restaurant $)=$ Restaurant $_{3}$. The corresponding instantiations $L_{\text {Eat }}$ in Fig. 8 and $L_{E n t e r^{\prime}}$ in Fig. 10 can be analogously composed to the instantiation $L_{\text {Eat/Enter }}$ in Fig. 6. Note that $\left(L_{\text {Eat }}, L_{\text {Enter }}\right)$ is composable, because we have $\left(\right.$ table ${ }_{45}^{\prime}, i_{1}($ Restaurant $\left.)\right) \in O U T\left(L_{\text {Eat }}\right)$ and $\left(\right.$ table ${ }_{45}^{\prime}, i_{2}($ Restaurant $\left.)\right) \in$ $I N\left(L_{\text {Enter }}{ }^{\prime}\right)$.

Theorem 2 (Composition of AHL-Occurrence Nets with Instantiations). Given the AHL-occurrence nets K_{1}, K_{2} and I as above and two injective AHL-net morphism $i_{1}: I \rightarrow K_{1}$ and $i_{2}: I \rightarrow K_{2}$ such that $\left(K_{1}, K_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$. Let $K I_{x}=\left(K_{x}, I N I T_{x}, I N S_{x}\right)$ for $x=1,2$ be two AHL-occurrence nets with instantiations. Then the composition of $\left(K I_{1}, K I_{2}\right)$ w.r.t. $\left(I, i_{1}, i_{2}\right)$ is defined by $K I=(K, I N I T, I N S)$ with

$$
\begin{aligned}
& -K=K_{1} \circ_{\left(I, i_{1}, i_{2}\right)} K_{2}, \\
& -I N S=\left\{L_{\text {init }_{1} \circ_{\left(J, j_{1}, j_{2}\right)} L_{\text {init }_{2}} \mid L_{\text {init }_{x} \in I N} \in I N S_{x} \text { for } x=1,2,\left(L_{\text {init }_{1}}, L_{\text {init }_{2}}\right)}^{\text {is composable w.r.t. } \left.\left(J, j_{1}, j_{2}\right) \text { induced by }\left(I, i_{1}, i_{2}\right)\right\},}\right. \\
& - \text { and } I N I T=\left\{I N\left(L_{\text {init }}\right) \mid L_{\text {init }} \in I N S\right\}
\end{aligned}
$$

and $K I=K I_{1} \circ_{\left(I, i_{1}, i_{2}\right)} K I_{2}$ is an AHL-occurrence net with instantiations.
Proof. (Sketch) The detailed proof can be found in Appendix A.4.
To prove that $K I=(K, I N I T, I N S)$ is well-defined, first note that K is an occurrence net due to Theorem 1 Moreover, for each $L_{i n i t} \in I N S$ we need to show $L_{\text {init }} \subseteq F l a t(K)$ and $\operatorname{in} \circ \operatorname{proj}(K): L_{\text {init }} \rightarrow \operatorname{Skel}(K)$ is an isomorphism in the diagram below where we have the following pushouts: (PO1) by construction, (PO2) since Flat preserves pushout $K=K_{1} \circ_{I} K_{2}$ and (PO3) since Skel preserves pushout $K=K_{1} \circ_{I} K_{2}$.
$\operatorname{proj}(I), \operatorname{proj}\left(K_{1}\right), \operatorname{proj}\left(K_{2}\right)$ and $\operatorname{proj}(K)$ are projections from the flattening to the skeleton construction (see Remark 1 in Appendix A.2) and $i n_{I}, i n_{1}, i n_{2}$ are inclusions where $J \subseteq F l a t(I)=(A \otimes P, \emptyset, \emptyset, \emptyset)$ and in is induced by (PO1).

Since $\operatorname{proj}(I) \circ i n_{I}$ can be shown to be an isomorphism (using that J is pullback of $\operatorname{Flat}\left(i_{1}\right)$ and $\left.i n_{1}\right)$ and $\operatorname{proj}\left(K_{x}\right) \circ i n_{x}$ are by assumption isomorphisms for $x=1,2$, we conclude that $\operatorname{proj}(K) \circ i n$ is isomorphic as well. Hence $i n$ is injective and can be chosen to be an inclusion in : $L_{\text {init }} \rightarrow$ Flat (K).

Given the two basic AHL-occurrence nets with instantiations $K I_{\text {Eat }}$ and $K I_{\text {Enter }}$, then the composition of ($K I_{\text {Eat }}, K I_{\text {Enter }}$) results in the AHL-occurrence net with instantiation $K I_{\text {Eat/Enter }}$ (see Fig. 6 (in Section 2), while the opposite composition of ($K I_{\text {Enter }}, K I_{\text {Eat }}$) is the AHL-occurrence net with instantiation $K I_{\text {Enter } / \text { Eat }}$ (see Fig. 7 in Section 22). Different to $I N S_{\text {Eat }}$ and $I N S_{\text {Enter }}$ the
set of instantiations $I N S_{\text {Eat/Enter }}$ only consists of one instantiation $L_{\text {Eat/Enter }}$ (and analogously $I N S_{E n t e r / E a t}$), because we require in Theorem 2 the composability of instantiations.

Definition 12 (Composability of AHL-Processes with Instantiations). Given the AHL-occurrence nets K_{1}, K_{2} and I as above and two injective AHLnet morphism $i_{1}: I \rightarrow K_{1}$ and $i_{2}: I \rightarrow K_{2}$. Let $K I_{x}=\left(K_{x}, I N I T_{x}, I N S_{x}\right)$ together with the AHL-net morphisms $m p_{x}: K_{x} \rightarrow A N$ for $x=1,2$ be two instantiated AHL-processes of the AHL-net AN. Then $\left(m p_{1}, m p_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$ if

1. $\left(K_{1}, K_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$ and
2. $m p_{1} \circ i_{1}=m p_{2} \circ i_{2}$.

Theorem 3 (Composition of AHL-Processes with Instantiations). Given the AHL-occurrence nets K_{1}, K_{2} and I as above and two injective AHL-net morphism $i_{1}: I \rightarrow K_{1}$ and $i_{2}: I \rightarrow K_{2}$. Let $K I_{x}=\left(K_{x}, I N I T_{x}, I N S_{x}\right)$ together with the AHL-net morphisms $m p_{x}: K_{x} \rightarrow A N$ for $x=1,2$ be two instantiated AHL-processes of the AHL-net AN such that $\left(m p_{1}, m p_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$. Then the instantiated AHL-occurrence net $K I=K I_{1}{ }_{\left(I, i_{1}, i_{2}\right)} K I_{2}$ together with the induced AHL-net morphism mp : $K \rightarrow A N$ is an instantiated AHL-process of the AHLnet $A N$, where K is the AHL-occurrence net of $K I$.

Proof. (Sketch) The detailed proof can be found in Appendix A.5.
Due to Def. 12 and the universal property of pushouts there is the morphism $m_{P}: K \rightarrow A N$, that uniquely commutes $m p_{1}=i_{1}^{\prime} \circ m_{P}$ and $m p_{2}=i_{2}^{\prime} \circ m_{P}$.

Because for low-level occurrence nets the input/output behaviour is fixed by the net structure, two low-level occurrence nets should be considered to be equivalent if they are isormorphic. For high-level occurrence nets the input/output behaviour additionally depends on the marking of their input places and on corresponding variable assignments. Hence we introduce the equivalence of two AHL-processes with instantiations, where the net structures of equivalent AHLprocesses may be different, but they have especially the same input/output behaviour.

In more detail they have (up to renaming) the same sets of transitions and places and their instantiations are equivalent, i.e. there exist corresponding instantiations with the same input/output behaviour. So specific firing sequences of equivalent AHL-processes are comparable in the sense that they start and end up with the same data elements as marking of their input places and output places, respectively, but in general the corresponding transitions are fired in a different order.

Definition 13 (Equivalence of AHL-Processes with Instantiations). Let $K I=(K, I N I T, I N S)$ and $K I^{\prime}=\left(K^{\prime}, I N I T^{\prime}, I N S^{\prime}\right)$ together with AHL-net
morphisms $m p: K \rightarrow A N$ and $m p^{\prime}: K^{\prime} \rightarrow A N$ two AHL-processes of an AHL-net AN. Then these two processes are called equivalent if

1. there are bijections $e_{P}: P_{K} \rightarrow P_{K^{\prime}}$ and $e_{T}: T_{K} \rightarrow T_{K^{\prime}}$ such the following diagram commutes componentwise

2. and the instantiations are equivalent, i.e. for each $L_{i n i t} \in I N S$ there exists a $L_{\text {init }} \in I N S^{\prime}$ and vice versa such that

$$
\begin{array}{r}
\forall(a, p) \in A_{\text {type }(p)} \otimes P_{K}:(a, p) \in I N\left(L_{i n i t}\right) \Leftrightarrow\left(a, e_{P}(p)\right) \in I N\left(L_{i n i t^{\prime}}\right) \text { and } \\
(a, p) \in O U T\left(L_{i n i t}\right) \Leftrightarrow\left(a, e_{P}(p)\right) \in O U T\left(L_{i n i t^{\prime}}\right)
\end{array}
$$

The equivalence of the instantiations means that there is a bijection between the input places $I N(K)$ and $I N\left(K^{\prime}\right)$ (resp. output places $O U T(K)$ and $\left.O U T\left(K^{\prime}\right)\right)$, s.t. the input-output function inout : INIT $\rightarrow E X I T$ of $K I$ and inout $^{\prime}: I N I T^{\prime} \rightarrow E X I T^{\prime}$ of $K I^{\prime}$ are equal up to bijection of input and output places. But it is not required that $e=\left(e_{P}, e_{T}\right): K \rightarrow K^{\prime}$ is an isomorphism, i.e. in general $e=\left(e_{P}, e_{T}\right)$ is not compatible with pre- and post domains.

In Section 2 the AHL-processes with instantiations $K I_{\text {Eat/Enter }}$ in Fig. 6 and $K I_{\text {Enter } / E a t}$ in Fig. 7 together with the obvious AHL-net morphisms $m p_{1}$: $K I_{\text {Eat } / \text { Enter }} \rightarrow A N_{\text {House }}$ and $m p_{2}: K I_{\text {Eat/Enter }} \rightarrow A N_{\text {House }}$ are equivalent. There is a bijection between their transitions and places, which is not an isomorphism. The bijection of places is defined by mapping the input places of $K I_{\text {Eat/Enter }}$ to the input places of $K I_{\text {Enter/Eat }}$ (and analogously the output places) and the place Restaurant ${ }_{2}$ of $K I_{\text {Eat/Enter }}$ to the place Restaurant ${ }_{4}$ of $K I_{\text {Enter } / E a t}$, such that the diagram in Def. 13 commutes componentwise. Moreover the instantiations $L_{\text {Eat/Enter }}$ in Fig. 6 and $L_{\text {Enter/Eat }}$ are equivalent.

The main result in this context are suitable conditions s.t. AHL-net processes with instantiation can be composed in any order leading to equivalent high-level net processes. Here we use especially the assumption that the instantiations are consistent, i.e. there is a close relation between their input and output places.
Definition 14 (Consistency of Instantiations). Given AHL-occurrence nets K_{1}, K_{2} and I as in Def. 10 and injective AHL-net morphism $i_{1}: I \rightarrow K_{1}$, $i_{2}: I \rightarrow K_{2}, i_{3}: I \rightarrow K_{1}$ and $i_{4}: I \rightarrow K_{2}$ such that $\left(K_{1}, K_{2}\right)$ is composable w.r.t. $\left(I, i_{1}, i_{2}\right)$ and $\left(K_{2}, K_{1}\right)$ is composable w.r.t. $\left(I, i_{4}, i_{3}\right)$ with pushout (1) and (2), respectively. Moreover let $K I_{x}=\left(K_{x}, I N I T_{x}, I N S_{x}\right)$ be AHL-occurrence nets with instantiations for $K_{x}(x=1,2)$.

Then $\left(I N S_{1}, I N S_{2}\right)$ is called consistent if for all composable $\left(L_{\text {init }_{1}}, L_{\text {init }_{2}}\right)$ $\in I N S_{1} \times I N S_{2}$ w.r.t. $\left(J, j_{1}, j_{2}\right)$ induced by $\left(I, i_{1}, i_{2}\right)$ with pushout (3) there are composable $\left(L_{\text {init } t_{2}^{\prime}}, L_{\text {init }}^{1}\right.$) $) \in I N S_{2} \times I N S_{1}$ w.r.t. $\left(J, j_{4}, j_{3}\right)$ induced by $\left(I, i_{4}, i_{3}\right)$ with pushout (4) and vice versa, s.t. in both cases the instantiations satisfy the following properties 1.-4. for gluing points GP defined below:

1. $I N\left(L_{i n i t_{x}}\right) \backslash G P\left(L_{i n i t_{x}}\right)=I N\left(L_{i n i t_{x}^{\prime}}\right) \backslash G P\left(L_{i n i t_{x}^{\prime}}\right)$ and
2. $\operatorname{OUT}\left(L_{\text {init }_{x}}\right) \backslash G P\left(L_{\text {init }}^{x}\right.$ $)=O U T\left(L_{\text {init }_{x}^{\prime}}\right) \backslash G P\left(L_{\text {init }_{x}^{\prime}}\right)$ for $x=1,2$

Moreover we require for all $(a, p) \in A_{\text {type }(p)} \otimes P_{I}$:

4. $\left(a, i_{1}(p)\right) \in O U T\left(L_{\text {init }_{1}^{\prime}}\right) \Leftrightarrow\left(a, i_{4}(p)\right) \in O U T\left(L_{\text {init }_{2}}\right)$

The gluing points GP are defined by
$-G P\left(P_{K_{1}}\right)=i_{1}\left(P_{I}\right) \cup i_{3}\left(P_{I}\right), G P\left(P_{K_{2}}\right)=i_{2}\left(P_{I}\right) \cup i_{4}\left(P_{I}\right)$,
$-G P\left(L_{\text {init }_{x}}\right)=\left\{(a, p) \in L_{\text {init }_{x}} \mid p \in G P\left(P_{K_{x}}\right)\right\}$ and
$-G P\left(L_{i n i t_{x}^{\prime}}\right)=\left\{(a, p) \in L_{\text {init }}^{\prime} \mid p \in G P\left(P_{K_{x}}\right)\right\}$ for $x=1,2$.

