
Composition and Independence of
High-Level Net Processes

Hartmut Ehrig, Kathrin Hoffmann?, Karsten Gabriel?, Julia Padberg

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

Abstract. Based on the notion of processes for low-level Petri nets we
analyse in this paper high-level net processes defining the non-sequential
behaviour of high-level nets. In contrast to taking low-level processes of
the well known flattening construction for high-level nets our concept of
high-level net processes preserves the high-level structure. The main re-
sults are the composition, equivalence and independence of high-level net
processes under suitable conditions. Independence means that they can
be composed in any order leading to equivalent high-level net processes
which especially have the same input/output behaviour. All concepts and
results are explained with a running example of the ”House of Philoso-
phers”, a high-level net extension of the classical ”Dining Philosophers”.

Keywords: High-level net models, analysis of nets, behaviour of nets,
high-level net processes, composition, equivalence, independence.

1 Introduction

For low-level Petri nets it is well known that processes are essential to capture
their non-sequential truly concurrent behaviour (see e.g. [1–5]). Processes for
high-level nets are often defined as processes of the low-level net which is obtained
from flatting the high-level net. In [6,7] we have defined high-level net processes
for high-level nets based on a suitable notion of high-level occurrence nets which
are defined independently of the flattening construction. The flattening of a high-
level occurrence net is in general not a low-level occurrence net due to so called
assignment conflicts in the high-level net.

The essential idea is to generalise the concept of occurrence nets from the
low-level to the high-level case. This means that the net structure of a high-level
occurrence net has similar properties like a low-level occurrence net, i.e. unitarity,
conflict freeness, and acyclicity. But we drop the idea that an occurrence net
captures essentially one concurrent computation. Instead, a high-level occurrence
net and a high-level process are intended to capture a set of different concurrent
computations corresponding to different input parameters of the process. In fact,
high-level processes can be considered to have a set of initial markings for the

? This work has been partly funded by the research project forMAlNET (see http:
//tfs.cs.tu-berlin.de/formalnet/) of the German Research Council.

http://tfs.cs.tu-berlin.de/formalnet/
http://tfs.cs.tu-berlin.de/formalnet/

input places of the corresponding occurrence net, whereas there is only one
implicit initial marking of the input places for low-level occurrence nets.

In this paper we extend the notion of high-level net processes with initial
markings by a set of corresponding instantiations. An instantiation is a subnet of
the flattening defining one concurrent computation of the process. The advantage
is that we fix for a given initial marking a complete firing sequence where each
transition fires exactly once.

The main ideas and results in this paper concern the composition of high-
level net processes. In general the composition of high-level net processes is not
a high-level net process, because the composition may contain forward and/or
backward conflicts as well as the partial order might be violated. Thus we state
suitable conditions, so that the composition of high-level processes leads to a
high-level process.

We introduce the concept of equivalence of high-level net processes, where
the net structures of these high-level net processes might be different, but they
have especially the same input/output behaviour. Hence their concurrent com-
putations are compared in the sense that they start and end up with the same
marking, but even corresponding dependent transitions may be fired in a dif-
ferent order. The main problem in this context which is solved in this paper is
to analyse the independence of high-level net processes, i.e. under which con-
dition high-level processes can be composed in any order leading to equivalent
processes.

The paper is organised as follows. In Section 2 we explain the concepts and
results of this paper using the ”House of Philosophers” from [8] as an example.
In Section 3 on the one hand we review the notions for high-level net processes
and on the other hand we introduce the new notion of high-level net processes
with instantiations. In Section 4 we present our main theorems concerning the
composition, equivalence and independence of high-level net processes. In this
section we give proof sketches and the detailed proofs can be found in the Ap-
pendix. Finally we conclude with related work and some interesting aspects of
future work in Section 5.

2 House of Philosophers

In this section we review our example of the ”House of Philosophers” [8] in order
to illustrate the concepts in the following sections. This example is an extension
of the well-known classical ”Dining Philosophers” where in addition philosophers
may move around e.g. by leaving and entering a table in the restaurant. For this
reason three different locations, the library, the entrance-hall, and the restaurant,
are represented by places in the algebraic high-level (AHL) net in Fig. 1.

The marking of the AHL-net shows the distribution of the philosophers at
different places in the house. Initially there are two philosophers at the library,
one philosopher at the entrance-hall, and four additional philosophers are at the
two tables in the restaurant. The mobility aspect of the philosophers is modeled
by transitions termed enter and leave library as well as enter and leave restaurant

2

in Fig. 1, while the static structure of the net for philosophers is changed by rule-
based transformations using the rules rule1, . . ., rule4. The transitions start/stop
reading and start/stop activities realise the well known token game.

Rule3 : Rules

rule2

start/stop

reading

t :Transitions
enabled(n, t) = tt

rule1

phi1

phi3

cod m = n1 coproduct n2

applicable(r, m) = tt

m :Mor

table45

r
rule4

Rule4 : Rules

r

transform(r, m)

n

fire(n, t)

phi2

Entrance-Hall : System

fire(n, t)

enter restaurant

n

r

r

t :Transitions
enabled(n, t) = tt

start/stop

activities

n1 n1transform(r, m) prtable(transform(r, m))

Rule1 : Rules

Rule2 : Rules

Restaurant : System

Library : System

n

leave library

applicable(r, m) = tt

cod m = n

m :Mor

n

transform(r, m)

cod m = n1

applicable(r, m) = tt

m :Mor

leave restaurant

prphi(transform (r, m))n2

table67

enter library

m :Mor

cod m = n

applicable(r, m) = tt

rule3

Fig. 1. AHL-net ANHouse of the ”House of Philosophers”

In the following we concentrate on the behaviour of the transitions start/stop
activities and enter restaurant, while a detailed explanation of the other tran-
sitions and the corresponding formal framework can be found in Section 3, the
Appendix A.1 and [8].

3

On the left hand side of Fig. 2 the P/T-system of the table table45 is depicted,
where both the philosophers 4 and 5 are in the state thinking. The P/T-system
is used as a token on the place Restaurant in Fig. 1. To start eating we use
the transition start/stop activities of the AHL-net in Fig. 1. First we give an
assignment of the variables v1 and assign the table table45 to the variable n and
the transition that realises the eating of philosopher 5 to the variable t. The
firing condition checks that the philosopher 5 has his left and right forks. The
evaluation of the net inscription fire(n, t) realises the well-known token game by
computing the follower marking of the P/T-system and we obtain the new P/T-
system table ′45 depicted on the right hand side of Fig. 2, where the philosopher
5 is eating.

table45
thinking4

eating4

eating5

thinking5

left
fork4

left
fork5 start eating5−→

table′
45 thinking4

eating4

eating5

thinking5

left
fork4

left
fork5

Fig. 2. P/T-systems table45 and table′45 of philosophers 4 and 5

Assume the philosopher 3, consisting of one marked place and one transition
with corresponding arrows, would like to enter the restaurant in order to take
place as a new guest at the table table45 (see left hand side of Fig. 2), so that the
seating arrangement of the table has to be changed. Formally, we apply the rule
rule2, which is depicted in the upper row of Fig. 3 and used as token on place
Rule2. In general a rule r = (L i1← I

i2→ R) is given by three P/T-systems called
left-hand side, interface, and right-hand side respectively and the application of
a rule discussed below describes the replacement of the left-hand side by the
right-hand side preserving the interface.

The philosopher 3 sits down at table table45 by firing the transition en-
ter restaurant in the AHL-net in Fig. 1 using the following assignment of the
variables n1, n2, r and m given in the net inscriptions of the transition enter
restaurant : v2(n1) = table45, v2(n2) = phi3, v2(r) = rule2, and v2(m) = g (see
match morphism g : L2 → (phi3, table45) in Fig. 3). In our case the match g
maps thinkingj and eatingj in L2 to thinking5 and eating5 in (phi3, table45). In

4

the first step we compute the disjoint union of the P/T-system phi3 and the
P/T-system table45 as denoted by the net inscription n1 coproduct n2 resulting
in the P/T-system (phi3, table45) in Fig. 3. The firing conditions makes sure that
on the one hand the rule is applied to the P/T-system (phi3, table45) and on the
other hand the rule is applicable with match g to this P/T-system provided that
a suitable gluing condition holds which is essential for the construction of the
intermediate P/T-system.