Let $K I_{E a t}$ and $K I_{E n t e r}$ be the two instantiated AHL-processes as described above. Their sets of instantiations $I N S_{E a t}$ and $I N S_{\text {Enter }}$ are consistent, because for the composable instantiations $\left(L_{E a t}, L_{E n t e r^{\prime}}\right) \in I N S_{E a t} \times I N S_{E n t e r}$ there are the composable instantiations $\left(L_{\text {Enter }}, L_{\text {Eat }}\right) \in I N S_{\text {Enter }} \times I N S_{\text {Eat }}$ (and vice versa) satisfying the properties 1.-4. in Def. 14.

Theorem 4 (Equivalence and Independence of AHL-Processes). Given an AHL-net $A N$ and $A H L$-occurrence nets $K I_{x}=\left(K_{x}, I N I T_{x}, I N S_{x}\right)$ with consistent instantiations as in Def. 14 with AHL-net morphisms $m p_{x}: K_{x} \rightarrow$ $A N$ for $x=1,2$.

Then we have instantiated AHL-processes $K I=(K, I N I T, I N S)$ with $m p$: $K \rightarrow A N$ and $K I^{\prime}=\left(K^{\prime}, I N I T^{\prime}, I N S^{\prime}\right)$ with $m p^{\prime}: K^{\prime} \rightarrow A N$ defined by opposite compositions $K I=K I_{1}{ }_{\left(I, i_{1}, i_{2}\right)} K I_{2}$ and $K I^{\prime}=K I_{2}{ }_{\left(I, i_{4}, i_{3}\right)} K I_{1}$ and both are equivalent processes of $A N$, provided that

1. K_{1} and K_{2} have no isolated places, i.e. $I N\left(K_{x}\right) \cap O U T\left(K_{x}\right)=\emptyset$ for $x=1,2$
2. $m p_{1}$ and $m p_{2}$ are compatible with i_{1}, i_{2}, i_{3} and i_{4}, i.e. $m p_{1} \circ i_{1}=m p_{2} \circ i_{2}=$ $m p_{1} \circ i_{3}=m p_{2} \circ i_{4}: I \rightarrow A N$.

Under these conditions $K I_{1}$ and $K I_{2}$ are called independent.
Proof. (Sketch) The detailed proof can be found in Appendix A.6. The instantiated AHL-processes $K I$ and $K I^{\prime}$ with $m p: K \rightarrow A N$ and $m p^{\prime}: K^{\prime} \rightarrow A N$ exist by Theorem 3 It remains to show that they are equivalent.
Construction of bijections. The bijection $e_{T}: T_{K} \rightarrow T_{K^{\prime}}$ follows from the fact that $I_{T}=\emptyset$ and hence $T_{K} \cong T_{K_{1}} \uplus T_{K_{2}}$ and $T_{K^{\prime}} \cong T_{K_{2}} \uplus T_{K_{1}}$. In order to obtain the bijection $e_{P}: P_{K} \rightarrow P_{K^{\prime}}$ we show that P_{K} and $P_{K^{\prime}}$ can be represented by
the following disjoint unions of gluing points $G P$ and non gluing points $N G P$ in pushout (1) and (2) in Def. 14.

$$
\begin{aligned}
& P_{K}=G P_{1}\left(P_{K}\right) \cup G P_{2}\left(P_{K}\right) \cup G P_{3}\left(P_{K}\right) \cup N G P\left(P_{K}\right) \text { with } \\
& G P_{1}\left(P_{K}\right)=i_{1}^{\prime} \circ i_{3}\left(P_{I}\right), G P_{2}\left(P_{K}\right)=i_{2}^{\prime} \circ i_{4}\left(P_{I}\right) \text { and } G P_{3}\left(P_{K}\right)=i_{1}^{\prime} \circ i_{1}\left(P_{I}\right) \\
& P_{K^{\prime}}=G P_{1}\left(P_{K^{\prime}}\right) \cup G P_{2}\left(P_{K^{\prime}}\right) \cup G P_{3}\left(P_{K^{\prime}}\right) \cup N G P\left(P_{K^{\prime}}\right) \text { with } \\
& G P_{1}\left(P_{K^{\prime}}\right)=i_{4}^{\prime} \circ i_{2}\left(P_{I}\right), G P_{2}\left(P_{K^{\prime}}\right)=i_{3}^{\prime} \circ i_{1}\left(P_{I}\right) \text { and } G P_{3}\left(P_{K^{\prime}}\right)=i_{3}^{\prime} \circ i_{3}\left(P_{I}\right)
\end{aligned}
$$

This allows to define $e_{P_{x}}: G P_{x}\left(P_{K}\right) \rightarrow G P_{x}\left(P_{K^{\prime}}\right)$ for $x=1,2,3$ by $e_{P_{1}}\left(i_{1}^{\prime} \circ\right.$ $\left.i_{3}(p)\right)=i_{4}^{\prime} \circ i_{2}(p)$ for all $p \in P_{I}$ and similar for $e_{P_{2}}$ and $e_{P_{3}}$. Since $i_{1}^{\prime}, i_{3}, i_{4}^{\prime}$, and i_{2} are all injective $e_{P_{1}}$ is bijective and similar also $e_{P_{2}}$ and $e_{P_{3}}$ are bijective.

Finally also $e_{P_{4}}: N G P\left(P_{K}\right) \rightarrow N G P\left(P_{K^{\prime}}\right)$ can be defined as bijection. Using $I N\left(K_{x}\right) \cap \operatorname{OUT}\left(K_{x}\right)=\emptyset$ for $x=1,2$ it can be shown that P_{K} (and similar $P_{K^{\prime}}$) is a disjoint union of all four components leading to a bijection $e_{P}=e_{P_{1}} \cup e_{P_{2}} \cup e_{P_{3}} \cup e_{P_{4}}: P_{K} \rightarrow P_{K^{\prime}}$. With these definitions it can be shown explicitly that the diagram in Def. 13 commutes componentwise.
Equivalence of instantiations. Given $L_{\text {init }}=L_{i n i t_{1}}{ }_{\left(J, j_{1}, j_{2}\right)} L_{\text {init }}$ with pushout (3) in Def. 14 we have by consistency of $\left(I N S_{1}, I N S_{2}\right) L_{\text {init }}=L_{i n i t_{2}^{\prime}}{ }^{\circ}\left(J, j_{4}, j_{3}\right)$ $L_{\text {init }}^{\prime}$ with pushout (4) s.t. properties 1.-4. in Def. 14 are satisfied. This allows to show by case distinction using the definition of e_{P} above that we have for all $(a, p) \in A_{\text {type }(p)} \otimes P_{K}:(a, p) \in I N\left(L_{\text {init }}\right) \Leftrightarrow\left(a, e_{P}(p)\right) \in I N\left(L_{\text {init }}\right)$ and $(a, p) \in O U T\left(L_{\text {init }}\right) \Leftrightarrow\left(a, e_{P}(p)\right) \in O U T\left(L_{\text {init }}\right)$.

The opposite direction, where $L_{i n i t^{\prime}}=L_{i n i t_{2}^{\prime}} \circ_{\left(J, j_{4}, j_{3}\right)} L_{i n i t_{1}^{\prime}}$ is given with pushout (4), follows by symmetry.

Equivalence of $K I$ and $K I^{\prime}$ in Theorem 4 intuitively means that the AHLprocesses $K I_{1}$ and $K I_{2}$ with consistent instantiations can be considered to be independent, because composition in each order leads to equivalent processes.

Given the two basic AHL-processes $K I_{\text {Eat }}$ and $K I_{\text {Enter }}$ with the AHL-net morphisms $m p_{\text {Eat }}: K I_{\text {Eat }} \rightarrow A N_{\text {House }}$ and $m p_{\text {Enter }}: K I_{\text {Enter }} \rightarrow A N_{\text {House }}$, where $m p_{E a t}$ is defined in Section 2 and $m p_{E n t e r}$ can be analogously defined. Because the properties 1. and 2. in Theorem 4 are satisfied by $K_{\text {Eat }}$ and $K_{\text {Enter }}$ as well as by $m p_{E a t}$ and $m p_{\text {Enter }}$, we get the equivalent processes $K I_{\text {Eat/Enter }}=$ $K I_{\text {Eat }}{ }^{\circ}{ }_{\left(I, i_{1}, i_{2}\right)} K_{\text {Enter }}$ in Fig. 6 and $K I_{\text {Enter } / \text { Eat }}=K I_{\text {Enter }} \circ_{\left(I, i_{4}, i_{3}\right)} K I_{\text {Eat }}$ in Fig. 7.

5 Conclusion and Related Work

In this paper we have presented main results of a line of research concerning the modeling and analysis of high-level net processes. Based on the notions of highlevel net processes with initial markings in $[6,7]$ we have introduced high-level net processes with instantiations. As main results we have presented suitable conditions for the composition and independence of high-level net processes. We have shown under these conditions that the composition of two high-level net processes leads to a high-level net process and they can be composed in any order
leading to equivalent processes. In this case the two high-level net processes are called independent.

In $[11,12]$ the semantics of object Petri nets is defined by a suitable extension of low-level processes. Objects Petri nets are high-level nets with P/T-systems as tokens. A process for an object Petri net is given by a pair of processes, a high-level net process containing low-level processes of the corresponding P / T systems. In contrast the approach presented in this paper extends the notion of high-level net processes for algebraic high-level nets. The token structure of an algebraic high-level net is defined in its data type part that is not restricted to P / T-systems and we also use rules as tokens. For this reason low-level processes of P / T-systems as tokens are not considered.

Our main result of independence of high-level net processes is inspired by the results of local Church-Rosser for graph resp. net transformation [10, 13], where under suitable conditions transformation steps can be performed in any order leading to the same result. In [14] we have transferred these results, so that net transformations and token firing can be executed in arbitrary order provided that certain conditions are satisfied. For example in Section 2 the firing step table ${ }_{45}$ $\xrightarrow{\text { start eating }}{ }_{5}$ table $_{45}^{\prime}$ (see Fig. 2) and the transformation step (phi i_{3}, table $\left._{45}\right) \xrightarrow{\text { rule }_{2}}$ table $_{345}$ (see Fig. 3) are independent of each other, so that each of this evolution steps can be postponed after the realization of the other yielding the same result, the P / T-system table ${ }_{345}^{\prime}$ in Fig. 4. Hence an interesting aspect of future work will be to investigate the correspondence between these different concepts of independence in more detail to gain further results for high-level net processes.

References

1. Goltz, U., Reisig, W.: The Non-sequential Behavior of Petri Nets. Information and Control 57(2/3) (1983) 125-147
2. Rozenberg, G.: Behaviour of Elementary Net Systems. In: Petri Nets: Central Models and Their Properties, Advances in Petri Nets. Volume 254 of LNCS., Springer (1987) 60-94
3. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing Net Computations and Processes. In: Proc. on Logic in Computer Science (LICS), IEEE Computer Society (1989) 175-185
4. Engelfriet, J.: Branching Processes of Petri Nets. Acta Informatica 28(6) (1991) 575-591
5. Meseguer, J., Montanari, U., Sassone, V.: On the Semantics of Place/Transition Petri Nets. Mathematical Structures in Computer Science 7(4) (1997) 359-397
6. Ehrig, H.: Behaviour and Instantiation of High-Level Petri Net Processes. Fundamenta Informaticae 65(3) (2005) 211-247
7. Ehrig, H., Hoffmann, K., Padberg, J., Baldan, P., Heckel, R.: High-level net processes. In: Formal and Natural Computing. Volume 2300 of LNCS., Springer (2002) 191-219
8. Hoffmann, K., Mossakowski, T., Ehrig, H.: High-Level Nets with Nets and Rules as Tokens. In: Proc. Application and Theory of Petri Nets (ATPN). Volume 3536 of LNCS. Springer (2005) 268-288
9. Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computation 88(2) (1990) 105-155
10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in TCS. Springer (2006)
11. Farwer, B., Köhler, M.: Mobile Object-Net Systems and their Processes. Fundam. Inform. 60(1-4) (2004) 113-129
12. Köhler, M., Rölke, H.: Reference and Value Semantics Are Equivalent for Ordinary Object Petri Nets. In: Proc. Application and Theory of Petri Nets (ATPN). Volume 3536 of LNCS., Springer (2005) 309-328
13. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations. World Scientific (1997)
14. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of net transformations and token firing in reconfigurable place/transition systems. In: Proc. Application and Theory of Petri Nets (ATPN). Volume 4546 of LNCS., Springer (2007) 104-123

A Appendix

A. 1 Signature and Algebra for P/T-Systems and Rules as Tokens

Definition 15 (HLNR-System-SIG Signature and Algebra).