Finally we evaluate the term transform(r,m) resulting in the direct trans-
formation shown in Fig. 3, where we delete in a first step g(L2 \ I2) from
(phi3, table45) leading to P/T-system C. In a second step we glue together the
P/T-systems C and R2 along I2 leading to P/T-system table345 in Fig. 3, where
the philosophers 3, 4, and 5 are sitting at the table, all of them in state think-
ing. The effect of firing the transition enter restaurant in the AHL-net in Fig. 1
with assignments of variables as discussed above is the removal of P/T-systems
phi3 from place Entrance Hall and table45 from place Restaurant and adding
the P/T-System table345 to the place Restaurant.

g

forkj

eatingj

left forkj

left
forkj

thinking3 thinking1

L2

table345

thinkingj

eatingj

I2

thinkingj

eatingi

thinkingi

forki

left
forkk

eatingj

thinkingj

left

R2
thinkingithinkingi

forkk

left
left-forkk

thinking4

eating4

thinking5

eating5

left
fork4

left
fork5

thinking4

eating4

thinking5

eating5

left
fork4

left
fork5

fork3

eating3

left

thinking3

thinking4

eating4

thinking5

eating5

left
fork4

left
fork5

(phi3, table45) C

left

Fig. 3. Transformation of phi3 and table45 using rule rule2

Consider now a different situation where the table table ′45 (see right hand side
of Fig. 2) is in place Restaurant in Fig. 1. Using a different variable assignment v3
the philosopher 3 sits down at table table ′45 where the philosopher 5 is in the state
eating5. In this case the variable n1 is assigned to the table table ′45, the variable m
to a suitable match morphism g′ (i.e. from L2 in Fig. 3 to (phi3, table′45) in Fig. 5

5

similar to g in Fig. 3) and the evaluation of the net inscription transform(r,m)
of the transition enter restaurant in the AHL-net in Fig. 1 leads to the direct
transformation depicted in Fig. 5. As a result we have now table ′345 on place
Restaurant.

table345

fork3

eating3

left

thinking3

thinking4

eating4

eating5

left
fork4

left
fork5

thinking5

start eating5−→

table′345

fork3

eating3

left

thinking3

thinking4

eating4

thinking5

eating5

left
fork4

left
fork5

Fig. 4. P/T-systems table345 and table′345 of philosophers 3, 4 and 5

(phi3, table′45)

thinking3

thinking4

eating4

thinking5

eating5

left
fork4

left
fork5

rule2=⇒

table′345

fork3

eating3

left

thinking4

eating4

thinking5

eating5

left
fork4

thinking3

fork5
left

Fig. 5. Transformation of phi3 and table′45 using rule rule2

Summarising, we have explained two different firing sequences of the AHL-
net in Fig. 1. The first one starts with the token firing of table45 leading to
the P/T-system table′45 (see Fig. 2) before philosopher 3 sits down at the table
table ′45, so that we get the table table′345 (see Fig. 5). The second one begins by
philosopher 3 sitting down at table table45 (see Fig. 3) before the philosopher 5
starts eating (see Fig. 4).

6

According to the spirit of processes for low-level nets we want to consider
now processes for AHL-nets based on AHL-occurrence nets. In fact the two fir-
ing sequences considered above correspond to different AHL-occurrence nets. An
AHL-occurrence net is similar to a low-level occurrence net concerning unitarity,
conflict freeness, and acyclicity. However, in contrast to a low-level occurrence
net an AHL-occurrence net realises more than one concurrent computation de-
pending on different initial markings and variable assignments. For this reason we
consider AHL-occurrence nets with a set of initial markings of the input places
and corresponding instantiations of places and transitions by data and consistent
variable assignments, respectively. For more details we refer to Section 3.

For the two different firing sequences we get the two different AHL-occurrence
nets with initial markings KEat/Enter and KEnter/Eat with corresponding in-
stantiations LEat/Enter and LEnter/Eat depicted in Fig. 6 and Fig. 7. Note that
the AHL-occurrence nets KEat/Enter and KEnter/Eat have the same input and
output places as well as the same initial marking. But due to the firing of the
transitions start/stop activities and enter restaurant in opposite order we use dif-
ferent variable evaluations v1 and v3 in LEat/Enter and v2 and v4 in LEnter/Eat,
respectively. Nevertheless, the AHL-occurrence nets have the same input/output
behaviour, i.e. the two different firing sequences end up with the same marking
of the output places where the philosopher 3 sits together with the philosopher
4 and 5 at the table and philosopher 5 has started to eat (see table table ′345 on
the right hand sides of Fig. 4 and Fig. 5).

enabled(n, t) = tt

activities

rule2

table45

Entrance-Hall

: System

t :Transitions

r

cod m = n1 coproduct n2
applicable(r,m) = tt

m :Mor

Rule′2 : Rules Restaurant4 : System

Restaurant1 : System

Rule2 : Rules

phi3

n1 n2

r

enter restaurant

n

: System

Restaurant2

transform(r,m)

fire(n, t)

start/stop

Restaurant2)

v3

start/stop
activities
v1

(table′345, Restaurant4)(rule2, Rule′2)

(rule2,Rule2)

(table45,Restaurant1)

(phi3, Entrance-Hall)
(table′45,

enter restaurant

Fig. 6. AHL-occurrence net KEat/Enter with instantiation LEat/Enter

Moreover we will show in Section 4 that there are basic AHL-occurrence nets
KEat and KEnter, s.t. KEat/Enter and KEnter/Eat can be obtained as compo-

7

Restaurant2 : System

activities

table45

rule2

phi3

enter restaurantr

t :Transitions
enabled(n, t) = tt

cod m = n1 coproduct n2
applicable(r,m) = tt

m :Mor

n

Entrance-Hall : System

Rule2 : Rules

: System

n1

r

n2

Restaurant4

Restaurant3 : System

Rule′2 : Rules

transform(r,m)

fire(n, t)

start/stop

(phi3, Entrance-Hall)

v2

start/stop
activities
v4

(rule2,Rule2)

(table′345, Restaurant2)

(rule2, Rule′2)
(table345,

Restaurant4)

(table45,Restaurant3)

enter restaurant

Fig. 7. AHL-occurrence net KEnter/Eat with instantiation LEnter/Eat

sition in different order of KEat and KEnter. This allows to consider the cor-
responding processes of KEat and KEnter with instantiations as independent
processes of the AHL-net ANHouse in Fig. 1.

3 Algebraic High-Level Net Processes

In this section we review the concept of algebraic high-level nets and we give
a formal definition of high-level processes [6, 7] based on high-level occurrence
nets. Moreover we extend this definition by a suitable notation of instantiations
for each initial marking. As net formalism we use place/transition nets following
the notation of “Petri nets are Monoids” in [9].

Definition 1 (Place/Transition Net). A place/transition (P/T) net N =
(P, T, pre, post) consists of sets P and T of places and transitions respectively,
and pre- and post domain functions pre, post : T → P⊕ where P⊕ is the free
commutative monoid over P .

A P/T-net morphism f : N1 → N2 is given by f = (fP , fT) with functions
fP : P1 → P2 and fT : T1 → T2 satisfying

f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT
where the extension f⊕P : P⊕1 → P⊕2 of fP : P1 → P2 is defined by f⊕P (

∑n
i=1 ki ·

pi) =
∑n
i=1 ki · fP (pi). A P/T-net morphism f = (fP , fT) is called injective if

fP and fT are injective and is called isomorphism if fP and fT are bijective.
The category defined by P/T-nets and P/T-net morphisms is denoted by PT-

Net where the composition of P/T-net morphisms is defined componentwise for
places and transitions.

8

Because the notion of pushouts is essential for our main results we state
the construction of pushouts in the category PTNet of place/transition nets.
Intuitively a pushout means the gluing of two nets along an interface net. The
construction is based on the pushouts for the sets of transitions and places in the
category SET. In the category SET of sets and functions the pushout object D
for given f1 : A→ B and f2 : A→ C is defined by the quotient setD = B]C/ ≡,
short D = B ◦A C, where B] C is the disjoint union of B and C and ≡ is the
equivalence relation generated by f1(a) ≡ f2(a) for all a ∈ A. In fact, D can be
interpreted as the gluing of B and C along A: Starting with the disjoint union
B] C we glue together the elements f1(a) ∈ B and f2(a) ∈ C for each a ∈ A.

The pushout object N3 in the category PTNet is constructed componentwise
for transitions and places in SET with corresponding pre- and post domain
functions. For given P/T-net morphisms f1 : N0 → N1 and f2 : N0 → N2 the
pushout of f1 and f2 is defined by the pushout diagram (PO) in PTNet and is
denoted by N3 = N1 ◦(N0,f1,f2) N2. For details we refer to [10].

Definition 2 (Pushouts of Place/Transition Nets). Given P/T-net mor-
phisms f1 : N0 → N1 and f2 : N0 → N2 then the pushout diagram (1) and the
pushout object N3 in the category PTNet, written N3 = N1 ◦(N0,f1,f2) N2, with
Nx = (Px, Tx, prex, postx) for x = 0, 1, 2, 3 is constructed as follows:

– T3 = T1 ◦T0 T2 with f ′1,T and f ′2,T as pushout (2) of f1,T and f2,T in SET.
– P3 = P1 ◦P0 P2 with f ′1,P and f ′2,P as pushout (3) of f1,P and f2,P in SET

– pre3(t) =

{
[pre1(t1)] ; if f ′1,T (t1) = t

[pre2(t2)] ; if f ′2,T (t2) = t

– post3(t) =

{
[post1(t1)] ; if f ′1,T (t1) = t

[post2(t2)] ; if f ′2,T (t2) = t

N0

f2

��

f1 //

(1)

N1

f ′1
��

T0

f2,T

��

f1,T //

(2)

T1

f ′1,T
��

P0

f2,P

��

f1,P //

(3)

P1

f ′1,P
��

N2
f ′2

// N3 T2
f ′2,T

// T3 P2
f ′2,P

// P3

Two examples of the pushout construction of P/T-nets are depicted in Fig. 3,
where the pushouts describes the gluing of the nets L2 and C along I2 and the
gluing of the nets R2 and C along I2, respectively.

In the following we review the definition of AHL-nets from [6,7].

Definition 3 (Algebraic High-Level Net). An algebraic high-level (AHL)
net AN = (SP, P, T, pre, post, cond, type,A) consists of

– an algebraic specification SP = (Σ,E;X) with signature Σ = (S,OP), equa-
tions E, and additional variables X;

– a set of places P and a set of transitions T ;
– pre- and post domain functions pre, post : T → (TΣ(X)⊗ P)⊕;

9

– firing conditions cond : T → Pfin(Eqns(Σ;X));
– a type of places type : P → S and
– a (Σ,E)-algebra A

where the signature Σ = (S,OP) consists of sorts S and operation symbols OP ,
TΣ(X) is the set of terms with variables over X, (TΣ(X)⊗P) = {(term, p)|term
∈ TΣ(X)type(p), p ∈ P} and Eqns(Σ;X) are all equations over the signature Σ
with variables X.

An AHL-net morphism f : AN1 → AN2 is given by f = (fP , fT) with
functions fP : P1 → P2 and fT : T1 → T2 satisfying

(1) (id⊗ fP)⊕ ◦ pre1 = pre2 ◦ fT and (id⊗ fP)⊕ ◦ post1 = post2 ◦ fT ,
(2) cond2 ◦ fT = cond1 and
(3) type2 ◦ fP = type1.

The category defined by AHL-nets and AHL-net morphisms is denoted by
AHLNet where the composition of AHL-net morphisms is defined component-
wise for places and transitions.

In the following we omit the indices of functions fP and fT if no confusion
arises. An example of an AHL-net is given in Section 2, where the ”House of
Philosophers” in Fig. 1 is an AHL-net with data type part consisting of the
signature HLRN-System-SIG and algebra A according to [8] (see Appendix A.1).

The construction of pushouts in the category AHLNet of AHL-nets with
fixed specification SP and algebra A can be analogously defined to the construc-
tion of pushouts in PTNet described above (for details see [10]).

Now we introduce high-level occurrence nets and processes according to [6,7].
The net structure of a high-level occurrence net has similar properties like a low-
level occurrence net, but it captures a set of different concurrent computation due
to different initial markings. In fact, high-level occurrence nets can be considered
to have a set of initial markings for the input places, whereas there is only one
implicit initial marking of the input places for low-level occurrence nets.

Definition 4 (AHL-Occurrence Net). An AHL-occurrence net K is an AHL
-net K = (SP, P, T, pre, post, cond, type,A) such that for all t ∈ T with pre(t) =∑n
i=1(termi, pi) and notation •t = {p1, . . . , pn} and similarly t• we have

1. (Unarity): •t, t• are sets rather than multisets for all t ∈ T , i.e. for •t the
places p1 . . . pn are pairwise distinct. Hence | • t| = n and the arc from pi to
t has a unary arc-inscription termi.

2. (No Forward Conflicts): •t ∩ •t′ = ∅ for all t, t′ ∈ T, t 6= t′

3. (No Backward Conflicts): t • ∩t′• = ∅ for all t, t′ ∈ T, t 6= t′

4. (Partial Order): the causal relation <⊆ (P × T) ∪ (T × P) defined by the
transitive closure of {(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•} is a
finitary strict partial order, i.e. the partial order is irreflexive and for each
element in the partial order the set of its predecessors is finite.

10

The notion of high-level net processes generalises the one of low-level net
processes, where a P/T-process of a P/T-net N is a P/T-net morphism p : K →
N and K is a low-level occurrence net, i.e. a net satisfying conditions 1.-4. in
Def. 4. Examples of high-level and low-level occurrence nets are given in Fig. 6
and Fig. 7 in Section 2.

Definition 5 (AHL-Process). An AHL-process of an AHL-net AN is an
AHL-net morphism p : K → AN where K is an AHL-occurrence net.

Because in general there are different meaningful markings of an AHL-oc-
currence net K, we introduce a set of initial markings of the input places of
K.

Definition 6 (AHL-Occurrence Net with Initial Markings). An AHL-
occurrence net with initial markings (K, INIT) consists of an AHL-occurrence
net K and a set INIT of initial markings init ∈ INIT of the input places
IN(K), where the input places of K are defined by IN(K) = {p ∈ P | • p = ∅}
and similarly the output places of K are defined by OUT (K) = {p ∈ P |p• = ∅}.

The following notion of instantiation defines one concurrent execution of a
marked high-level occurrence net. In more detail an instantiation is a subnet of
the flattening of the AHL-occurrence net corresponding to the initial marking.
In [6,7] it is shown that for a marked AHL-occurrence net there exists a complete
firing sequence if and only if there exists an instantiation which net structure
is isomorphic to the AHL-occurrence net and has the initial marking of the
AHL-occurrence net as input places. Note that in general we may have different
instantiations for the same initial marking.

The flattening Flat(AN) of an AHL-net AN results in a corresponding low-
level net N , where the data type part (SP,A) and the firing behaviour of the
AHL-net AN is encoded in the sets of places and transitions of N . Thus the
flattening Flat(AN) leads to an infinite P/T-net N if the algebra A is infinite.
In contrast the skeleton Skel(AN) of an AHL-net AN is a low-level net N ′

preserving the net structure of the AHL-net but dropping the net inscriptions.
While there is a bijective correspondence between firing sequences of the AHL-
net and firing sequences of its flattening, each firing of the AHL-net implies a
firing of the skeleton, but not vice versa. For details we refer to [6,7] and to the
Appendix A.2.

Definition 7 (Instantiations of AHL-Occurrence Net). Given an AHL-
occurrence net with initial markings (K, INIT) with init ∈ INIT . An instanti-
ation Linit of (K, init) is a low-level occurrence net Linit ⊆ Flat(K) with input
places IN(Linit) = init such that the projection proj : Linit → Skel(K) defined
by projP (a, p) = p and projT (t, v) = t is an isomorphism of low-level occurrence
nets.

As mentioned above for a given initial marking of an AHL-occurrence net
there exist in general more than one instantiation and thus different firing

11

sequences resulting in different markings of the output places of the AHL-
occurrence net. For this reason we introduce the new notion of AHL-occurrence
nets and AHL-processes with instantiations, where we fix exactly one instanti-
ation for a given initial marking, i.e. one concurrent execution of the marked
AHL-occurrence net.

Definition 8 (AHL-Occurrence Net with Instantiations). An AHL-oc-
currence net with instantiations KI = (K, INIT, INS) is an AHL-occurrence
net with initial markings (K, INIT) and a set INS of instantiations, such that
for each init ∈ INIT we have a distinguished instantiation Linit ∈ INS, i.e.
INS = {Linit|init ∈ INIT}.

An AHL-occurrence net with instantiations KI defines for each init ∈ INIT
with IN(Linit) = init an output out = OUT (Linit) with projP (out) = OUT (K).
Let EXIT be the set of all markings of the output places OUT (K), then we
obtain a function inout : INIT → EXIT by inout(init) = OUT (Linit).

Definition 9 (AHL-Process with Instantiations). An instantiated AHL-
process of an AHL-net AN is an AHL-occurrence net with instantiations KI =
(K, INIT, INS) together with an AHL-net morphism mp : K → AN .

table45

activities
t :Transitions

Restaurant1 : System

n

fire(n, t)

Restaurant2 : System

enabled(n, t) = tt

start/stop

enabled(n, t) = tt

activities

table345

t :Transitions

Restaurant1 : System

n

fire(n, t)

Restaurant2 : System

start/stop

v1
activities

(table45,Restaurant1)

(table′45,Restaurant2)

start/stop

v4
activities

(table345,Restaurant1)

(table′345,Restaurant2)

start/stop

Fig. 8. AHL-occurrence net KEat with instantiations LEat and LEat′

As an example the AHL-occurrence net with instantiations KIEat = (KEat,
INITEat, INSEat) is depicted in Fig. 8 according to the discussion in Sec-
tion 2. The AHL-occurrence net KEat is the AHL-net on the left hand side
of Fig. 8 without the marking of the place Restaurant1. There are two differ-
ent initial markings, i.e the set of initial markings is defined by INITEAT =
{(table45,Restaurant1), (table345,Restaurant1)} and the set of instantiations by
INSEat = {LEat, LEat′} (see the two instantiations on the right hand side of
Fig. 8).

The instantiated AHL-process is the AHL-occurrence net with instantiations
KIEat together with the AHL-net morphism mpEat : KEat → ANHouse. The

12

morphism mpEat consists of an obvious inclusion of the transition start/stop
activities, while the places named Restaurant1 and Restaurant2 are mapped to
the place Restaurant of the AHL-net ANHouse in Fig. 1.