Given vocabularies T_{0} and P_{0}, the signature HLNR-System-SIG is given by
HLNR-System-SIG =
sorts: Transitions, Places, Bool, System, Mor, Rules
opns: $t t, f f: \rightarrow$ Bool
enabled: System \times Transitions \rightarrow Bool
fire : System \times Transitions \rightarrow System
applicable : Rules \times Mor \rightarrow Bool
transform: Rules \times Mor \rightarrow System
coproduct : System \times System \rightarrow System
$p r_{p h i}:$ System \rightarrow System
$p r_{\text {table }}:$ System \rightarrow System
cod : Mor \rightarrow System
and the HLNR-System-SIG-algebra A for P / T-systems and rules as tokens is given by
$-A_{\text {Transitions }}=T_{0}, A_{\text {Places }}=P_{0}, A_{\text {Bool }}=\{$ true, false $\}$,

- $A_{\text {System }}$ the set of all P / T-systems over T_{0} and P_{0}, i.e.
$A_{\text {System }}=\left\{P N \mid P N=(P, T\right.$, pre, post,$M) P / T$-system $\left., P \subseteq P_{0}, T \subseteq T_{0}\right\}$
$\cup\{u n d e f\}$,
- $A_{M o r}$ the set of all P / T-morphisms for $A_{\text {System }}$, i.e.
$A_{\text {Mor }}=\left\{f \mid f: P N \rightarrow P N^{\prime} P / T\right.$-morphism with $\left.P N, P N^{\prime} \in A_{\text {System }}\right\}$,
- $A_{\text {Rules }}$ the set of all rules of P / T-systems, i.e.
$A_{\text {Rules }}=\left\{r \mid r=\left(L \stackrel{i_{1}}{\leftarrow} I \xrightarrow{i_{2}} R\right)\right.$ rule of P / T-systems with
strict inclusions $\left.i_{1}, i_{2}\right\}$,
$-t t_{A}=t r u e, f f_{A}=$ false,
- enabled $_{A}: A_{\text {System }} \times T_{0} \rightarrow\{$ true, false $\}$ for $P N=(P, T$, pre, post, $M)$ with

$$
\text { enabled }_{A}(P N, t)= \begin{cases}\text { true } & \text { if } t \in T, p r e(t) \leq M \\ \text { false } & \text { else }\end{cases}
$$

- fire $_{A}: A_{\text {System }} \times T_{0} \rightarrow A_{\text {System }}$ for $P N=(P, T$, pre, post,$M)$ with

$$
\operatorname{fire}_{A}(P N, t)=\left\{\begin{array}{ll}
\left.\left(P, T, p r e, p o s t, M \ominus p r e(t) \oplus \operatorname{post}^{(} t\right)\right) \\
\text { undef } & \text { if enabled } \\
A
\end{array}(P N, t)=t t\right.
$$

- applicable $_{A}: A_{\text {Rules }} \times A_{\text {Mor }} \rightarrow\{$ true, false $\}$ with

$$
\text { applicable }_{A}(r, m)= \begin{cases}\text { true } & \text { if } r \text { is applicable at match } m \\ \text { false } & \text { else }\end{cases}
$$

- transform $_{A}: A_{\text {Rules }} \times A_{\text {Mor }} \rightarrow A_{\text {System }}$ with

$$
\text { transform }_{A}(r, m)=\left\{\begin{array}{ll}
H & \text { if applicable } \\
A
\end{array}(r, m)\right.
$$

where for $L \xrightarrow{m} G$ and applicable $A_{A}(r, m)=$ true we have a direct transformation $G \xlongequal{r} H$,

- coproduct $_{A}: A_{\text {System }} \times A_{\text {System }} \rightarrow A_{\text {System }}$ the disjoint union (i.e. the two P / T-systems are combined without interaction) with

$$
\text { coproduct }_{A}\left(P N_{1}, P N_{2}\right)=\underline{\text { if }\left(P N_{1}=\text { undef } \vee P N_{2}=\text { undef }\right) \underline{\text { then }} \text { undef }} \underset{\underline{\text { else }}\left(\left(P_{1} \uplus P_{2}\right),\left(T_{1} \uplus T_{2}\right), \text { pre }_{3}, \text { post }_{3}, M_{1} \oplus M_{2}\right)}{ }
$$

where pre ${ }_{3}$, post ${ }_{3}:\left(T_{1} \uplus T_{2}\right) \rightarrow\left(P_{1} \uplus P_{2}\right)^{\oplus}$ are defined by

$$
\begin{aligned}
& \operatorname{pre}_{3}(t)=\text { if } t \in T_{1} \underline{\text { then }} \operatorname{pre}_{1}(t) \underline{\text { else }} \operatorname{pre}_{2}(t) \\
& \operatorname{post}_{3}(t)=\underline{\text { if }} t \in T_{1} \underline{\text { then } \operatorname{post}_{1}(t) \underline{\text { else }} \text { post }_{2}(t)}
\end{aligned}
$$

$-p r_{p h i, A}: A_{\text {System }} \rightarrow A_{\text {System }}$ with

$$
p r_{p h i, A}(P N)= \begin{cases}p h i_{i} & \text { if } P N=\operatorname{coproduct}_{A}\left(p h i_{i}, P N^{\prime}\right) \\ \text { undef } & \text { else }\end{cases}
$$

where phi $_{i}=\left(\left\{p_{i}\right\},\left\{t_{i}\right\}\right.$, pre $_{i}$, post $\left._{i}\right)$ with $\operatorname{pre}_{i}\left(t_{i}\right)=\operatorname{post}_{i}\left(t_{i}\right)=p_{i}$,
$-p r_{\text {table }, A}: A_{\text {System }} \rightarrow A_{\text {System }}$ with

$$
p r_{t a b l e, A}(P N)=P N \backslash p r_{p h i, A}(P N)
$$

$-\operatorname{cod}_{A}: A_{\text {Mor }} \rightarrow A_{\text {System }}$ with $\operatorname{cod}_{A}\left(f: P N_{1} \rightarrow P N_{2}\right)=P N_{2}$.

A. 2 Flattening and Skeleton Construction

Definition 16 (Firing Behaviour of AHL-Nets). A marking of an AHL-net $A N$ is given by $M \in C P^{\oplus}$ where $C P=(A \otimes P)=\left\{(a, p) \mid a \in A_{\text {type }(p)}, p \in P\right\}$.

The set of variables $\operatorname{Var}(t) \subseteq X$ of a transition $t \in T$ are the variables of the net inscriptions in pre (t), post (t) and $\operatorname{cond}(t)$. Let $v: \operatorname{Var}(t) \rightarrow A$ be a variable assignment with term evaluation $v^{\sharp}: T_{\Sigma}(\operatorname{Var}(t)) \rightarrow A$, then (t, v) is a consistent transition assignment iff $\operatorname{cond}_{A N}(t)$ is validated in A under v. The set $C T$ of consistent transition assignments is defined by $C T=$ $\{(t, v) \mid(t, v)$ consistent transition assignment $\}$.

A transition $t \in T$ is enabled in M under v iff $(t, v) \in C T$ and $\operatorname{pre}_{A}(t, v) \leq$ M, where pre $A_{A}: C T \rightarrow C P^{\oplus}$ defined by pre $A_{A}(t, v)=\hat{v}($ pre $(t)) \in(A \otimes P)^{\oplus}$ and $\hat{v}:\left(T_{\Sigma}(\operatorname{Var}(t)) \otimes P\right)^{\oplus} \rightarrow(A \otimes P)^{\oplus}$ is the obvious extension of v^{\sharp} to terms and places (similar post $A_{A}: C T \rightarrow C P^{\oplus}$). Then the follower marking is computed by $M^{\prime}=M \ominus \operatorname{pre}_{A}(t, v) \oplus \operatorname{post}_{A}(t, v)$.

Definition 17 (Flattening). Given AHL-net $A N$ as above then the flattening of $A N$ is a P / T-net $\operatorname{Flat}(A N)=N=\left(C P, C T\right.$, pre $_{A}$, post $\left._{A}\right)$ with
$-C P=A \otimes P=\left\{(a, p) \mid a \in A_{\text {type }(p)}, p \in P\right\}$,
$-C T=\{(t, v) \mid t \in T, v: \operatorname{Var}(t) \rightarrow A$ s.t. cond (t) valid in A under $v\}$ and
$-\operatorname{pre}_{A}$ and post A_{A} as defined in Def. 16.
Given an AHL-net morphism $f: A N_{1} \rightarrow A N_{2}$ by $f=\left(f_{P}, f_{T}\right)$ then Flat (f) $=\left(i d_{A} \otimes f_{P}: C P_{1} \rightarrow C P_{2}, f_{C}: C T_{1} \rightarrow C T_{2}\right)$ is given by $i d_{A} \otimes f_{P}(a, p)=$ $\left(a, f_{p}(p)\right)$ and $f_{C}(t, v)=\left(f_{T}(t), v\right)$.

Definition 18 (Skeleton). Given an AHL-net $A N$ as above then the skeleton of $A N$ is a P / T-net $\operatorname{Skel}(A N)=\left(P, T\right.$, pre $_{S}$, post $\left._{S}\right)$ with pre $S_{S}(t)=\sum_{i=1}^{n} p_{i}$ for $\operatorname{pre}(t)=\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, p_{i}\right)$ and similar for post ${ }_{S}: T \rightarrow P^{\oplus}$. Given an AHL-net morphism $f: A N_{1} \rightarrow A N_{2}$ by $f=\left(f_{P}, f_{T}\right)$ then $\operatorname{Skel}(f)=f=\left(f_{P}: P_{1} \rightarrow\right.$ $\left.P_{2}, f_{T}: T_{1} \rightarrow T_{2}\right)$.

Remark 1. The flattening construction defined in Def. 17 and the skeleton construction defined in Def. 18 are well-defined and can be turned into a functor Flat : AHLNet \rightarrow PTNet and a functor Skel : AHLNet \rightarrow PTNet which preserve pushouts, i.e. given the pushout (1) in AHLNet then there are corresponding pushouts (2) and (3) in PTNet. Moreover we have for each $A N$ a projection $\operatorname{proj}(A N): F l a t(A N) \rightarrow S k e l(A N)$ leading to a natural transformation proj : Flat \rightarrow Skel.

Theorem 5 (Flat is functor). The construction Flat: AHLNet \rightarrow PTNet as defined in Def. 17 is a functor.

Proof.

1. Flat $(A N)$ is well-defined:

We have to show that pre $_{A}$, post $_{A} \in C P^{\oplus}$. This follows for pre $_{A}$ from the fact that term th $_{i}$ of type $\left(p_{i}\right)$ implies $v^{\sharp}\left(\right.$ term $\left._{i}\right) \in A_{\text {type }\left(p_{i}\right)}$ and similar for post $_{A}$.
2. Flat (f) is well-defined:
(a) Let $(a, p) \in C P_{1}$.

By definition we have $\operatorname{Flat}(f)_{P}(a, p)=\left(i d_{A} \otimes f_{P}\right)(a, p)=\left(i d_{A}(a), f_{P}(p)\right)=$ $\left(a, f_{P}(p)\right) \in C P_{2}$ because $f_{P}(p) \in P_{2}$ and $a \in A_{\text {type }_{1}(p)}=A_{\text {type }_{2}\left(f_{P}(p)\right)}$.
(b) $(t, v) \in C T_{1} \Rightarrow f_{C}(t, v) \in C T_{2}$
$(t, v) \in C T_{1}$ means $v: \operatorname{Var}(t) \rightarrow A$ s.t. $\operatorname{cond}_{1}(t)$ valid in A under v,
$f_{C}(t, v)=\left(f_{T}(t), v\right) \in C T_{2}$ means $v: \operatorname{Var}\left(f_{T}(t)\right) \rightarrow A$ s.t. $\operatorname{cond}_{2}\left(f_{T}(t)\right)=$ $\operatorname{cond}_{1}(t)$ valid in A under v. This follows from $(t, v) \in C T_{1}$ because

$$
\begin{aligned}
\operatorname{Var}(t) & =\operatorname{Var}\left(\operatorname{cond}_{1}(t)\right) \cup \operatorname{Var}\left(\operatorname{pre}_{1}(t)\right) \cup \operatorname{Var}\left(\operatorname{post}_{1}(t)\right) \\
& =\operatorname{Var}\left(\operatorname{cond}_{2}\left(f_{T}(t)\right)\right) \cup \operatorname{Var}\left(\operatorname{pre}_{2}\left(f_{T}(t)\right)\right) \cup \operatorname{Var}\left(\operatorname{post}_{2}\left(f_{T}(t)\right)\right) \\
& =\operatorname{Var}\left(f_{T}(t)\right)
\end{aligned}
$$

3. Flat (f) is P / T-net morphism:

For symmetry reasons it suffices to show commutativity for pre $_{A}$ of

Given $\left(t_{1}, v_{1}\right) \in C T_{1}$ with $\operatorname{pre}_{1}\left(t_{1}\right)=\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, p_{i}\right)$ we have
$\operatorname{pre}_{2}\left(f_{T}\left(t_{1}\right)\right)=\left(i d_{T_{\Sigma}(X)} \otimes f_{P}\right)^{\oplus}\left(\operatorname{pre}_{1}\left(t_{1}\right)\right)=\left(i d_{T_{\Sigma}(X)} \otimes f_{P}\right)^{\oplus}\left(\sum_{i=1}^{n}\left(\right.\right.$ term $\left.\left._{i}, p_{i}\right)\right)$
$=\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, f_{P}\left(p_{i}\right)\right)$
because f is an AHL-morphisms and hence
$\left(i d_{A} \otimes f_{P}\right)^{\oplus}\left(\operatorname{pre}_{1 A}\left(t_{1}, v_{1}\right)\right)=\left(i d_{A} \otimes f_{P}\right)^{\oplus}\left(\sum_{i=1}^{n}\left(v_{1}^{\sharp}\left(\right.\right.\right.$ term $\left.\left.\left._{i}\right), p_{i}\right)\right)$
$=\sum_{i=1}^{n}\left(v_{1}^{\sharp}\left(\right.\right.$ term $\left.\left._{i}\right), f_{P}\left(p_{i}\right)\right)=\operatorname{pre}_{2 A}\left(f_{T}\left(t_{1}\right), v_{1}\right)=\operatorname{pre}_{2 A}\left(f_{C}\left(t_{1}, v_{1}\right)\right)$.
4. Obviously we have $\operatorname{Flat}(f)=i d_{\text {Flat(AN) }}$ for $f=i d_{A N}$. Furthermore we have for the composition $\operatorname{Flat}(g \circ f)=\left(\left(i d_{A} \otimes(g \circ f)_{P}\right)^{\oplus},(g \circ f)_{C}\right)=$ $\left(\left(i d_{A} \otimes(g \circ f)_{P}\right)^{\oplus}, g_{C} \circ f_{C}\right)=\left(\left(i d_{A} \circ i d_{A} \otimes(g \circ f)_{P}\right)^{\oplus}, g_{C} \circ f_{C}\right)=\left(\left(i d_{A} \otimes\right.\right.$ $\left.\left.g_{P}\right)^{\oplus} \circ\left(i d_{A} \otimes f_{P}\right)^{\oplus}, g_{C} \circ f_{C}\right)=F l a t(g) \circ \operatorname{Flat}(f)$.
Theorem 6 (Flat preserves Pushouts). Given Pushout (1) in AHLNet then (2) is Pushout in PTNet.

Proof. Pushout (1) in AHLNet is constructed componentwise by the Pushouts

in SET. Since Pushouts in PTNet are also constructed componentwise in SET it suffices to show that (5) and (6) are Pushouts in SET.