Further examples are given in Section 2, where in Fig. 6 we have the AHL-
occurrence net with instantiationsKIEat/Enter and in Fig. 7 the AHL-occurrence
net with instantiations KIEnter/Eat.

4 Composition, Equivalence and Independence of
Algebraic High-Level Net Processes

Based on the construction of pushouts of low-level and high-level nets intro-
duced in the previous section we define in this section the composition of AHL-
occurrence nets and AHL-processes with instantiations and we introduce the
concept of equivalence and independence of high-level net processes. Two in-
dependent high-level net processes can be composed in any order leading to
equivalent high-level net processes which especially have the same input/output
behaviour.

The composition of two AHL-occurrence nets K1 and K2 is defined by merg-
ing some of the output places of K1 with some of the input places of K2, so that
the result of the composition definitely is an AHL-occurrence net. In general
the composition of AHL-occurrence nets is not an AHL-occurrence net, because
the result of gluing two high-level occurrence nets may contain forward and/or
backward conflicts as well as the partial order might be violated. Thus we state
suitable conditions, so that the composition of AHL-occurrence nets leads to
an AHL-occurrence net. Moreover we generalise this construction on the one
hand to corresponding instantiations and on the other hand to AHL-net mor-
phisms, so that the composition of AHL-processes with instantiation leads to an
AHL-process under suitable conditions.

Definition 10 (Composability of AHL-Occurrence Nets). Given the AHL-
occurrence nets Kx = (SP, Px, Tx, prex, postx, condx, typex, A) for x = 1, 2 and
I = (SP, PI , TI , preI , postI , condI , typeI , A) with TI = ∅ and two injective AHL-
net morphisms i1 : I → K1 and i2 : I → K2. Then (K1,K2) is composable
w.r.t. (I, i1, i2) if i1(PI) ⊆ OUT (K1) and i2(PI) ⊆ IN(K2).

Theorem 1 (Composition of AHL-Occurrence Nets). Given the AHL-
occurrence nets K1,K2 and I as above and two injective AHL-net morphisms
i1 : I → K1 and i2 : I → K2 such that (K1,K2) is compos-
able w.r.t. (I, i1, i2). Then the pushout digram (PO) exists
in the category AHLNet and the pushout object K, with
K = K1◦(I,i1,i2)K2, is an AHL-occurrence net and is called
composition of (K1,K2) w.r.t. (I, i1, i2).

I
i1 //

i2

��
(PO)

K1

i′1

��
K2

i′2

// K

Proof. (Sketch) The detailed proof can be found in Appendix A.3.
For the existence and construction of pushouts in AHLNet we refer to [10].

As mentioned in Section 3 it can be constructed componentwise similar to

13

pushouts in PTNet. It remains to show that the result of the composition of
(K1,K2) w.r.t. (I, i1, i2) given by K = (SP, P, T, pre, post, cond, type,A) is an
occurrence net indeed:

1. Unarity: is obtained as the set of transitions T is obtained by disjoint union.
2. No forward conflicts: Since AHL-net morphisms preserve the adjacencies of

transitions (i.e. pre and post domain), in case of t1 6= t2 and p ∈ •t1 ∩ •t2
for t1, t2 ∈ T both transitions have a preimage in T1 and T2, respectively.
Moreover, p has a preimage in both P1 and P2, so one of the preimages is
in the corresponding OUT set. But this contradicts the fact that this place
has to be in the preset of the corresponding transition.

3. No backward conflicts: Analogously.
4. Partial Order: follows from the partial order of K1 and K2 and from the

composability condition.

Note that the order of K1 and K2 in the pair (K1,K2) and the result K =
K1 ◦(I,i1,i2) K2 is important because i1 and i2 relate output places of K1 with
input places K2. The composition of two AHL-occurrence nets is called strict
parallel if PI = ∅ and is called strict sequential if i1(PI) = OUT (K1) and
i2(PI) = IN(K2).

Definition 11 (Composition of Instantiations). Given the AHL-occurrence
nets K1,K2 and I as above and two injective AHL-net morphism i1 : I → K1

and i2 : I → K2 such that (K1,K2) is composable w.r.t. (I, i1, i2). Let KIx =
(Kx, INITx, INSx) for x = 1, 2 be two AHL-occurrence nets with instantia-
tions and Linit1 ∈ INS1 and Linit2 ∈ INS2. Then (Linit1 , Linit2) is composable
w.r.t. (I, i1, i2) if for all (a, p) ∈ Atype(p) ⊗ PI : (a, i1(p)) ∈ OUT (Linit1) ⇒
(a, i2(p)) ∈ IN(Linit2).

From (I, i1, i2) we construct the induced instantiation interface (J, j1, j2) of
(Linit1 , Linit2) with J = (PJ , TJ , preJ , postJ) by

– PJ = {(a, p)|(a, i1(p)) ∈ OUT (Linit1)},
– TJ = ∅,
– preJ = postJ = ∅ (the empty function) and
– jx : J → Linitx for x = 1, 2 defined by
jx,P = idA ⊗ ix,P and jx,T = ∅.

J
j1 //

j2

��
(PO)

Linit1

j′1
��

Linit2
j′2

// Linit

The composition of (Linit1 , Linit2) w.r.t. the instantiation interface (J, j1, j2)
induced by (I, i1, i2) is defined by the pushout diagram (PO) in PTNet and is
denoted by Linit = Linit1 ◦(J,j1,j2) Linit2 .

The AHL-occurrence net with instantiations KIEnter = (KEnter, INITEnter,
INSEnter) is given in Figs. 9 and 10. The sequential composition of KEat

(see Fig. 8 in Section 3) and KEnter is defined by merging the output place
Restaurant2 of KEat and the input place Restaurant3 of KEnter leading to
the AHL-occurrence net KEat/Enter (see Fig. 6 in Section 2). In more de-
tail KEat/Enter = KEat ◦(I,i1,i2) KEnter is the gluing of the two basic AHL-
occurrence nets along I with PI = {Restaurant}, i1(Restaurant) = Restaurant2

14

Entrance-Hall : System

rule2

table45

r

cod m = n1 coproduct n2
applicable(r,m) = tt

m :Mor

Rule′2 : Rules Restaurant4 : System

Rule2 : Rules

phi3

n1 n2

r

enter restaurant

Restaurant3 : System

transform(r,m)

(table345,Restaurant4)(rule2,Rule′2)

(rule2,Rule2)

enter restaurant

(table45,Restaurant3)

v2

(phi3,Entrance-Hall)

Fig. 9. AHL-occurrence net KEnter with instantiation LEnter

table′45

rule2
r

cod m = n1 coproduct n2
applicable(r,m) = tt

m :Mor

Rule′2 : Rules Restaurant4 : System

Rule2 : Rules

phi3

n1 n2

r

enter restaurant

Restaurant3 : System

transform(r,m)

Entrance-Hall : System

(table′345,Restaurant4)(rule2,Rule′2)

(rule2,Rule2)

enter restaurant

(table′45,Restaurant3)

v3

(phi3,Entrance-Hall)

Fig. 10. AHL-occurrence net KEnter with instantiation LEnter′

15

and i2(Restaurant) = Restaurant3. The corresponding instantiations LEat in
Fig. 8 and LEnter′ in Fig. 10 can be analogously composed to the instanti-
ation LEat/Enter in Fig. 6. Note that (LEat, LEnter′) is composable, because
we have (table′45, i1(Restaurant)) ∈ OUT (LEat) and (table′45, i2(Restaurant)) ∈
IN(LEnter′).

Theorem 2 (Composition of AHL-Occurrence Nets with Instantia-
tions). Given the AHL-occurrence nets K1,K2 and I as above and two injective
AHL-net morphism i1 : I → K1 and i2 : I → K2 such that (K1,K2) is com-
posable w.r.t. (I, i1, i2). Let KIx = (Kx, INITx, INSx) for x = 1, 2 be two
AHL-occurrence nets with instantiations. Then the composition of (KI1,KI2)
w.r.t. (I, i1, i2) is defined by KI = (K, INIT, INS) with

– K = K1 ◦(I,i1,i2) K2,
– INS = {Linit1 ◦(J,j1,j2) Linit2 |Linitx ∈ INSx for x = 1, 2, (Linit1 , Linit2)

is composable w.r.t. (J, j1, j2) induced by (I, i1, i2)},
– and INIT = {IN(Linit)|Linit ∈ INS}

and KI = KI1 ◦(I,i1,i2) KI2 is an AHL-occurrence net with instantiations.

Proof. (Sketch) The detailed proof can be found in Appendix A.4.
To prove that KI = (K, INIT, INS) is well-defined, first note that K is an

occurrence net due to Theorem 1. Moreover, for each Linit ∈ INS we need to
show Linit ⊆ Flat(K) and in ◦ proj(K) : Linit → Skel(K) is an isomorphism in
the diagram below where we have the following pushouts: (PO1) by construc-
tion, (PO2) since Flat preserves pushout K = K1 ◦I K2 and (PO3) since Skel
preserves pushout K = K1 ◦I K2.

proj(I), proj(K1), proj(K2) and proj(K) are projections from the flattening
to the skeleton construction (see Remark 1 in Appendix A.2) and inI , in1, in2

are inclusions where J ⊆ Flat(I) = (A⊗ P, ∅, ∅, ∅) and in is induced by (PO1).
Linit1 in1 //

��1
11111111
(PB)

Flat(K1) proj(K1) //

��8888888888 Skel(K1)

��8888888888

J inI
//

j1
77oooooooo

j2

��-

(PO1)

Flat(I) proj(K1) //
Flat(i1)iii

44iii

Flat(i2)

7777777

��77

(PO2)

Skel(I)

44iiiiiiiiii

��8888888888
(PO3)

Linit in // Flat(K) proj(K) // Skel(K)

Linit2 in2 //

66mmmmmmm
Flat(K2) proj(K2) //

44iiiiiiiii
Skel(K2)

44iiiiiiiii

Since proj(I) ◦ inI can be shown to be an isomorphism (using that J is
pullback of Flat(i1) and in1) and proj(Kx)◦inx are by assumption isomorphisms
for x = 1, 2, we conclude that proj(K) ◦ in is isomorphic as well. Hence in is
injective and can be chosen to be an inclusion in : Linit → Flat(K).

Given the two basic AHL-occurrence nets with instantiations KIEat and
KIEnter, then the composition of (KIEat,KIEnter) results in the AHL-occur-
rence net with instantiationKIEat/Enter (see Fig. 6 in Section 2), while the oppo-
site composition of (KIEnter,KIEat) is the AHL-occurrence net with instantia-
tion KIEnter/Eat (see Fig. 7 in Section 2). Different to INSEat and INSEnter the

16

set of instantiations INSEat/Enter only consists of one instantiation LEat/Enter
(and analogously INSEnter/Eat), because we require in Theorem 2 the compos-
ability of instantiations.

Definition 12 (Composability of AHL-Processes with Instantiations).
Given the AHL-occurrence nets K1,K2 and I as above and two injective AHL-
net morphism i1 : I → K1 and i2 : I → K2. Let KIx = (Kx, INITx, INSx)
together with the AHL-net morphisms mpx : Kx → AN for x = 1, 2 be two
instantiated AHL-processes of the AHL-net AN . Then (mp1,mp2) is composable
w.r.t. (I, i1, i2) if

1. (K1,K2) is composable w.r.t. (I, i1, i2) and
2. mp1 ◦ i1 = mp2 ◦ i2.

Theorem 3 (Composition of AHL-Processes with Instantiations). Gi-
ven the AHL-occurrence nets K1,K2 and I as above and two injective AHL-net
morphism i1 : I → K1 and i2 : I → K2. Let
KIx = (Kx, INITx, INSx) together with the AHL-net
morphisms mpx : Kx → AN for x = 1, 2 be two in-
stantiated AHL-processes of the AHL-net AN such that
(mp1,mp2) is composable w.r.t. (I, i1, i2). Then the in-
stantiated AHL-occurrence net KI = KI1 ◦(I,i1,i2)KI2
together with the induced AHL-net morphism mp :
K → AN is an instantiated AHL-process of the AHL-
net AN , where K is the AHL-occurrence net of KI.

I
i1 //

i2

��
(PO)

K1

i′1�� mp1

��

K2
i′2

//

mp2 ,,

K

mp
DDDD

""DDDD

AN

Proof. (Sketch) The detailed proof can be found in Appendix A.5.
Due to Def. 12 and the universal property of pushouts there is the morphism

mP : K → AN , that uniquely commutes mp1 = i′1 ◦mP and mp2 = i′2 ◦mP .

Because for low-level occurrence nets the input/output behaviour is fixed by
the net structure, two low-level occurrence nets should be considered to be equiv-
alent if they are isormorphic. For high-level occurrence nets the input/output
behaviour additionally depends on the marking of their input places and on
corresponding variable assignments. Hence we introduce the equivalence of two
AHL-processes with instantiations, where the net structures of equivalent AHL-
processes may be different, but they have especially the same input/output be-
haviour.

In more detail they have (up to renaming) the same sets of transitions and
places and their instantiations are equivalent, i.e. there exist corresponding in-
stantiations with the same input/output behaviour. So specific firing sequences
of equivalent AHL-processes are comparable in the sense that they start and
end up with the same data elements as marking of their input places and output
places, respectively, but in general the corresponding transitions are fired in a
different order.

Definition 13 (Equivalence of AHL-Processes with Instantiations). Let
KI = (K, INIT, INS) and KI ′ = (K ′, INIT ′, INS′) together with AHL-net

17

morphisms mp : K → AN and mp′ : K ′ → AN two AHL-processes of an
AHL-net AN . Then these two processes are called equivalent if

1. there are bijections eP : PK → PK′ and eT : TK → TK′ such the following
diagram commutes componentwise

K

mp ''

eT
//

eP //

=

K ′

mp′ww
AN

2. and the instantiations are equivalent, i.e. for each Linit ∈ INS there exists
a Linit′ ∈ INS′ and vice versa such that

∀(a, p) ∈ Atype(p) ⊗ PK : (a, p) ∈ IN(Linit)⇔ (a, eP (p)) ∈ IN(Linit′) and
(a, p) ∈ OUT (Linit)⇔ (a, eP (p)) ∈ OUT (Linit′)

The equivalence of the instantiations means that there is a bijection be-
tween the input places IN(K) and IN(K ′) (resp. output places OUT (K) and
OUT (K′)), s.t. the input-output function inout : INIT → EXIT of KI and
inout′ : INIT ′ → EXIT ′ of KI ′ are equal up to bijection of input and output
places. But it is not required that e = (eP , eT) : K → K ′ is an isomorphism, i.e.
in general e = (eP , eT) is not compatible with pre- and post domains.

In Section 2 the AHL-processes with instantiations KIEat/Enter in Fig. 6
and KIEnter/Eat in Fig. 7 together with the obvious AHL-net morphisms mp1 :
KIEat/Enter → ANHouse and mp2 : KIEat/Enter → ANHouse are equivalent.
There is a bijection between their transitions and places, which is not an iso-
morphism. The bijection of places is defined by mapping the input places of
KIEat/Enter to the input places of KIEnter/Eat (and analogously the output
places) and the place Restaurant2 of KIEat/Enter to the place Restaurant4 of
KIEnter/Eat, such that the diagram in Def. 13 commutes componentwise. More-
over the instantiations LEat/Enter in Fig. 6 and LEnter/Eat are equivalent.

The main result in this context are suitable conditions s.t. AHL-net processes
with instantiation can be composed in any order leading to equivalent high-level
net processes. Here we use especially the assumption that the instantiations are
consistent, i.e. there is a close relation between their input and output places.

Definition 14 (Consistency of Instantiations). Given AHL-occurrence nets
K1,K2 and I as in Def. 10 and injective AHL-net morphism i1 : I → K1,
i2 : I → K2, i3 : I → K1 and i4 : I → K2 such that (K1,K2) is composable
w.r.t. (I, i1, i2) and (K2,K1) is composable w.r.t. (I, i4, i3) with pushout (1) and
(2), respectively. Moreover let KIx = (Kx, INITx, INSx) be AHL-occurrence
nets with instantiations for Kx (x = 1, 2).

Then (INS1, INS2) is called consistent if for all composable (Linit1 , Linit2)
∈ INS1× INS2 w.r.t. (J, j1, j2) induced by (I, i1, i2) with pushout (3) there are
composable (Linit′2 , Linit′1) ∈ INS2× INS1 w.r.t. (J, j4, j3) induced by (I, i4, i3)
with pushout (4) and vice versa, s.t. in both cases the instantiations satisfy the
following properties 1.-4. for gluing points GP defined below:

18

1. IN(Linitx) \GP (Linitx) = IN(Linit′x) \GP (Linit′x) and
2. OUT (Linitx) \GP (Linitx) = OUT (Linit′x) \GP (Linit′x) for x = 1, 2

Moreover we require for all (a, p) ∈ Atype(p) ⊗ PI :

3. (a, i3(p)) ∈ IN(Linit1)⇔ (a, i2(p)) ∈ IN(Linit′2)
4. (a, i1(p)) ∈ OUT (Linit′1)⇔ (a, i4(p)) ∈ OUT (Linit2)

The gluing points GP are defined by

– GP (PK1) = i1(PI) ∪ i3(PI), GP (PK2) = i2(PI) ∪ i4(PI),
– GP (Linitx) = {(a, p) ∈ Linitx |p ∈ GP (PKx)} and
– GP (Linit′x) = {(a, p) ∈ Linit′x |p ∈ GP (PKx)} for x = 1, 2.