We show the universal properties for (6), because we cannot directly use that the cartesian product $A \times \ldots$ preserves Pushouts, since $A \otimes P \subsetneq A \times P$. Given h_{1}, h_{2} with $h_{1} \circ\left(i d_{A} \otimes f_{1 P}\right)=h_{2} \circ\left(i d_{A} \otimes f_{2 P}\right)$ we define $h: A \otimes P_{3} \rightarrow X$ by

$$
h\left(a, p_{3}\right)= \begin{cases}h_{1}\left(a, p_{1}\right) & \text { for } p_{3}=g_{1 P}\left(p_{1}\right) \text { with } p_{1} \in P_{1} \\ h_{2}\left(a, p_{2}\right) & \text { for } p_{3}=g_{2 P}\left(p_{2}\right) \text { with } p_{2} \in P_{2}\end{cases}
$$

It suffices to show that h is well-defined, i.e. $p_{3}=g_{1 P}\left(p_{1}\right)=g_{2 P}\left(p_{2}\right)$ implies $h_{1}\left(a, p_{1}\right)=h_{2}\left(a, p_{2}\right)$, because with this definition (7) and (8) commute by construction and h is unique with this property.

Given $p_{3}=g_{1 P}\left(p_{1}\right)=g_{2 P}\left(p_{2}\right)$ we have by definition of Pushout (4) in SET a sequence $p_{01}, \ldots, p_{0 n} \in P_{0}$ with

This implies

$$
\begin{aligned}
h_{1}\left(a, p_{1}\right) & =h_{1}\left(a, f_{1 P}\left(p_{01}\right)\right) \\
& =h_{1} \circ\left(i d_{A} \otimes f_{1 P}\right)\left(a, p_{01}\right) \\
& =h_{2} \circ\left(i d_{A} \otimes f_{2 P}\right)\left(a, p_{01}\right) \\
& =h_{2}\left(a, f_{2 P}\left(p_{01}\right)\right) \\
& =h_{2}\left(a, p_{21}\right) \\
& =h_{2}\left(a, f_{2 P}\left(p_{02}\right)\right) \\
& =h_{2} \circ\left(i d_{A} \otimes f_{2 P}\right)\left(a, p_{02}\right) \\
& =h_{1} \circ\left(i d_{A} \otimes f_{1 P}\right)\left(a, p_{02}\right) \\
& =\ldots \\
& =h_{1} \circ\left(i d_{A} \otimes f_{1 P}\right)\left(a, p_{03}\right) \\
& =\ldots \\
& =h_{2} \circ\left(i d_{A} \otimes f_{2 P}\right)\left(a, p_{0 n}\right) \\
& =h_{2}\left(a, f_{2 P}\left(p_{0 n}\right)\right) \\
& =h_{2}\left(a, p_{2}\right)
\end{aligned}
$$

All steps are well-defined, because $\left(a, p_{01}\right), \ldots,\left(a, p_{0 n}\right) \in A \otimes P_{0}$:
In fact $\left(a, p_{3}\right) \in A \otimes P_{3}$ implies $a \in A_{\text {type }_{3}\left(p_{3}\right)}=A_{\text {type }_{1}\left(p_{1}\right)}=A_{\text {type }_{0}\left(p_{0 i}\right)}$ for $i=1, \ldots, n$ using type compability of $g_{1 P}$ for $p_{3}=g_{1 P}\left(p_{1}\right)$ and of $f_{1 P}, f_{2 P}, g_{2 P}$ for the other cases (see proof of Theorem 5 .

For similar reasons we can show explicitely the universal properties of (5) using Pushout (3). Given $k_{1}: C T_{1} \rightarrow X, k_{2}: C T_{2} \rightarrow X$ with $k_{1} \circ f_{1 C}=k_{2} \circ f_{2 C}$ there is a unique $k: C T_{3} \rightarrow X$ defined by

$$
k\left(t_{3}, v\right)= \begin{cases}k_{1}\left(t_{1}, v\right) & \text { for } t_{3}=g_{1 T}\left(t_{1}\right) \text { with } t_{1} \in T_{1} \\ k_{2}\left(t_{2}, v\right) & \text { for } t_{3}=g_{2 T}\left(t_{2}\right) \text { with } t_{2} \in T_{2}\end{cases}
$$

Similar to above we can show that $t_{3}=g_{1 T}\left(t_{1}\right)=g_{2 T}\left(t_{2}\right)$ implies $k_{1}\left(t_{1}, v\right)=$ $k_{2}\left(t_{2}, v\right)$ where all steps are well-defined using Theorem 5 .

Theorem 7 (Flat preserves Monomorphisms). Given $f: A N_{1} \rightarrow A N_{2}$ monomorphism in AHLNet, then Flat $(f): \operatorname{Flat}\left(A N_{1}\right) \rightarrow \operatorname{Flat}\left(A N_{2}\right)$ is monomorphism in PTNet.

Proof. Since monomorphisms in AHLNet and PTNet are the injective morphisms, it suffices to show: If f is injective, $F l a t(f)$ is injective.

Let us assume that f is injective. That means f_{P} and f_{T} are injective functions.
Let $\operatorname{Flat}(f)_{P}\left(a_{1}, p_{1}\right)=\operatorname{Flat}(f)_{P}\left(a_{2}, p_{2}\right)$. By Def. 17 we have:
$\operatorname{Flat}(f)_{P}\left(a_{1}, p_{1}\right)=\operatorname{Flat}(f)_{P}\left(a_{2}, p_{2}\right)$
$\Rightarrow\left(i d_{A} \otimes f_{P}\right)\left(a_{1}, p_{1}\right)=\left(i d_{A} \otimes f_{P}\right)\left(a_{2}, p_{2}\right)$
$\Rightarrow\left(a_{1}, f_{P}\left(p_{1}\right)\right)=\left(a_{2}, f_{P}\left(p_{2}\right)\right)$
$\Rightarrow a_{1}=a_{2} \wedge f_{P}\left(p_{1}\right)=f_{P}\left(p_{2}\right)$
$\Rightarrow a_{1}=a_{2} \wedge p_{1}=p_{2}$ because f_{P} is injective
$\Rightarrow\left(a_{1}, p_{1}\right)=\left(a_{2}, p_{2}\right)$
$\Rightarrow \operatorname{Flat}(f)_{P}$ is injective.
Let $\operatorname{Flat}(f)_{T}\left(t_{1}, v_{1}\right)=\operatorname{Flat}(f)_{T}\left(t_{2}, v_{2}\right)$. By Def. 17 we have:
$\operatorname{Flat}(f)_{T}\left(t_{1}, v_{1}\right)=\operatorname{Flat}(f)_{T}\left(t_{2}, v_{2}\right)$
$\Rightarrow\left(f_{T}\left(t_{1}\right), v_{1}\right)=\left(f_{T}\left(t_{2}\right), v_{2}\right)$
$\Rightarrow f_{T}\left(t_{1}\right)=f_{T}\left(t_{2}\right) \wedge v_{1}=v_{2}$
$\Rightarrow t_{1}=t_{2} \wedge v_{1}=v_{2}$ because f_{T} is injective
$\Rightarrow\left(t_{1}, v_{1}\right)=\left(t_{2}, v_{2}\right)$
$\Rightarrow F l a t(f)_{T}$ is injective.
Flat $(f)_{P}$ and $F l a t(f)_{T}$ are injective implies that Flat (f) is injective.
Theorem 8 (Skel is functor). The construction Skel : AHLNet \rightarrow PTNet as defined in Def. 18 is a functor.

Proof. Given $f: A N_{1} \rightarrow A N_{2}$ then $\operatorname{Skel}(f): \operatorname{Skel}\left(A N_{1}\right) \rightarrow \operatorname{Skel}\left(A N_{2}\right)$ is $\mathrm{P} / \mathrm{T}-$ net morphism, i.e. (1) commutes componentwise.

For $t_{1} \in T_{1}$ and $\operatorname{pre}_{1}\left(t_{1}\right)=\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, p_{i}\right)$ we have
$f_{P} \circ \operatorname{pre}_{1 S}\left(t_{1}\right)=f_{P}^{\oplus}\left(\sum_{i=1}^{n} p_{i}\right)=\sum_{i=1}^{n} f_{P}\left(p_{i}\right)$
$\operatorname{pre}_{2} \circ f_{T}\left(t_{1}\right)=\left(i d_{A} \otimes f_{P}\right)^{\oplus} \circ \operatorname{pre}_{1}\left(t_{1}\right)=\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, f_{P}\left(p_{i}\right)\right)$ and hence
$\operatorname{pre}_{2 S} \circ f_{T}\left(t_{1}\right)=\operatorname{pre}_{2 S}\left(f_{T}\left(t_{1}\right)\right)=\sum_{i=1}^{n} f_{P}\left(p_{i}\right)$ which implies
$f_{P} \circ \operatorname{pre}_{1 S}\left(t_{1}\right)=\operatorname{pre}_{2 S} \circ f_{T}\left(t_{1}\right)$ and similar for post $_{1 S}$ and post ${ }_{2 S}$.
Theorem 9 (Skel preserves Pushouts). Given Pushout (1) in AHLNet the (2) is Pushout in PTNet.

Proof. Pushout (1) in AHLNet implies Pushouts (3) and (4) as in Theorem 6 But this implies that (2) is Pushout in PTNet, because Pushouts in PTNet are based on Pushouts (3) and (4) in SET.

Theorem 10 (Skel preserves Monomorphisms). Given $f: A N_{1} \rightarrow A N_{2}$ monomorphism in AHLNet, then $\operatorname{Skel}(f): \operatorname{Skel}\left(A N_{1}\right) \rightarrow \operatorname{Skel}\left(A N_{2}\right)$ is monomorphism in PTNet.

Proof. Similar to the proof that Flat preserves monomorphisms, we will show: If f is injective, $\operatorname{Skel}(f)$ is injective.

Let us assume that $f: A N_{1} \rightarrow A N_{2}$ is injective. That means f_{P} and f_{T} are injective functions.
Let $\operatorname{Skel}(f)_{P}\left(p_{1}\right)=\operatorname{Skel}(f)_{P}\left(p_{2}\right)$ for $p_{1}, p_{2} \in P_{S k e l\left(A N_{1}\right)}$. By Def. 18 we have:
$\operatorname{Skel}(f)_{P}\left(p_{1}\right)=\operatorname{Skel}(f)_{P}\left(p_{2}\right)$
$\Rightarrow f_{P}\left(p_{1}\right)=f_{P}\left(p_{2}\right)$
$\Rightarrow p_{1}=p_{2}$ because f_{P} is injective. Hence $\operatorname{Skel}(f)_{P}$ is injective.
Let $\operatorname{Skel}(f)_{T}\left(t_{1}\right)=\operatorname{Skel}(f)_{T}\left(t_{2}\right)$ for $t_{1}, t_{2} \in T_{S k e l\left(A N_{1}\right)}$. By Def. 18 we have:
$\operatorname{Skel}(f)_{T}\left(t_{1}\right)=\operatorname{Skel}(f)_{T}\left(t_{2}\right)$
$\Rightarrow f_{T}\left(t_{1}\right)=f_{T}\left(t_{2}\right)$
$\Rightarrow t_{1}=t_{2}$ because f_{T} is injective. Hence $\operatorname{Skel}(f)_{T}$ is injective.

A. 3 Proof of Theorem 1 in Section 4

Proof. We have to show

1. Unarity
2. No forward conflicts
3. No backward conflicts
4. The causal relation is a finitary strict partial order.
5. Unarity:

Let us assume that K does not comply with the unarity property, i.e. there is $t \in T$ and $\left(\right.$ term $\left._{1}, p\right),\left(\right.$ term $\left._{2}, p\right) \in T_{\Sigma}(X) \otimes P$ s.t. $\left(\right.$ term $\left._{1}, p\right) \oplus\left(\right.$ term $\left._{2}, p\right) \leq$ $\operatorname{pre}(t)$ or $\left(\right.$ term $\left._{1}, p\right) \oplus\left(\right.$ term $\left._{2}, p\right) \leq \operatorname{post}(t)$.
The set of transitions T is the Pushout $T_{1} \stackrel{i_{1 T}}{\leftarrow} \emptyset \xrightarrow{i_{2 T}} T_{2}$ which is the disjoint union of T_{1} and T_{2}, and hence there is $t_{x} \in T_{x}$ with $t=i_{x, T}^{\prime}\left(t_{x}\right)$ where either $x=1$ or $x=2$.
Since i_{x}^{\prime} is an AHL-morphism it preserves pre and post domains, i.e. pre \circ
$i_{x, T}^{\prime}\left(t_{x}\right)=\left(i d_{T_{\Sigma}(X)} \otimes i_{x, P}^{\prime}\right)^{\oplus} \circ \operatorname{pre}_{x}\left(t_{x}\right)$.
This implies for $\left(\right.$ term $\left._{1}, p\right) \oplus\left(\right.$ term $\left._{2}, p\right) \leq \operatorname{pre}(t)=\operatorname{pre}\left(i_{x, T}\left(t_{x}\right)\right)$ that $\left(\right.$ term $\left._{1}, p\right) \oplus$ $\left(\right.$ term $\left._{2}, p\right) \leq\left(i d_{T_{\Sigma}(X)} \otimes i_{x, P}^{\prime}\right)^{\oplus}$ opre $_{x}\left(t_{x}\right)$, which means that there are $\left(\right.$ term $\left._{1}, p_{1}\right)$, $\left(\right.$ term $\left._{2}, p_{2}\right) \in T_{\Sigma}(X) \otimes P_{x}$ s.t. $\left(\right.$ term $\left._{1}, p_{1}\right) \oplus\left(\right.$ term $\left._{2}, p_{2}\right) \leq \operatorname{pre}_{x}\left(t_{x}\right)$ and $i_{x, P}^{\prime}\left(p_{1}\right)=p=i_{x, P}^{\prime}\left(p_{2}\right)$.
The fact that $i_{x, P}^{\prime}\left(p_{1}\right)=i_{x, P}^{\prime}\left(p_{2}\right)$ implies that $p_{1}=p_{2}$ because $i_{x, P}^{\prime}$ is injective and hence $\left(\right.$ term $\left._{1}, p_{1}\right) \oplus\left(\right.$ term $\left._{2}, p_{1}\right) \leq \operatorname{pre}_{x}\left(t_{x}\right)$ contradicts the fact that K_{x} complies with the unarity property.