I
i1 //

i2
��

(1)

K1

i′1
��

I
i4 //

i3
��

(2)

K2

i′4
��

J
j1 //

j2
��

(3)

Linit1

j′1
��

J
j4 //

j3
��

(4)

Linit′2

j′4
��

K2
i′2

// K K1
i′3

// K Linit2
j′2

// Linit Linit′1 j′3

// Linit′

Let KIEat and KIEnter be the two instantiated AHL-processes as described
above. Their sets of instantiations INSEat and INSEnter are consistent, because
for the composable instantiations (LEat, LEnter′) ∈ INSEat × INSEnter there
are the composable instantiations (LEnter, LEat′) ∈ INSEnter × INSEat (and
vice versa) satisfying the properties 1.-4. in Def. 14.

Theorem 4 (Equivalence and Independence of AHL-Processes). Giv-
en an AHL-net AN and AHL-occurrence nets KIx = (Kx, INITx, INSx) with
consistent instantiations as in Def. 14 with AHL-net morphisms mpx : Kx →
AN for x = 1, 2.

Then we have instantiated AHL-processes KI = (K, INIT, INS) with mp :
K → AN and KI ′ = (K ′, INIT ′, INS′) with mp′ : K ′ → AN defined by
opposite compositions KI = KI1 ◦(I,i1,i2) KI2 and KI ′ = KI2 ◦(I,i4,i3) KI1 and
both are equivalent processes of AN , provided that

1. K1 and K2 have no isolated places, i.e. IN(Kx)∩OUT (Kx) = ∅ for x = 1, 2
2. mp1 and mp2 are compatible with i1, i2, i3 and i4, i.e. mp1 ◦ i1 = mp2 ◦ i2 =

mp1 ◦ i3 = mp2 ◦ i4 : I → AN .

Under these conditions KI1 and KI2 are called independent.

Proof. (Sketch) The detailed proof can be found in Appendix A.6. The instanti-
ated AHL-processes KI and KI ′ with mp : K → AN and mp′ : K ′ → AN exist
by Theorem 3. It remains to show that they are equivalent.
Construction of bijections. The bijection eT : TK → TK′ follows from the fact
that IT = ∅ and hence TK ∼= TK1]TK2 and TK′ ∼= TK2]TK1 . In order to obtain
the bijection eP : PK → PK′ we show that PK and PK′ can be represented by

19

the following disjoint unions of gluing points GP and non gluing points NGP
in pushout (1) and (2) in Def. 14.

PK = GP1(PK) ∪GP2(PK) ∪GP3(PK) ∪NGP (PK) with
GP1(PK) = i′1 ◦ i3(PI), GP2(PK) = i′2 ◦ i4(PI) and GP3(PK) = i′1 ◦ i1(PI)

PK′ = GP1(PK′) ∪GP2(PK′) ∪GP3(PK′) ∪NGP (PK′) with
GP1(PK′) = i′4 ◦ i2(PI), GP2(PK′) = i′3 ◦ i1(PI) and GP3(PK′) = i′3 ◦ i3(PI)

This allows to define ePx : GPx(PK) → GPx(PK′) for x = 1, 2, 3 by eP1(i′1 ◦
i3(p)) = i′4 ◦ i2(p) for all p ∈ PI and similar for eP2 and eP3 . Since i′1, i3, i

′
4, and

i2 are all injective eP1 is bijective and similar also eP2 and eP3 are bijective.
Finally also eP4 : NGP (PK) → NGP (PK′) can be defined as bijection.

Using IN(Kx) ∩ OUT (Kx) = ∅ for x = 1, 2 it can be shown that PK (and
similar PK′) is a disjoint union of all four components leading to a bijection
eP = eP1 ∪ eP2 ∪ eP3 ∪ eP4 : PK → PK′ . With these definitions it can be shown
explicitly that the diagram in Def. 13 commutes componentwise.
Equivalence of instantiations. Given Linit = Linit1 ◦(J,j1,j2) Linit2 with pushout
(3) in Def. 14 we have by consistency of (INS1, INS2) Linit′ = Linit′2 ◦(J,j4,j3)
Linit′1 with pushout (4) s.t. properties 1.-4. in Def. 14 are satisfied. This allows
to show by case distinction using the definition of eP above that we have for
all (a, p) ∈ Atype(p) ⊗ PK : (a, p) ∈ IN(Linit) ⇔ (a, eP (p)) ∈ IN(Linit′) and
(a, p) ∈ OUT (Linit)⇔ (a, eP (p)) ∈ OUT (Linit′).

The opposite direction, where Linit′ = Linit′2 ◦(J,j4,j3) Linit′1 is given with
pushout (4), follows by symmetry.

Equivalence of KI and KI ′ in Theorem 4 intuitively means that the AHL-
processes KI1 and KI2 with consistent instantiations can be considered to be
independent, because composition in each order leads to equivalent processes.

Given the two basic AHL-processes KIEat and KIEnter with the AHL-net
morphisms mpEat : KIEat → ANHouse and mpEnter : KIEnter → ANHouse,
where mpEat is defined in Section 2 and mpEnter can be analogously defined.
Because the properties 1. and 2. in Theorem 4 are satisfied by KEat and KEnter

as well as by mpEat and mpEnter, we get the equivalent processes KIEat/Enter =
KIEat ◦(I,i1,i2) KEnter in Fig. 6 and KIEnter/Eat = KIEnter ◦(I,i4,i3) KIEat in
Fig. 7.

5 Conclusion and Related Work

In this paper we have presented main results of a line of research concerning the
modeling and analysis of high-level net processes. Based on the notions of high-
level net processes with initial markings in [6, 7] we have introduced high-level
net processes with instantiations. As main results we have presented suitable
conditions for the composition and independence of high-level net processes. We
have shown under these conditions that the composition of two high-level net
processes leads to a high-level net process and they can be composed in any order

20

leading to equivalent processes. In this case the two high-level net processes are
called independent.

In [11,12] the semantics of object Petri nets is defined by a suitable extension
of low-level processes. Objects Petri nets are high-level nets with P/T-systems
as tokens. A process for an object Petri net is given by a pair of processes, a
high-level net process containing low-level processes of the corresponding P/T-
systems. In contrast the approach presented in this paper extends the notion of
high-level net processes for algebraic high-level nets. The token structure of an
algebraic high-level net is defined in its data type part that is not restricted to
P/T-systems and we also use rules as tokens. For this reason low-level processes
of P/T-systems as tokens are not considered.

Our main result of independence of high-level net processes is inspired by the
results of local Church-Rosser for graph resp. net transformation [10,13], where
under suitable conditions transformation steps can be performed in any order
leading to the same result. In [14] we have transferred these results, so that net
transformations and token firing can be executed in arbitrary order provided that
certain conditions are satisfied. For example in Section 2 the firing step table45
start eating5−→ table′45 (see Fig. 2) and the transformation step (phi3, table45) rule2=⇒
table345 (see Fig. 3) are independent of each other, so that each of this evolution
steps can be postponed after the realization of the other yielding the same result,
the P/T-system table ′345 in Fig. 4. Hence an interesting aspect of future work
will be to investigate the correspondence between these different concepts of
independence in more detail to gain further results for high-level net processes.

References

1. Goltz, U., Reisig, W.: The Non-sequential Behavior of Petri Nets. Information
and Control 57(2/3) (1983) 125–147

2. Rozenberg, G.: Behaviour of Elementary Net Systems. In: Petri Nets: Central Mod-
els and Their Properties, Advances in Petri Nets. Volume 254 of LNCS., Springer
(1987) 60–94

3. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing Net Computations and
Processes. In: Proc. on Logic in Computer Science (LICS), IEEE Computer Society
(1989) 175–185

4. Engelfriet, J.: Branching Processes of Petri Nets. Acta Informatica 28(6) (1991)
575–591

5. Meseguer, J., Montanari, U., Sassone, V.: On the Semantics of Place/Transition
Petri Nets. Mathematical Structures in Computer Science 7(4) (1997) 359–397

6. Ehrig, H.: Behaviour and Instantiation of High-Level Petri Net Processes. Funda-
menta Informaticae 65(3) (2005) 211–247

7. Ehrig, H., Hoffmann, K., Padberg, J., Baldan, P., Heckel, R.: High-level net pro-
cesses. In: Formal and Natural Computing. Volume 2300 of LNCS., Springer (2002)
191–219

8. Hoffmann, K., Mossakowski, T., Ehrig, H.: High-Level Nets with Nets and Rules
as Tokens. In: Proc. Application and Theory of Petri Nets (ATPN). Volume 3536
of LNCS. Springer (2005) 268–288

21

9. Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computa-
tion 88(2) (1990) 105–155

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer (2006)

11. Farwer, B., Köhler, M.: Mobile Object-Net Systems and their Processes. Fundam.
Inform. 60(1-4) (2004) 113–129

12. Köhler, M., Rölke, H.: Reference and Value Semantics Are Equivalent for Ordinary
Object Petri Nets. In: Proc. Application and Theory of Petri Nets (ATPN). Volume
3536 of LNCS., Springer (2005) 309–328

13. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific (1997)

14. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of
net transformations and token firing in reconfigurable place/transition systems.
In: Proc. Application and Theory of Petri Nets (ATPN). Volume 4546 of LNCS.,
Springer (2007) 104–123

A Appendix

A.1 Signature and Algebra for P/T-Systems and Rules as Tokens

Definition 15 (HLNR-System-SIG Signature and Algebra).
Given vocabularies T0 and P0, the signature HLNR-System-SIG is given by
HLNR-System-SIG =

sorts: Transitions, P laces,Bool, System,Mor,Rules
opns: tt, ff:→ Bool

enabled : System× Transitions→ Bool
fire : System× Transitions→ System
applicable : Rules×Mor → Bool
transform : Rules×Mor → System
coproduct : System× System→ System
prphi : System→ System
prtable : System→ System
cod : Mor → System

and the HLNR-System-SIG-algebra A for P/T-systems and rules as tokens is
given by

– ATransitions = T0, APlaces = P0, ABool = {true, false},
– ASystem the set of all P/T-systems over T0 and P0, i.e.
ASystem = {PN |PN = (P, T, pre, post,M) P/T-system, P ⊆ P0, T ⊆ T0}

∪ {undef},
– AMor the set of all P/T-morphisms for ASystem, i.e.
AMor = {f |f : PN → PN ′ P/T-morphism with PN,PN ′ ∈ ASystem},

– ARules the set of all rules of P/T-systems, i.e.
ARules = {r|r = (L i1← I

i2→ R) rule of P/T-systems with
strict inclusions i1, i2},

– ttA = true, ffA = false,

22

– enabledA : ASystem×T0 → {true, false} for PN = (P, T, pre, post,M) with

enabledA(PN, t) =

{
true if t ∈ T, pre(t) ≤M
false else

– fireA : ASystem × T0 → ASystem for PN = (P, T, pre, post,M) with

fireA(PN, t) =


(P, T, pre, post,M 	 pre(t)⊕ post(t))

if enabledA(PN, t) = tt

undef else

– applicableA : ARules ×AMor → {true, false} with

applicableA(r,m) =

{
true if r is applicable at match m
false else

– transformA : ARules ×AMor → ASystem with

transformA(r,m) =

{
H if applicableA(r,m)
undef else

where for L m→ G and applicableA(r,m) = true we have a direct transforma-
tion G

r=⇒ H,
– coproductA : ASystem × ASystem → ASystem the disjoint union (i.e. the two

P/T-systems are combined without interaction) with

coproductA(PN1, PN2) = if (PN1 = undef ∨ PN2 = undef) then undef
else ((P1] P2), (T1] T2), pre3, post3,M1 ⊕M2)

where pre3, post3 : (T1] T2)→ (P1] P2)⊕ are defined by

pre3(t) = if t ∈ T1 then pre1(t) else pre2(t)
post3(t) = if t ∈ T1 then post1(t) else post2(t)

– prphi,A : ASystem → ASystem with

prphi,A(PN) =

{
phii if PN = coproductA(phii, PN ′)
undef else

where phii = ({pi}, {ti}, prei, posti) with prei(ti) = posti(ti) = pi,
– prtable,A : ASystem → ASystem with

prtable,A(PN) = PN \ prphi,A(PN)

– codA : AMor → ASystem with codA (f : PN1 → PN2) = PN2.

23

A.2 Flattening and Skeleton Construction

Definition 16 (Firing Behaviour of AHL-Nets). A marking of an AHL-net
AN is given by M ∈ CP⊕ where CP = (A⊗ P) = {(a, p)|a ∈ Atype(p), p ∈ P}.

The set of variables V ar(t) ⊆ X of a transition t ∈ T are the variables
of the net inscriptions in pre(t), post(t) and cond(t). Let v : V ar(t) → A
be a variable assignment with term evaluation v] : TΣ(V ar(t)) → A, then
(t, v) is a consistent transition assignment iff condAN (t) is validated in A un-
der v. The set CT of consistent transition assignments is defined by CT =
{(t, v)|(t, v) consistent transition assignment}.

A transition t ∈ T is enabled in M under v iff (t, v) ∈ CT and preA(t, v) ≤
M , where preA : CT → CP⊕ defined by preA(t, v) = v̂(pre(t)) ∈ (A⊗ P)⊕ and
v̂ : (TΣ(V ar(t))⊗ P)⊕ → (A⊗ P)⊕ is the obvious extension of v] to terms and
places (similar postA : CT → CP⊕). Then the follower marking is computed by
M ′ = M 	 preA(t, v)⊕ postA(t, v).

Definition 17 (Flattening). Given AHL-net AN as above then the flattening
of AN is a P/T-net Flat(AN) = N = (CP,CT, preA, postA) with

– CP = A⊗ P = {(a, p)|a ∈ Atype(p), p ∈ P},
– CT = {(t, v)|t ∈ T, v : V ar(t)→ A s.t. cond(t) valid in A under v } and
– preA and postA as defined in Def. 16.

Given an AHL-net morphism f : AN1 → AN2 by f = (fP , fT) then Flat(f)
= (idA ⊗ fP : CP1 → CP2, fC : CT1 → CT2) is given by idA ⊗ fP (a, p) =
(a, fp(p)) and fC(t, v) = (fT (t), v).

Definition 18 (Skeleton). Given an AHL-net AN as above then the skeleton
of AN is a P/T-net Skel(AN) = (P, T, preS , postS) with preS(t) =

∑n
i=1 pi for

pre(t) =
∑n
i=1(termi, pi) and similar for postS : T → P⊕. Given an AHL-net

morphism f : AN1 → AN2 by f = (fP , fT) then Skel(f) = f = (fP : P1 →
P2, fT : T1 → T2).

Remark 1. The flattening construction defined in Def. 17 and the skeleton con-
struction defined in Def. 18 are well-defined and can be turned into a functor
Flat : AHLNet → PTNet and a functor Skel : AHLNet → PTNet which
preserve pushouts, i.e. given the pushout (1) in AHLNet then there are cor-
responding pushouts (2) and (3) in PTNet. Moreover we have for each AN a
projection proj(AN) : Flat(AN)→ Skel(AN) leading to a natural transforma-
tion proj : Flat→ Skel.

AN0
f1 //

f2

��
(1)

AN1

f ′1
��

AN2
f ′2

// AN3

24

Flat(AN0)
Flat(f1)//

Flat(f2)

��
(2)

Flat(AN1)

Flat(f ′1)

��

Skel(AN0)
Skel(f1)//

Skel(f2)

��
(3)

Skel(AN1)

Skel(f ′1)

��
Flat(AN2)

Flat(f ′2)

// Flat(AN3) Skel(AN2)
Skel(f ′2)

// Skel(AN3)

Theorem 5 (Flat is functor). The construction Flat : AHLNet→ PTNet
as defined in Def. 17 is a functor.

Proof.

1. Flat(AN) is well-defined:
We have to show that preA, postA ∈ CP⊕. This follows for preA from the
fact that termi of type(pi) implies v](termi) ∈ Atype(pi) and similar for
postA.

2. Flat(f) is well-defined:
(a) Let (a, p) ∈ CP1.

By definition we have Flat(f)P (a, p) = (idA⊗fP)(a, p) = (idA(a), fP (p)) =
(a, fP (p)) ∈ CP2 because fP (p) ∈ P2 and a ∈ Atype1(p) = Atype2(fP (p)).

(b) (t, v) ∈ CT1 ⇒ fC(t, v) ∈ CT2

(t, v) ∈ CT1 means v : V ar(t)→ A s.t. cond1(t) valid in A under v,
fC(t, v) = (fT (t), v) ∈ CT2 means v : V ar(fT (t))→ A s.t. cond2(fT (t)) =
cond1(t) valid in A under v. This follows from (t, v) ∈ CT1 because

V ar(t) = V ar(cond1(t)) ∪ V ar(pre1(t)) ∪ V ar(post1(t))
= V ar(cond2(fT (t))) ∪ V ar(pre2(fT (t))) ∪ V ar(post2(fT (t)))
= V ar(fT (t))

3. Flat(f) is P/T-net morphism:
For symmetry reasons it suffices to show commutativity for preA of

CT1

pre1,A//

fC

��
(1)

CP⊕1

(idA⊗fP)⊕

��
CT2 pre2,A

// CP⊕2

Given (t1, v1) ∈ CT1 with pre1(t1) =
∑n
i=1(termi, pi) we have

pre2(fT (t1)) = (idTΣ(X)⊗fP)⊕(pre1(t1)) = (idTΣ(X)⊗fP)⊕(
∑n
i=1(termi, pi))

=
∑n
i=1(termi, fP (pi))

because f is an AHL-morphisms and hence
(idA ⊗ fP)⊕(pre1A(t1, v1)) = (idA ⊗ fP)⊕(

∑n
i=1(v]1(termi), pi))

=
∑n
i=1(v]1(termi), fP (pi)) = pre2A(fT (t1), v1) = pre2A(fC(t1, v1)).