The case $\left(t e r m_{1}, p\right) \oplus\left(t e r m_{2}, p\right) \leq \operatorname{post}(t)$ works analogously.
2. No forward conflict:

We have to show:

$$
\forall t, t^{\prime} \in T: t \neq t^{\prime} \Rightarrow \bullet t \cap \bullet t^{\prime}=\emptyset
$$

Let us assume that there is a forward conflict, i.e. there exist $t, t^{\prime} \in T, p \in P$, s.t. $t \neq t^{\prime}$ and $p \in \bullet t, p \in \bullet t^{\prime}$.

Case 1: Both transitions t and t^{\prime} have a preimage in the same net, i.e. there are $t_{x}, t_{x}^{\prime} \in T_{x}$ with $i_{x T}^{\prime}\left(t_{x}\right)=t$ and $i_{x T}^{\prime}\left(t_{x}^{\prime}\right)=t^{\prime}$ where either $x=1$ or $x=2$. Due to $i_{x T}^{\prime}\left(t_{x}\right) \neq i_{x T}^{\prime}\left(t_{x}^{\prime}\right)$ we also have $t_{x} \neq t_{x}^{\prime}$. $p \in \bullet t$ and $p \in \bullet t^{\prime}$ implies that there exist $p_{x}, p_{x}^{\prime} \in P_{x}$, s.t. $i_{x P}^{\prime}\left(p_{x}\right)=$ $i_{x P}^{\prime}\left(p_{x}^{\prime}\right)=p$ and $p_{x} \in \bullet t_{x}, p_{x}^{\prime} \in \bullet t_{x}^{\prime}$, because i_{x}^{\prime} is an AHL-morphism which preserves pre and post domains. Since $i_{x P}^{\prime}$ is injective $i_{x P}^{\prime}\left(p_{x}\right)=i_{x P}^{\prime}\left(p_{x}^{\prime}\right)$ implies $p_{x}=p_{x}^{\prime}$ and hence $p_{x} \in \bullet t_{x}$ and $p_{x} \in \bullet t_{x}^{\prime}$ which contradicts the fact that K_{x} has no forward conflict.

Case 2: The transitions t, t^{\prime} have their preimage in different nets, i.e there exist $t_{1} \in T_{1}, t_{2} \in T_{2}$ with $t=i_{1 T}^{\prime}\left(t_{1}\right), t^{\prime}=i_{2 T}^{\prime}\left(t_{2}\right)$. Since i_{1}^{\prime} and i_{2}^{\prime} preserve pre and post domains, there exist $p_{1} \in P_{1}, p_{2} \in P_{2}$ with $p_{1} \in \bullet t_{1}, p_{2} \in \bullet t_{2}$ and $i_{1 P}^{\prime}\left(p_{1}\right)=i_{2 P}^{\prime}\left(p_{2}\right)$. This means that there is a $p_{0} \in P_{I}$ with $i_{1 P}\left(p_{0}\right)=p_{1}$ and $i_{2 P}\left(p_{0}\right)=p_{2}$, because K is the Pushout of $K_{1} \stackrel{i_{1}}{\leftarrow} I \xrightarrow{i_{2}} K_{2}$. The fact that K_{1} and K_{2} are composable wrt. $\left(I, i_{1}, i_{2}\right)$ implies for $p_{1} \in i_{1}\left(P_{I}\right)$ that $p_{1} \in \operatorname{OUT}\left(K_{1}\right)$ which contradicts $p_{1} \in \bullet t_{1}$.
3. No backward conflict:

We have to show:

$$
\forall t, t^{\prime} \in T: t \neq t^{\prime} \Rightarrow t \bullet \cap t^{\prime} \bullet=\emptyset
$$

Let us assume that there is a backward conflict, i.e. there exist $t, t^{\prime} \in T, p \in$ P, s.t. $p \in t \bullet$ and $p \in t^{\prime} \bullet$.
Case 1: Both transitions t and t^{\prime} have a preimage in the same net, i.e. there are $t_{x}, t_{x}^{\prime} \in T_{x}$ with $i_{x T}^{\prime}\left(t_{x}\right)=t$ and $i_{x T}^{\prime}\left(t_{x}^{\prime}\right)=t^{\prime}$ where either $x=1$ or $x=2$. Analogously to case 1 of the forward conflicts it follows that there exist
$p_{x} \in P_{x}$, s.t. $p_{x} \in t_{x} \bullet$ and $p_{x} \in t_{x}^{\prime} \bullet$. This contradicts the fact that K_{x} has no backward conflict.
Case 2: The transitions t, t^{\prime} have their preimage in different nets, i.e there exist $t_{1} \in T_{1}, t_{2} \in T_{2}$ with $t=i_{1 T}^{\prime}\left(t_{1}\right), t^{\prime}=i_{2 T}^{\prime}\left(t_{2}\right)$. Analogously to case 2 of the forward conflicts there exist $p_{1} \in P_{1}, p_{2} \in P_{2}$ with $p_{1} \in t_{1} \bullet$ and $p_{2} \in t_{2} \bullet$ where $i_{1 P}^{\prime}\left(p_{1}\right)=i_{2 P}^{\prime}\left(p_{2}\right)$. Due to the fact that K is the Pushout of $K_{1} \stackrel{i_{1}}{\leftarrow} I \xrightarrow{i_{2}} K_{2}$ there is a $p_{0} \in P_{I}$ with $i_{1 P}\left(p_{0}\right)=p_{1}$ und $i_{2 P}\left(p_{0}\right)=p_{2}$, which implies for $p_{2} \in i_{2 P}\left(P_{I}\right)$ that $p_{2} \in I N\left(K_{2}\right)$, because K_{1} and K_{2} are composable wrt. $\left(I, i_{1}, i_{2}\right)$. This contradicts $p_{2} \in t_{1} \bullet$.
4. The causal relation is a finitary strict partial order:

The composability of K_{1} and K_{2} wrt. $\left(I, i_{1}, i_{2}\right)$ requires that $i_{1}\left(P_{I}\right) \subseteq$ $O U T\left(K_{1}\right)$ and $i_{2}\left(P_{I}\right) \subseteq I N\left(K_{2}\right)$. That means that exclusively output places (i.e. places without post domain) of K_{1} with input places (i.e. places without pre domain) of K_{2} are identified.
Due to the fact that AHL-morphisms preserve pre and post domains of transitions, we obtain the causal relation $<_{K}$ as the transitive closure of $\left\{\left(i_{1}^{\prime}(x), i_{1}^{\prime}(y)\right) \mid x, y \in P_{K_{1}} \uplus T_{K_{1}}, x<_{K_{1}} y\right\} \cup\left\{\left(i_{2}^{\prime}(x), i_{2}^{\prime}(y)\right) \mid x, y \in P_{K_{2}} \uplus\right.$ $\left.T_{K_{2}}, x<_{K_{2}} y\right\}$.
This means that the causal relations of the nets K_{1} and K_{2} are also causal relations in K and additionally it is possible that nodes $x_{2} \in P_{K_{2}} \uplus T_{K_{2}}$ originated from K_{2} can be successor of nodes $x_{1} \in P_{K_{1}} \uplus T_{K_{1}}$ originated from K_{1} (i.e. $i_{1}^{\prime}\left(x_{1}\right)<_{K} i_{2}^{\prime}\left(x_{2}\right)$), but not vice versa (i.e. $i_{2}^{\prime}\left(x_{2}\right) \nless_{K} i_{1}^{\prime}\left(x_{1}\right)$).

Let us assume that $<_{K}$ is not finitary, i.e. there exists $x \in P_{K} \uplus T_{K}$ with an infinite number of predecessors. That means that there are infinite $x_{n}<_{K} x$ $(n \in \mathbb{N})$.
Case 1: Let $x=i_{1}^{\prime}\left(x^{\prime}\right)$ with $x^{\prime} \in P_{K_{1}} \uplus T_{K_{1}}$. Then we have $x_{n}^{\prime} \in P_{K_{1}} \uplus T_{K_{1}}$ $(n \in \mathbb{N})$, s.t. for all $n \in \mathbb{N}: x_{n}^{\prime}<_{K_{1}} x^{\prime}$. This contradicts the fact that $<_{K_{1}}$ is finitary.
Case 2: Let $x=i_{2}^{\prime}\left(x^{\prime \prime}\right)$ with $x^{\prime \prime} \in P_{K_{2}} \uplus T_{K_{2}}$. Let us assume that there exist infinite $x_{n}^{\prime \prime} \in P_{K_{2}} \uplus T_{K_{2}}(n \in \mathbb{N})$, s.t. for all $n \in \mathbb{N}: x_{n}^{\prime \prime}<_{K_{2}} x^{\prime \prime}$. This contradicts the fact that $<_{K_{2}}$ is finitary.
Hence there exists $m \in \mathbb{N}$, s.t. for $0 \leq k \leq m: x_{k}^{\prime \prime}<_{K_{2}} x^{\prime \prime}$ and $x_{m}^{\prime \prime} \in I N\left(K_{2}\right)$. Due to the fact that $i_{2}^{\prime}\left(x_{m}^{\prime \prime}\right)$ has an infinite number of predecessors in $<_{K}$, there exists $y \in P_{I}$, s.t. $i_{2}^{\prime}\left(x_{m}^{\prime \prime}\right)=i_{2}^{\prime}\left(i_{2}(y)\right)=i_{1}^{\prime}\left(i_{1}(y)\right)$ has an infinite number of predecessors. This is equal to case 1 .
$<_{K}$ is finitary.
Let us assume that $<_{K}$ is not irreflexive, i.e. there exists $x \in P_{K} \uplus T_{K}$, s.t. $x<_{K} x$. This means that there is a cycle in K and hence there exists $x^{\prime} \in P_{K} \uplus T_{K}$, s.t. $x<_{K} x^{\prime}$ and $x^{\prime}<_{K} x$.
Case 1: Both nodes x and x^{\prime} are derived from the same net, i.e. for either $n=1$ or $n=2$ there exist $x_{n}, x_{n}^{\prime} \in P_{K_{n}} \uplus T_{K_{n}}$, s.t. $x=i_{n}^{\prime}\left(x_{n}\right)$ and $x^{\prime}=i_{n}^{\prime}\left(x_{n}^{\prime}\right)$. Then we have $i_{n}^{\prime}\left(x_{n}\right)<_{K} i_{n}^{\prime}\left(x_{n}^{\prime}\right)$ and $i_{n}^{\prime}\left(x_{n}^{\prime}\right)<_{K} i_{n}^{\prime}\left(x_{n}\right)$, which
implies $x_{n}<_{K_{n}} x_{n}^{\prime}$ and $x_{n}^{\prime}<_{K_{n}} x_{n}$. This contradicts the fact that $<_{K_{n}}$ is irreflexive.
Case 2: The nodes x and x^{\prime} are derived from different nets, i.e. there exist $x_{1} \in P_{K_{1}} \uplus T_{K_{1}}, x_{2}^{\prime} \in P_{K_{2}} \uplus T_{K_{2}}$ with $x=i_{1}^{\prime}\left(x_{1}\right)$ and $x^{\prime}=i_{2}^{\prime}\left(x_{2}^{\prime}\right)$, s.t. $i_{1}^{\prime}\left(x_{1}\right)<_{K} i_{2}^{\prime}\left(x_{2}^{\prime}\right)$ and $i_{2}^{\prime}\left(x_{2}^{\prime}\right)<_{K} i_{1}^{\prime}\left(x_{1}\right)$. This contradicts the fact that according to the construction it is not possible that there exist $a \in P_{K_{1}} \uplus T_{K_{1}}$ and $b \in P_{K_{2}} \uplus T_{K_{2}}$, s.t. $i_{2}^{\prime}(b)<_{K} i_{1}^{\prime}(a)$.
Hence $<_{K}$ is irreflexive.

A. 4 Proof of Theorem 2 in Section 4

Theorem 11 (Natural Transformation proj : Flat \rightarrow Skel).
proj: Flat \rightarrow Skel defined for AHL-nets AN by
$\operatorname{proj}(A N): \operatorname{Flat}(A N) \rightarrow \operatorname{Skel}(A N)$ with
$\operatorname{proj}(A N)_{P}(a, p)=p$ for $(a, p) \in C P=A \otimes P$ and
$\operatorname{proj}(A N)_{T}(t, v)=t$ for $(t, v) \in C T$
is a natural transformation.
Proof. First we show that $\operatorname{proj}(A N)$ is P/T-net morphism

Given $(t, v) \in C T$ with $\operatorname{pre}(t)=\sum_{i=1}^{n}\left(\right.$ term $\left._{i}, p_{i}\right)$ we have $\operatorname{proj}(A N)_{P}^{\oplus} \circ \operatorname{pre}_{A}(t, v)=\operatorname{proj}(A N)_{P}^{\oplus}\left(\sum_{i=1}^{n}\left(v^{\sharp}\left(\right.\right.\right.$ term $\left.\left.\left._{i}\right), p_{i}\right)\right)=\sum_{i=1}^{n} p_{i}$ $\operatorname{pre}_{S} \circ \operatorname{proj}(A N)_{T}(t, v)=\operatorname{pre}_{S}(t)=\sum_{i=1}^{n} p_{i}$ and similar for post $_{A}$, post $_{S}$.

In order to show that proj is natural transformation let $f: A N_{1} \rightarrow A N_{2}$ be an AHL-net morphism then we have to show commutativity of

This follows for $(a, p) \in A \otimes P_{1}$ from
$\operatorname{proj}\left(A N_{2}\right)_{P} \circ\left(i d_{A} \otimes f_{P}\right)(a, p)=f_{P}(p)=f_{P} \circ \operatorname{proj}\left(A N_{1}\right)_{P}(a, p)$
and for $(t, v) \in C T_{1}$ from
$\operatorname{proj}\left(A N_{2}\right)_{T} \circ f_{C}(t, v)=\operatorname{proj}\left(A N_{2}\right)_{T}\left(f_{T}(t), v\right)=f_{T}(t)=f_{T} \circ \operatorname{proj}\left(A N_{1}\right)_{T}(t, v)$.

Lemma 1 (Instantiation interface is Pullback).

The induced instantiation interface $\left(J, j_{1}, j_{2}\right)$ of $\left(L_{\text {init }_{1}}, L_{\text {init }_{2}}\right)$ as defined in Definition 11 in Section 4 is Pullback of $L_{\text {init }} \xrightarrow{\text { in }} \operatorname{Flat}\left(K_{1}\right) \stackrel{\text { Flat }\left(i_{1}\right)}{\longleftrightarrow} \operatorname{Flat}(I)$, i.e. the diagram (1) is Pullback in PTNet where in_{1}, in in_{I} are inclusions.

Proof (Lemma 1).
We will show that the places and transitions are Pullbacks, i.e. (2) and (3) are Pullbacks in SET.

1. Pullback (2)

Since $T_{I}=\emptyset$ also $T_{\text {Flat }(I)}=\emptyset$ and hence the Pullback of $T_{L_{i n i t_{1}}} \xrightarrow{i n_{1, T}}$
$T_{F l a t\left(K_{1}\right)} \stackrel{F l a t\left(i_{1}\right)_{T}}{\longleftrightarrow} T_{\text {Flat }(I)}$ is $\emptyset=T_{J}$.
2. Pullback (3)
(a) Commutativity of (3):

For $(a, p) \in P_{J}$ we have
$i n_{1 P} \circ j_{1 P}(a, p)=i n_{1 P} \circ\left(i d_{A} \otimes i_{1 P}\right)(a, p)=i n_{1 P}\left(a, i_{1 P}(p)\right)=\left(a, i_{1 P}(p)\right)=$ Flat $\left(i_{1}\right)_{P}(a, p)=F l a t\left(i_{1}\right)_{P} \circ i n_{I P}(a, p)$
(b) Universal property:

Given $\left(Y, k_{1}, k_{2}\right)$ with $i n_{1 P} \circ k_{1}=F l a t\left(i_{1}\right)_{P} \circ k_{2}$.

We define $k:=k_{2}$. First we have to show that for all $y \in Y: k_{2}(y) \in P_{J}$.
Let $y \in Y$. Then we have $k_{2}(y)=(a, p) \in P_{\text {Flat }(I)}$ and hence $F l a t\left(i_{1}\right)_{P}\left(k_{2}(y)\right)=$ $\left(a, i_{1 P}(p)\right) \in P_{\text {Flat }\left(K_{1}\right)}$.
$i n_{1 P} \circ k_{1}=\operatorname{Flat}\left(i_{1}\right)_{P} \circ k_{2}$ implies $\operatorname{in}_{1 P}\left(k_{1}(y)\right)=\operatorname{Flat}\left(i_{1}\right)_{P}\left(k_{2}(y)\right)$ and since $i n_{1 P}$ is an inclusion, we have $k_{1}(y)=\operatorname{Flat}\left(i_{1}\right)_{P}\left(k_{2}(y)\right)=\left(a, i_{1 P}(p)\right) \in$ $P_{L_{i n i t_{1}}}$.
By Def. 10 we have $i_{1 P}\left(P_{I}\right) \subseteq O U T\left(K_{1}\right)$ and by Def. 7 we have that $i n_{1 P} \circ \operatorname{proj}\left(K_{1}\right)_{P}: P_{L_{i n i t}} \rightarrow \operatorname{Skel}\left(K_{1}\right)$ is bijective, which implies that for $\left(a, i_{1 P}(p)\right) \in P_{L_{\text {init }_{1}}}$ follows that $\left(a, i_{1 P}(p)\right) \in O U T\left(L_{i n i t_{1}}\right)$. Per construction of J follows that $(a, p) \in P_{J}$ and hence $k_{2}(y) \in P_{J}$.
For $k=k_{2}$ we have:
$i n_{I P} \circ k(y)=k(y)=k_{2}(y) \quad$ (5) commutes.
and
$i n_{1 P} \circ k_{1}=F l a t\left(i_{1}\right)_{P} \circ k_{2}=F l a t\left(i_{1}\right)_{P} \circ i_{I P} \circ k=i n_{1 P} \circ j_{1 P} \circ k$
and since $i n_{1 P}$ is monomorphism, this implies
$k_{1}=j_{1 P} \circ k \quad$ (4) commutes
(c) Uniqueness:

Let us assume there exists $k^{\prime}: Y \rightarrow P_{J}$ with $j_{1 P} \circ k^{\prime}=k_{1}$ and $i n_{I P} \circ k^{\prime}=$ k_{2}. Then follows
$i n_{I P} \circ k^{\prime}=k_{2}=i n_{I P} \circ k$
and due to the fact that $i n_{I P}$ is injective we have $k^{\prime}=k$. Hence k is unique.

Since the sets of places and transitions are componentwise Pullbacks in SET, (1) is Pullback in PTNet.

Proof (Theorem 2 in Section 4).
We have to show that

1. K is an AHL-occurrence net and
2. all $L_{\text {init }} \in I N S$ are instantiations of K :
(a) $L_{\text {init }} \subseteq$ Flat (K), i.e. there exists an injection in : $L_{\text {init }} \rightarrow F l a t(K)$ and
(b) the projection $\operatorname{proj}(K) \circ i n: L_{\text {init }} \rightarrow \operatorname{Skeleton}(K)$ is an isomorphism.

Proof (Part 1). Follows directly from Theorem 1 in Section 4.
Proof (Part 2). Given the Pushout (1) we obtain the instantiation interface J as the Pullback (2) of $L_{i n i t_{1}} \xrightarrow{\text { in }} \operatorname{Flat}\left(K_{1}\right) \stackrel{\text { Flat }\left(i_{1}\right)}{\longleftrightarrow}$ Flat (I) in PTNet using Lemma 1.

Since Pullbacks are closed under monomorphisms, the injectivity of $i n_{1}$ and $F l a t\left(i_{1}\right)$ lead to the injectivity of $j_{1}: J \rightarrow L_{\text {init }}$ and $i n_{I}: J \rightarrow \operatorname{Flat}(I)$.
First we will show in Lemma 2 that the projection $\operatorname{proj}(I) \circ i n_{I}$ is an isomorphism.

Lemma 2. The projection $\operatorname{proj}(I) \circ i n_{I}: J \rightarrow \operatorname{Skel}(I)$ is an isomorphism.
Proof (Lemma 2). Injectivity of $\operatorname{proj}(I) \circ i n_{I}$:
Since proj is a natural transformation, diagramm (3) commutes

and hence $\operatorname{proj}\left(K_{1}\right) \circ i n_{1} \circ j_{1}=\operatorname{Skel}\left(i_{1}\right) \circ \operatorname{proj}(I) \circ i n_{I}$.
$\operatorname{proj}\left(K_{1}\right) \circ i n_{1} \circ j_{1}$ is injective, because j_{1} is injective and $\operatorname{proj}\left(K_{1}\right) \circ i n_{1}$ is isomorphic, and hence $\operatorname{Skel}\left(i_{1}\right) \circ \operatorname{proj}(I) \circ i n_{I}$ is injective. This implies that $\operatorname{proj}(I) \circ i n_{I}$ is injective.

Surjectivity of $\operatorname{proj}(I) \circ i n_{I}$:
Since I has no transitions, it suffices to show that $\left(\operatorname{proj}(I) \circ i n_{I}\right)_{P}$ is surjective, i.e. for all $x \in P_{S k e l(I)}$ there exists $y \in P_{J}$, s.t. $\left(\operatorname{proj}(I) \circ i n_{I}\right)_{P}(y)=x$.

Let $x \in P_{\text {Skel }(I)}$. Then we have $i_{1 P}(x) \in P_{\text {Skel }\left(K_{1}\right)}$. Since $\left(\operatorname{proj}\left(K_{1}\right) \circ i n_{1}\right)_{P}$ is bijective because $L_{\text {init }_{1}}$ is an instantiation, there exists an unique $a \in A_{\text {type (x) }}$, s.t. $\left(a, i_{1 P}(x)\right) \in P_{L_{i n i t_{1}}}$. Furthermore $x \in P_{S k e l(I)}$ implies $x \in P_{I}$ and hence by Def. 17 there is also $(a, x) \in P_{\text {Flat }(I)}$ with $\operatorname{proj}(I)_{P}(a, x)=x$ and $\operatorname{Flat}\left(i_{1}\right)_{P}(a, x)=$ $\left(a, i_{1}(x)\right) \in P_{\text {Flat }\left(K_{1}\right)}$.
The fact that $\left(a, i_{1 P}(x)\right) \in P_{L_{\text {init }}}$ with $i_{1}\left(a, i_{1 P}(x)\right)=\left(a, i_{1 P}(x)\right) \in P_{\text {Flat }\left(K_{1}\right)}$ implies because of the Pullback-property that there exists $y \in P_{J}$, s.t. $i n_{I}(y)=$ $(a, x) \in P_{\text {Flat }(I)}$.
Hence we have $\left(\operatorname{proj}(I) \circ i n_{I}\right)_{P}(y)=\operatorname{proj}(I)_{P}\left(i n_{I P}(y)\right)=\operatorname{proj}(I)_{P}(a, x)=x$.

Since $\operatorname{proj}(I) \circ i n_{I}$ is injective and surjective, it also is bijective.
$i n \circ \operatorname{proj}(K)$ is isomorphic:
We construct $L_{\text {init }}$ as Pushout of j_{1} and j_{2} leading to an unique in $: L_{i n i t} \rightarrow$ $\operatorname{Flat}(K)$, s.t. the following cube commutes:

Also the following cube commutes because proj is a natural transformation:

Since $\operatorname{proj}\left(K_{1}\right) \circ i n_{1}, \operatorname{proj}\left(K_{2}\right) \circ i n_{2}$ and $\operatorname{proj}(I) \circ i n_{I}$ are isomorphisms and the following cube commutes, the fact that $\operatorname{Skel}(K)$ is Pushout implies that $\operatorname{proj}(K) \circ i n$ is an isomorphism.

Injectivity of $i n$:
Due to the fact that $\operatorname{proj}(K) \circ i n$ is isomorphic, it is injective and hence $i n$ injective.

Remark 2. We can obtain an inclusion by renaming the elements of the instantiation by taking the image $\hat{L}_{\text {init }}=i n\left(L_{\text {init }}\right)$ which is isomorphic to $L_{i n i t}$ providing an inclusion $\hat{i n}: \hat{L}_{\text {init }} \rightarrow \operatorname{Flat}(K)$.

A. 5 Proof of Theorem 3 in Section 4

Proof. By Theorem 2 in Section 4 the composition (K, INIT, INS) of the AHLoccurrence nets with instantiations is an AHL-occurrence net with instantiations and hence $(K, I N I T, I N S)$ together with $m p: K \rightarrow N$ is an AHL-Process with instantiations, where $m p$ is the unique morphism induced by Pushout (1) with

$$
\begin{gathered}
m p=\left(m p_{P}, m p_{T}\right) \\
m p_{P}(p)= \begin{cases}m p_{1 P}\left(p_{1}\right) & p=i_{1 P}^{\prime}\left(p_{1}\right) \\
m p_{2 P}\left(p_{2}\right) & p=i_{2 P}^{\prime}\left(p_{2}\right)\end{cases} \\
m p_{T}(t)= \begin{cases}m p_{1 T}\left(t_{1}\right) & t=i_{1 T}^{\prime}\left(t_{1}\right) \\
m p_{2 T}\left(t_{2}\right) & t=i_{2 T}^{\prime}\left(t_{2}\right)\end{cases}
\end{gathered}
$$

A. 6 Proof of Theorem (4) in Section (4)

Proof. We have to show that

1. there are bijections $e_{P}: P_{K} \rightarrow P_{K^{\prime}}$ and $e_{T}: T_{K} \rightarrow T_{K^{\prime}}$, s.t. the diagram in Def. 12 commutes componentwise and
2. the instantiations $I N S$ and $I N S^{\prime}$ are equivalent using that the instantiations $I N S_{1}$ and $I N S_{2}$ are consistent.

Proof of Part 1. Let us define gluing points $G P\left(P_{K}\right)$ and $G P\left(P_{K^{\prime}}\right.$ by
$-G P\left(P_{K}\right)=\left(i_{1}^{\prime} \circ i_{3}\left(P_{I}\right) \cup i_{2}^{\prime} \circ i_{4}\left(P_{I}\right) \cup i_{1}^{\prime} \circ i_{1}\left(P_{I}\right)\right)$ where $i_{1}^{\prime} \circ i_{1}\left(P_{I}\right)=i_{2}^{\prime} \circ i_{2}\left(P_{I}\right)$
$-G P\left(P_{K^{\prime}}\right)=\left(i_{4}^{\prime} \circ i_{2}\left(P_{I}\right) \cup i_{3}^{\prime} \circ i_{1}\left(P_{I}\right) \cup i_{3}^{\prime} \circ i_{3}\left(P_{I}\right)\right)$ where $i_{3}^{\prime} \circ i_{3}\left(P_{I}\right)=i_{4}^{\prime} \circ i_{4}\left(P_{I}\right)$.
First we show that the three components of $G P\left(P_{K}\right)$ are disjoint which follows symmetrically for $G P\left(P_{K^{\prime}}\right)$.

$$
i_{1}^{\prime} \circ i_{3}\left(P_{I}\right) \cap i_{1}^{\prime} \circ i_{1}\left(P_{I}\right)=i_{1}^{\prime}\left(i_{3}\left(P_{I}\right) \cap i_{1}\left(P_{I}\right)\right) \subseteq i_{1}^{\prime}\left(I N\left(K_{1}\right) \cap O U T\left(K_{1}\right)\right)=\emptyset
$$

by assumption $I N\left(K_{1}\right) \cap O U T\left(K_{1}\right)=\emptyset$.

$$
i_{2}^{\prime} \circ i_{4}\left(P_{I}\right) \cap i_{2}^{\prime} \circ i_{2}\left(P_{I}\right)=i_{2}^{\prime}\left(i_{4}\left(P_{I}\right) \cap i_{2}\left(P_{I}\right)\right) \subseteq i_{2}^{\prime}\left(O U T\left(K_{2}\right) \cap I N\left(K_{2}\right)\right)=\emptyset
$$

by assumption $I N\left(K_{2}\right) \cap O U T\left(K_{2}\right)=\emptyset$.
For the third intersection we need
Lemma 3. $I N(K) \cap O U T(K)=\emptyset$ and similar $I N\left(K^{\prime}\right) \cap O U T\left(K^{\prime}\right)=\emptyset$.
Using Lemma 3 we can show $i_{1}^{\prime} \circ i_{3}\left(P_{I}\right) \cap i_{2}^{\prime} \circ i_{4}\left(P_{I}\right)=\emptyset$:
$i_{1}^{\prime} \circ i_{3}\left(P_{I}\right) \cap i_{2}^{\prime} \circ i_{4}\left(P_{I}\right) \subseteq i_{1}^{\prime}\left(I N\left(K_{1}\right)\right) \cap i_{2}^{\prime}\left(O U T\left(K_{2}\right)\right) \subseteq I N(K) \cap O U T(K)=\emptyset$
Proof of Lemma 3 Assume that there exists $p \in I N(K) \cap O U T(K)$, we have

$$
I N(K) \subseteq i_{1}^{\prime}\left(I N\left(K_{1}\right)\right) \cup i_{2}^{\prime}\left(I N\left(K_{2}\right)\right)
$$

and

$$
O U T(K) \subseteq i_{1}^{\prime}\left(O U T\left(K_{1}\right)\right) \cup i_{2}^{\prime}\left(O U T\left(K_{2}\right)\right)
$$

Case $\left.1 p \in i_{1}^{\prime}\left(I N\left(K_{1}\right)\right) \cap i_{1}^{\prime}\left(O U T\left(K_{1}\right)\right)=i_{1}^{\prime}\left(I N\left(K_{1}\right)\right) \cap \operatorname{OUT}\left(K_{1}\right)\right)=\emptyset$ (contradiction)

Case $2 p \in i_{2}^{\prime}\left(I N\left(K_{2}\right)\right) \cap i_{2}^{\prime}\left(O U T\left(K_{2}\right)\right)=\emptyset$ (contradiction)

Case 3

$$
\begin{aligned}
& p \in i_{1}^{\prime}\left(I N\left(K_{1}\right)\right) \cap i_{2}^{\prime}\left(\operatorname{OUT}\left(K_{2}\right)\right) \\
\Rightarrow & \exists p_{1} \in I N\left(K_{1}\right), p_{2} \in O U T\left(K_{2}\right) \text { with } p=i_{1}^{\prime}\left(p_{1}\right)=i_{2}^{\prime}\left(p_{2}\right) \\
\Rightarrow & \exists p \in P_{I}: i_{1}(p)=p_{1}, i_{2}(p)=p_{2} \text { by pushout }(1) \\
\Rightarrow & i_{1}(p)=p_{1} \in O U T\left(K_{1}\right)
\end{aligned}
$$

contradicts $p_{1} \in I N\left(K_{1}\right)$ and $I N\left(K_{1}\right) \cap O U T\left(K_{1}\right)=\emptyset$.
Case 4 symmetric to Case 3.
This implies that $G P\left(P_{K}\right)$ is the disjoint union

$$
G P\left(P_{K}\right)=G P_{1}\left(P_{K}\right) \cup G P_{2}\left(P_{K}\right) \cup G P_{3}\left(P_{K}\right)
$$

with $G P_{x}\left(P_{K}\right)$ for $x=1,2,3$ defined below.
Now we are able to define $e_{P}: P_{K} \rightarrow P_{K^{\prime}}$ via the non gluing points $N G P$. Let $N G P\left(P_{K}\right)=P_{K} \backslash G P\left(P_{K}\right)$ then we have the following disjoint unions:

$$
\begin{aligned}
& P_{K}=G P_{1}\left(P_{K}\right) \cup G P_{2}\left(P_{K}\right) \cup G P_{3}\left(P_{K}\right) \cup N G P\left(P_{K}\right) \\
& P_{K^{\prime}}=G P_{1}\left(P_{K^{\prime}}\right) \cup G P_{2}\left(P_{K^{\prime}}\right) \cup G P_{3}\left(P_{K^{\prime}}\right) \cup N G P\left(P_{K^{\prime}}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& G P_{1}\left(P_{K}\right)=i_{1}^{\prime} \circ i_{3}\left(P_{I}\right), G P_{1}\left(P_{K^{\prime}}\right)=i_{4}^{\prime} \circ i_{2}\left(P_{I}\right) \\
& G P_{2}\left(P_{K}\right)=i_{2}^{\prime} \circ i_{4}\left(P_{I}\right), G P_{2}\left(P_{K^{\prime}}\right)=i_{3}^{\prime} \circ i_{1}\left(P_{I}\right) \\
& G P_{3}\left(P_{K}\right)=i_{1}^{\prime} \circ i_{1}\left(P_{I}\right), G P_{3}\left(P_{K^{\prime}}\right)=i_{3}^{\prime} \circ i_{3}\left(P_{I}\right)
\end{aligned}
$$

and we define e_{P} by $e_{P_{x}}: G P_{x}\left(P_{K}\right) \rightarrow G P_{x}\left(P_{K^{\prime}}\right)$ for $x=1,2,3$ for all $p \in P_{I}$ by
5. $e_{P_{1}}\left(i_{1}^{\prime} \circ i_{3}(p)\right)=i_{4}^{\prime} \circ i_{2}(p)$
6. $e_{P_{2}}\left(i_{2}^{\prime} \circ i_{4}(p)\right)=i_{3}^{\prime} \circ i_{1}(p)$
7. $e_{P_{3}}\left(i_{1}^{\prime} \circ i_{1}(p)\right)=i_{3}^{\prime} \circ i_{3}(p)$
which are bijections because all morphisms are injective. Moreover we have $G P\left(P_{K_{1}}\right)=i_{1}\left(P_{I}\right) \cup i_{3}\left(P_{I}\right)$ and $G P\left(P_{K_{2}}\right)=i_{2}\left(P_{I}\right) \cup i_{4}\left(P_{I}\right)$.

Now let $\operatorname{NGP}\left(P_{K_{x}}\right)=P_{K_{x}} \backslash G P\left(P_{K_{x}}\right)$ for $x=1,2$ then we have by Lemma 4 below:

$$
\begin{aligned}
& N G P\left(P_{K}\right)=i_{1}^{\prime}\left(N G P\left(P_{K_{1}}\right)\right) \cup i_{2}^{\prime}\left(N G P\left(P_{K_{2}}\right)\right)=N G P_{1}\left(P_{K}\right) \cup N G P_{2}\left(P_{K}\right) \\
& N G P\left(P_{K^{\prime}}\right)=i_{3}^{\prime}\left(N G P\left(P_{K_{1}}\right)\right) \cup i_{4}^{\prime}\left(N G P\left(P_{K_{2}}\right)\right)=N G P_{1}\left(P_{K^{\prime}}\right) \cup N G P_{2}\left(P_{K^{\prime}}\right)
\end{aligned}
$$

and we define for $p_{1} \in N G P\left(P_{K_{1}}\right)$ and $p_{2} \in N G P\left(P_{K_{2}}\right)$
8. $e_{P_{4}}: N G P_{1}\left(P_{K}\right) \rightarrow N G P_{1}\left(P_{K^{\prime}}\right)$ by $e_{P_{4}}\left(i_{1}^{\prime}\left(p_{1}\right)\right)=i_{3}^{\prime}\left(p_{1}\right)$
9. $e_{P_{5}}: N G P_{2}\left(P_{K}\right) \rightarrow N G P_{2}\left(P_{K^{\prime}}\right)$ by $e_{P_{5}}\left(i_{2}^{\prime}\left(p_{2}\right)\right)=i_{4}^{\prime}\left(p_{2}\right)$
which are bijections because all morphisms are injective.
Alltogether we have a bijection

$$
e_{P}=e_{P_{1}}+e_{P_{2}}+e_{P_{3}}+e_{P_{4}}+e_{P_{5}}: P_{K} \rightarrow P_{K^{\prime}}
$$

Moreover there is a bijection $e_{T}: T_{K} \rightarrow T_{K^{\prime}}$ because we have the following disjoint unions

$$
T_{K} \cong T_{K_{1}} \uplus T_{K_{2}} \text { and } T_{K^{\prime}} \cong T_{K_{1}} \uplus T_{K_{2}}
$$

Lemma 4. $N G P\left(P_{K}\right)=P_{K} \backslash G P\left(P_{K}\right)=i_{1}^{\prime}\left(N G P\left(P_{K_{1}}\right)\right) \cup i_{2}^{\prime}\left(N G P\left(P_{K_{2}}\right)\right)$ and similar for $N G P\left(P_{K^{\prime}}\right)$.

Proof of Lemma 4

$$
\begin{aligned}
& i_{1}^{\prime}\left(N G P\left(P_{K_{1}}\right)\right) \cup i_{2}^{\prime}\left(N G P\left(P_{K_{2}}\right)\right) \\
= & i_{1}^{\prime}\left(P_{K_{1}} \backslash G P\left(P_{K_{1}}\right)\right) \cup i_{2}^{\prime}\left(P_{K_{2}} \backslash G P\left(P_{K_{2}}\right)\right) \\
= & i_{1}^{\prime}\left(P_{K_{1}} \backslash\left(i_{1}\left(P_{I}\right) \cup i_{3}\left(P_{I}\right)\right)\right) \cup i_{2}^{\prime}\left(P_{K_{2}} \backslash\left(i_{2}\left(P_{I}\right) \cup i_{4}\left(P_{I}\right)\right)\right) \\
= & i_{1}^{\prime}\left(P_{K_{1}}\right) \backslash\left(i_{1}^{\prime} \circ i_{1}\left(P_{I}\right) \cup i_{1}^{\prime} \circ i_{3}\left(P_{I}\right)\right) \cup i_{2}^{\prime}\left(P_{K_{2}}\right) \backslash\left(i_{2}^{\prime} \circ i_{2}\left(P_{I}\right) \cup i_{2}^{\prime} \circ i_{4}\left(P_{I}\right)\right) \\
= & i_{1}^{\prime}\left(P_{K_{1}}\right) \cup i_{2}^{\prime}\left(P_{K_{2}}\right) \backslash\left(G P_{1}\left(P_{K}\right) \cup G P_{2}\left(P_{K}\right) \cup G P_{3}\left(P_{K}\right)\right) \\
= & P_{K} \backslash G P\left(P_{K}\right)
\end{aligned}
$$

It remains to show for Proof of 1 . the following:
Lemma 5 (Compatibility of e_{p} and e_{T} with $m p$ and $m p^{\prime}$). The following diagram commutes componentwise.

Proof of Lemma 5 mp and $m p^{\prime}$ are defined by the induced morphisms of pushout (1) and (2), where the outer diagrams commute by compatibility of $m p_{1}$ and $m p_{2}$ with i_{1}, i_{2}, i_{3} and i_{4}.

1. The bijection $e_{T}: T_{K} \rightarrow T_{K^{\prime}}$ is induced by $i d_{1}$ and $i d_{2}$ in the following diagrams (3) and (4), s.t. (5) commutes if the outer diagrams commute.

The outer diagrams commute because we have $m p \circ i_{1}^{\prime}=m p_{1}=m p^{\prime} \circ i_{3}^{\prime}$ and $m p \circ i_{2}^{\prime}=m p_{2}=m p^{\prime} \circ i_{4}^{\prime}$.
2. The bijection $e_{P}: P_{K} \rightarrow P_{K^{\prime}}$ is given by $e_{P_{1}}+e_{P_{2}}+e_{P_{3}}+e_{P_{4}}+e_{P_{5}}$. Note that the bijections $e_{P_{x}}$ are defined by commutativity of diagrams (x) for $x=1, \ldots, 5$ and the required digram (6) commutes if all the outer diagram commute.
(a)

$$
\begin{aligned}
m p \circ i_{1}^{\prime} \circ i_{3} & =m p_{1} \circ i_{3} \\
& =m p_{2} \circ i_{2} \quad \text { (by compatibility) }
\end{aligned}
$$

$$
=m p^{\prime} \circ i_{4}^{\prime} \circ i_{2}
$$

(b)

$$
\begin{aligned}
m p \circ i_{2}^{\prime} \circ i_{4} & =m p_{2} \circ i_{4} \\
& =m p_{1} \circ i_{1} \quad \text { (by compatibility) } \\
& =m p^{\prime} \circ i_{3}^{\prime} \circ i_{1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
m p \circ i_{1}^{\prime} \circ i_{1} & =m p_{1} \circ i_{1} \\
& =m p_{2} \circ i_{4} \quad(\text { by compatibility) } \\
& =m p^{\prime} \circ i_{4}^{\prime} \circ i_{4} \\
& =m p^{\prime} \circ i_{3}^{\prime} \circ i_{3}
\end{aligned}
$$

(d)

$$
m p \circ i_{1}^{\prime}=m p_{1}
$$

$$
=m p^{\prime} \circ i_{3}^{\prime}
$$

(e)

$$
\begin{aligned}
m p \circ i_{2}^{\prime} & =m p_{2} \\
& =m p^{\prime} \circ i_{4}^{\prime}
\end{aligned}
$$

Remark 3. For the existence of $m p$ and $m p^{\prime}$ we need already the compatibilities $m p_{1} \circ i_{1}=m p_{2} \circ i_{2}$ and $m p_{1} \circ i_{3}=m p_{2} \circ i_{4}$. In 2(a) - 2(c) we need in addition that all these morphisms are equal.
Proof of Part 2. Given $L_{\text {init }}=L_{\text {init }_{1}{ }_{\left(J, j_{1}, j_{2}\right)} L_{\text {init }_{2}} \text { with pushout (3) we have }}$ by consistency of $I N S_{1}$ and $I N S_{2} L_{i n i t^{\prime}}=L_{i n i t_{2}^{\prime}}{ }_{\left(J, j_{4}, j_{3}\right)} L_{i n i t_{1}^{\prime}}$ with pushout (4) and vice versa, s.t. properties 1-4 in Def. 14 are satisfied.

First we have to show according to Def. 13.2 that

$$
\forall(a, p) \in A_{\text {type }(p)} \otimes P_{K}:(a, p) \in I N\left(L_{i n i t}\right) \Leftrightarrow\left(a, e_{P}(p)\right) \in I N\left(L_{i n i t^{\prime}}\right)
$$

$" \Rightarrow "$ Let $(a, p) \in I N\left(L_{\text {init }}\right)$. By construction we have

$$
I N\left(L_{i n i t}\right)=j_{1}^{\prime}\left(I N\left(L_{i n i t_{1}}\right)\right) \cup j_{2}^{\prime}\left(I N\left(L_{i n i t_{2}}\right) \backslash j_{2}(J)\right)
$$

and

$$
I N\left(L_{i n i t^{\prime}}\right)=. j_{4}^{\prime}\left(I N\left(L_{i n i t_{2}^{\prime}}\right)\right) \cup j_{3}^{\prime}\left(I N\left(L_{i n i t_{1}^{\prime}}\right) \backslash j_{3}(J)\right)
$$

Case 1 Let $(a, p) \in j_{1}^{\prime}\left(I N\left(L_{i n i t_{1}}\right)\right)$. Then there exists $\left(a, p_{1}\right) \in I N\left(L_{i n i t_{1}}\right)$
with

$$
j_{1}^{\prime}\left(a, p_{1}\right)=\left(a, i_{1}^{\prime}\left(p_{1}\right)\right)=(a, p)
$$

So we have $i_{1}^{\prime}\left(p_{1}\right)=p$.
Case 1.1 Let $\left(a, p_{1}\right) \notin G P\left(L_{i n i t_{1}}\right)$. Then we have

$$
\begin{aligned}
& \left(a, p_{1}\right) \in I N\left(L_{i n i t_{1}}\right) \backslash G P\left(L_{i n i t_{1}}\right) \subseteq I N\left(L_{\text {init }}\right) \\
\Rightarrow & j_{3}^{\prime}\left(a, p_{1}\right)=\left(a, i_{3}^{\prime}\left(p_{1}\right)\right) \in I N\left(L_{i n i t^{\prime}}\right) \quad\left(\text { because consistency) } p_{1} \notin i_{3}\left(P_{I}\right) \text { and Def. } I N\left(L_{i n i t^{\prime}}\right)\right) \\
\Rightarrow & \left(a, e_{P}(p)\right)=\left(a, e_{p} \circ i_{1}^{\prime}\left(p_{1}\right)\right)=\left(a, i_{3}^{\prime}\left(p_{1}\right)\right) \in I N\left(L_{i n i t^{\prime}}\right) \\
\Rightarrow & \left(a, e_{P}(p)\right) \in I N\left(L_{\text {init }}\right)
\end{aligned}
$$

Case 1.2 Let $\left(a, p_{1}\right) \in G P\left(L_{\text {init }_{1}}\right)$.
Case 1.2.1 Let $p_{1}=i_{3}\left(p_{I}\right)$ for $p_{I} \in P_{I}$.

$$
\begin{aligned}
& \left(a, p_{1}\right) \in I N\left(L_{i n i t_{1}}\right) \\
\Rightarrow & \left(a, i_{3}\left(p_{I}\right)\right) \in I N\left(L_{i n i t_{1}}\right) \\
\Rightarrow & \left(a, i_{2}\left(p_{I}\right)\right) \in I N\left(L_{i n i t_{2}^{\prime}}\right) \quad \text { (by consistency (see 3.)) } \\
\Rightarrow & \left.j_{4}^{\prime}\left(a, i_{2}\left(p_{I}\right)\right) \in I N\left(L_{i n i t^{\prime}}\right) \quad \text { (by Def.IN }\left(L_{i n i t^{\prime}}\right)\right) \\
\Rightarrow & \left(a, i_{4}^{\prime} \circ i_{2}\left(p_{I}\right)\right) \in I N\left(L_{i n i t^{\prime}}\right)
\end{aligned}
$$

Then we have $\left(a, e_{P}(p)\right)=\left(a, e_{p}\left(i_{1}^{\prime} \circ i_{3}\left(p_{I}\right)\right)=\left(a, i_{4}^{\prime} \circ i_{2}\left(p_{I}\right)\right) \in\right.$ $I N\left(L_{\text {init }}\right)$ using $p=i_{1}^{\prime} \circ i_{3}\left(p_{I}\right) \Rightarrow e_{p}(p)=i_{4}^{\prime} \circ i_{2}\left(p_{I}\right)$ (see 5.).
Case 1.2.2 Let $p_{1}=i_{1}\left(p_{I}\right)$ for $p_{I} \in P_{I}$. Then $p_{1} \in \operatorname{OUT}\left(K_{1}\right) \cap$ $I N\left(K_{1}\right)$ which is a contradiction to the assumption that

$$
O U T\left(K_{1}\right) \cap I N\left(K_{1}\right)=\emptyset
$$

Case 2 Let $(a, p) \in j_{2}^{\prime}\left(I N\left(L_{\text {init }}^{2}\right) ~ \backslash j_{2}(J)\right)$. Then there exists $\left(a, p_{2}\right) \in$ $I N\left(L_{\text {init }_{2}}\right) \backslash j_{2}(J)$ with

$$
j_{2}^{\prime}\left(a, p_{2}\right)=\left(a, i_{2}^{\prime}\left(p_{2}\right)\right)=(a, p)
$$

So we have $i_{2}^{\prime}\left(p_{2}\right)=p$.
Case 2.1 Let $\left(a, p_{2}\right) \notin G P\left(L_{\text {init }_{2}}\right)$. Then we have

$$
\begin{aligned}
&\left(a, p_{2}\right) \in I N\left(L_{\text {init }_{2}}\right) \backslash G P\left(L_{\text {init }_{2}}\right) \subseteq I N\left(L_{\text {init }}{ }_{2}^{\prime}\right) \\
& \text { (by consistency (see 1.)) } \\
& \Rightarrow j_{4}^{\prime}\left(a, p_{2}\right)=\left(a, i_{4}^{\prime}\left(p_{2}\right)\right) \in I N\left(L_{\text {init }}\right) \\
& \Rightarrow\left(a, e_{P}(p)\right)=\left(a, e_{p} \circ i_{2}^{\prime}\left(p_{2}\right)\right)=\left(\text { by Def. } I N\left(L_{i n i t^{\prime}}\right)\right) \\
& \Rightarrow\left(a, i_{P}^{\prime}\left(p_{2}\right)\right) \in I N\left(L_{\text {init }}\right) \\
&\text { (by } \left.e_{P} \text { commutes on } N G P \text { (see 9.)) }\right)
\end{aligned}
$$

Case 2.2 Let $\left(a, p_{2}\right) \in G P\left(L_{\text {init }_{2}}\right)$.

Case 2.2.1 Let $p_{2} \in i_{2}(I)$. Then $\left(a, p_{2}\right) \in j_{2}(J)$ which is a contradiction to the assumption $(a, p) \in j_{2}^{\prime}\left(j_{2}(J)\right)$ which implies $\left(a, p_{2}\right) \notin j_{2}(J)$.
Case 2.2.2 Let $p_{2} \in i_{4}(I)$. Then $p_{2} \in O U T\left(K_{2}\right) \cap I N\left(K_{2}\right)$ which is a contradiction to the assumption that $\operatorname{OUT}\left(K_{2}\right) \cap I N\left(K_{2}\right)=\emptyset$. $" \Leftarrow "$ Let $(a, p) \in I N\left(L_{\text {init }}\right)$ for $p \in P_{K^{\prime}}$. We have to show $\left(a, e_{p}^{-1}(p)\right) \in$ $I N\left(L_{\text {init }}\right)$. By construction we have

$$
I N\left(L_{i n i t^{\prime}}\right)=j_{4}^{\prime}\left(I N\left(L_{i n i t_{2}^{\prime}}\right)\right) \cup j_{3}^{\prime}\left(I N\left(L_{i n i t_{1}^{\prime}}\right) \backslash j_{3}(J)\right) .
$$

Case 1 Let $(a, p) \in j_{4}^{\prime}\left(I N\left(L_{i n i t_{2}^{\prime}}\right)\right)$. Then there exists $\left(a, p_{2}\right) \in I N\left(L_{i n i t_{2}^{\prime}}\right)$ with

$$
j_{4}^{\prime}\left(a, p_{2}\right)=\left(a, i_{4}^{\prime}\left(p_{2}\right)\right)=(a, p)
$$

So we have $i_{4}^{\prime}\left(p_{2}\right)=p$.
Case 1.1 Let $\left(a, p_{2}\right) \notin G P\left(L_{\text {init }}^{\prime}{ }_{2}\right)$. Then we have

$$
\begin{aligned}
&\left(a, p_{2}\right) \in I N\left(L_{\text {init }}^{\prime}\right) \backslash G P\left(L_{\text {init }}^{\prime}\right) \subseteq I N\left(L_{\text {init }}\right) \\
&(\text { by consistency }) \\
& \Rightarrow j_{2}^{\prime}\left(a, p_{2}\right)=\left(a, i_{2}^{\prime}\left(p_{2}\right)\right) \in I N\left(L_{\text {init }}\right) \\
& \Rightarrow\left(a, e_{P}^{-1}(p)\right)=\left(a, e_{P}^{-1} \circ i_{4}^{\prime}\left(p_{2}\right)\right)=\left(a, i_{2}^{\prime}\left(p_{2}\right)\right) \in I N\left(L_{\text {init }}\right) \\
& \Rightarrow\left(a, e_{P}(p)\right) \in I N\left(L_{\text {init }}\right) \quad\left(\text { by } e_{P} \text { commutes on } N G P(\text { see } 9 .)\right)
\end{aligned}
$$

Case 1.2 Let $\left(a, p_{2}\right) \in G P\left(L_{\text {init }}^{\prime}\right)$.
Case 1.2.1 Let $p_{2}=i_{2}\left(p_{I}\right)$ for $p_{I} \in P_{I}$.

$$
\begin{aligned}
& \left(a, p_{2}\right) \in I N\left(L_{i n i t_{2}^{\prime}}\right) \\
\Rightarrow & \left(a, i_{2}\left(p_{I}\right)\right) \in I N\left(L_{i n i t_{2}^{\prime}}\right) \\
\Rightarrow & \left(a, i_{3}\left(p_{I}\right)\right) \in I N\left(L_{i n i t_{1}}\right) \quad \text { (by consistency) } \\
\Rightarrow & j_{1}^{\prime}\left(a, i_{3}\left(p_{I}\right)\right) \in I N\left(L_{i n i t}\right) \quad \text { (by Def. } I N\left(L_{i n i t}\right) \\
\Rightarrow & \left(a, i_{1}^{\prime} \circ i_{3}\left(p_{I}\right)\right) \in I N\left(L_{\text {init }}\right)
\end{aligned}
$$

Then we have

$$
\left(a, e_{P}^{-1}(p)\right)=\left(a, e_{p}^{-1}\left(i_{4}^{\prime} \circ i_{2}\left(p_{I}\right)\right)=\left(a, i_{1}^{\prime} \circ i_{3}\left(p_{I}\right)\right) \in I N\left(L_{\text {init }}\right)\right.
$$

using $p=i_{1}^{\prime} \circ i_{3}\left(p_{I}\right) \Rightarrow e_{p}(p)=i_{4}^{\prime} \circ i_{2}\left(p_{I}\right)$ (see 5.).
Case 1.2.2 Let $p_{2}=i_{4}\left(p_{I}\right)$ for $p_{I} \in P_{I}$. Then $p_{2} \in \operatorname{OUT}\left(K_{2}\right) \cap$ $I N\left(K_{2}\right)$ which is a contradiction to the assumption that

$$
O U T\left(K_{2}\right) \cap I N\left(K_{2}\right)=\emptyset
$$

Case 2 Let $(a, p) \in j_{3}^{\prime}\left(I N\left(L_{i n i t_{1}^{\prime}}\right) \backslash j_{3}(J)\right)$. Then there exists $\left(a, p_{1}\right) \in$ $I N\left(L_{i n i t_{1}^{\prime}}\right) \backslash j_{3}(J)$ with

$$
j_{3}^{\prime}\left(a, p_{1}\right)=\left(a, i_{3}^{\prime}\left(p_{1}\right)\right)=(a, p)
$$

So we have $i_{3}^{\prime}\left(p_{1}\right)=p$.

Case 2.1 Let $\left(a, p_{1}\right) \notin G P\left(L_{\text {init }}^{\prime}\right)$. Then we have

$$
\begin{aligned}
& \left(a, p_{1}\right) \in I N\left(L_{\text {init }}^{\prime}\right) ~ \backslash G P\left(L_{\text {init }}^{\prime}\right) \subseteq I N\left(L_{\text {init }}\right) \\
& \text { (by consistency) } \\
& \Rightarrow j_{1}^{\prime}\left(a, p_{1}\right)=\left(a, i_{1}^{\prime}\left(p_{1}\right)\right) \in I N\left(L_{\text {init }}\right) \\
& \text { (by Def. } \left.I N\left(L_{i n i t}\right)\right) \\
& \Rightarrow\left(a, e_{P}^{-1}(p)\right)=\left(a, e_{P}^{-1} \circ i_{3}^{\prime}\left(p_{1}\right)\right)=\left(a, i_{1}^{\prime}\left(p_{1}\right)\right) \in I N\left(L_{\text {init }}\right) \\
& \text { (by } e_{P} \text { commutes on } N G P \text { (see 8.)) } \\
& \Rightarrow\left(a, e_{P}^{-1}(p)\right) \in I N\left(L_{i n i t}\right)
\end{aligned}
$$

Case 2.2 Let $\left(a, p_{1}\right) \in G P\left(L_{\text {init }}{ }^{\prime}\right)$.
Case 2.2.1 Let $p_{1} \in i_{3}(I)$. Then $\left(a, p_{1}\right) \in j_{3}(J)$ which is a contradiction to the assumption $(a, p) \notin j_{3}^{\prime}\left(j_{3}(J)\right)$ which implies $\left(a, p_{1}\right) \notin j_{3}(J)$.
Case 2.2.2 Let $p_{1} \in i_{1}(I)$.Then $p_{1} \in \operatorname{OUT}\left(K_{1}\right) \cap I N\left(K_{1}\right)$ which is a contradiction to the assumption that $O U T\left(K_{1}\right) \cap I N\left(K_{1}\right)=\emptyset$.

Moreover we have to show according to Def. 132 that
$\forall(a, p) \in A_{\text {type }(p)} \otimes P_{K}:(a, p) \in \operatorname{OUT}\left(L_{\text {init }}\right) \Leftrightarrow\left(a, e_{P}(p)\right) \in \operatorname{OUT}\left(L_{\text {init }}\right)$
This can be shown analogously to Case 1 and Case 2 above.

[^0]: * This work has been partly funded by the research project forMA ${ }_{1}$ NET (see http: //tfs.cs.tu-berlin.de/formalnet/) of the German Research Council.