25

4. Obviously we have Flat(f) = idFlat(AN) for f = idAN . Furthermore we
have for the composition Flat(g ◦ f) = ((idA ⊗ (g ◦ f)P)⊕, (g ◦ f)C) =
((idA ⊗ (g ◦ f)P)⊕, gC ◦ fC) = ((idA ◦ idA ⊗ (g ◦ f)P)⊕, gC ◦ fC) = ((idA ⊗
gP)⊕ ◦ (idA ⊗ fP)⊕, gC ◦ fC) = Flat(g) ◦ Flat(f).

Theorem 6 (Flat preserves Pushouts). Given Pushout (1) in AHLNet
then (2) is Pushout in PTNet.

AN0
f1 //

f2

��
(1)

AN1

g1

��

Flat(AN0)
Flat(f1) //

Flat(f2)

��
(2)

Flat(AN1)

Flat(g1)

��
AN2 g2

// AN3 Flat(AN2)
Flat(g2)

// Flat(AN3)

Proof. Pushout (1) in AHLNet is constructed componentwise by the Pushouts

T0

f1,T //

f2,T

��

(3)

T1

g1,T

��

P0

f1,P //

f2,P

��

(4)

P1

g1,P

��
T2 g2,T

// T3 P2 g2,P
// P3

in SET. Since Pushouts in PTNet are also constructed componentwise in SET
it suffices to show that (5) and (6) are Pushouts in SET.

CT0

f1,C //

f2,C

��

(5)

CT1

g1,C

��

A⊗ P0

idA⊗f1,P //

idA⊗f2,P

��

(6)

A⊗ P1

idA⊗g1,P

��
h1

��

(7)CT2 g2,C
// CT3 A⊗ P2

idA⊗g2,P //

h2

//

(8)

A⊗ P3

h

""
X

We show the universal properties for (6), because we cannot directly use that
the cartesian product A × preserves Pushouts, since A ⊗ P (A × P . Given
h1, h2 with h1 ◦ (idA ⊗ f1P) = h2 ◦ (idA ⊗ f2P) we define h : A⊗ P3 → X by

h(a, p3) =

{
h1(a, p1) for p3 = g1P (p1) with p1 ∈ P1

h2(a, p2) for p3 = g2P (p2) with p2 ∈ P2

It suffices to show that h is well-defined, i.e. p3 = g1P (p1) = g2P (p2) implies
h1(a, p1) = h2(a, p2), because with this definition (7) and (8) commute by con-
struction and h is unique with this property.

26

Given p3 = g1P (p1) = g2P (p2) we have by definition of Pushout (4) in SET a
sequence p01, . . . , p0n ∈ P0 with

p01=
f1,P

~~}}}}}}} �
f2,P

!!BBBBBBBB p02<
f2,P

}}|||||||| �
f1,P

!!BBBBBBBB p03<
f1,P

}}||||||||
... p0n

�
f2,P

 AAAAAAAA

p1 p21 p11 ... p2

This implies

h1(a, p1) = h1(a, f1P (p01))
= h1 ◦ (idA ⊗ f1P)(a, p01)
= h2 ◦ (idA ⊗ f2P)(a, p01)
= h2(a, f2P (p01))
= h2(a, p21)
= h2(a, f2P (p02))
= h2 ◦ (idA ⊗ f2P)(a, p02)
= h1 ◦ (idA ⊗ f1P)(a, p02)
= . . .

= h1 ◦ (idA ⊗ f1P)(a, p03)
= . . .

= h2 ◦ (idA ⊗ f2P)(a, p0n)
= h2(a, f2P (p0n))
= h2(a, p2)

All steps are well-defined, because (a, p01), . . . , (a, p0n) ∈ A⊗ P0:
In fact (a, p3) ∈ A ⊗ P3 implies a ∈ Atype3(p3) = Atype1(p1) = Atype0(p0i) for
i = 1, . . . , n using type compability of g1P for p3 = g1P (p1) and of f1P , f2P , g2P
for the other cases (see proof of Theorem 5).

For similar reasons we can show explicitely the universal properties of (5)
using Pushout (3). Given k1 : CT1 → X, k2 : CT2 → X with k1 ◦ f1C = k2 ◦ f2C
there is a unique k : CT3 → X defined by

k(t3, v) =

{
k1(t1, v) for t3 = g1T (t1) with t1 ∈ T1

k2(t2, v) for t3 = g2T (t2) with t2 ∈ T2

Similar to above we can show that t3 = g1T (t1) = g2T (t2) implies k1(t1, v) =
k2(t2, v) where all steps are well-defined using Theorem 5.

Theorem 7 (Flat preserves Monomorphisms). Given f : AN1 → AN2

monomorphism in AHLNet, then Flat(f) : Flat(AN1)→ Flat(AN2) is monomor-
phism in PTNet.

27

Proof. Since monomorphisms in AHLNet and PTNet are the injective mor-
phisms, it suffices to show: If f is injective, Flat(f) is injective.

Let us assume that f is injective. That means fP and fT are injective func-
tions.
Let Flat(f)P (a1, p1) = Flat(f)P (a2, p2). By Def. 17 we have:
Flat(f)P (a1, p1) = Flat(f)P (a2, p2)
⇒ (idA ⊗ fP)(a1, p1) = (idA ⊗ fP)(a2, p2)
⇒ (a1, fP (p1)) = (a2, fP (p2))
⇒ a1 = a2 ∧ fP (p1) = fP (p2)
⇒ a1 = a2 ∧ p1 = p2 because fP is injective
⇒ (a1, p1) = (a2, p2)
⇒ Flat(f)P is injective.

Let Flat(f)T (t1, v1) = Flat(f)T (t2, v2). By Def. 17 we have:
Flat(f)T (t1, v1) = Flat(f)T (t2, v2)
⇒ (fT (t1), v1) = (fT (t2), v2)
⇒ fT (t1) = fT (t2) ∧ v1 = v2
⇒ t1 = t2 ∧ v1 = v2 because fT is injective
⇒ (t1, v1) = (t2, v2)
⇒ Flat(f)T is injective.
Flat(f)P and Flat(f)T are injective implies that Flat(f) is injective.

Theorem 8 (Skel is functor). The construction Skel : AHLNet→ PTNet
as defined in Def. 18 is a functor.

Proof. Given f : AN1 → AN2 then Skel(f) : Skel(AN1)→ Skel(AN2) is P/T-
net morphism, i.e. (1) commutes componentwise.

T1

pre1,S //
post1,S

//

fT

��

(1)

P⊕1

f⊕P

��
T2

pre2,S //
post2,S

// P⊕2

For t1 ∈ T1 and pre1(t1) =
∑n
i=1(termi, pi) we have

fP ◦ pre1S(t1) = f⊕P (
∑n
i=1 pi) =

∑n
i=1 fP (pi)

pre2 ◦ fT (t1) = (idA ⊗ fP)⊕ ◦ pre1(t1) =
∑n
i=1(termi, fP (pi)) and hence

pre2S ◦ fT (t1) = pre2S(fT (t1)) =
∑n
i=1 fP (pi) which implies

fP ◦ pre1S(t1) = pre2S ◦ fT (t1) and similar for post1S and post2S .

Theorem 9 (Skel preserves Pushouts). Given Pushout (1) in AHLNet the
(2) is Pushout in PTNet.

28

AN0
f1 //

f2

��
(1)

AN1

g1

��

Skel(AN0)
Skel(f1) //

Skel(f2)

��
(2)

Skel(AN1)

Skel(g1)

��
AN2 g2

// AN3 Skel(AN2)
Skel(g2)

// Skel(AN3)

Proof. Pushout (1) in AHLNet implies Pushouts (3) and (4) as in Theorem 6.
But this implies that (2) is Pushout in PTNet , because Pushouts in PTNet
are based on Pushouts (3) and (4) in SET.

Theorem 10 (Skel preserves Monomorphisms). Given f : AN1 → AN2

monomorphism in AHLNet, then Skel(f) : Skel(AN1)→ Skel(AN2) is monomor-
phism in PTNet.

Proof. Similar to the proof that Flat preserves monomorphisms, we will show:
If f is injective, Skel(f) is injective.

Let us assume that f : AN1 → AN2 is injective. That means fP and fT are
injective functions.
Let Skel(f)P (p1) = Skel(f)P (p2) for p1, p2 ∈ PSkel(AN1). By Def. 18 we have:
Skel(f)P (p1) = Skel(f)P (p2)
⇒ fP (p1) = fP (p2)
⇒ p1 = p2 because fP is injective. Hence Skel(f)P is injective.

Let Skel(f)T (t1) = Skel(f)T (t2) for t1, t2 ∈ TSkel(AN1). By Def. 18 we have:
Skel(f)T (t1) = Skel(f)T (t2)
⇒ fT (t1) = fT (t2)
⇒ t1 = t2 because fT is injective. Hence Skel(f)T is injective.

A.3 Proof of Theorem 1 in Section 4

Proof. We have to show

1. Unarity
2. No forward conflicts
3. No backward conflicts
4. The causal relation is a finitary strict partial order.

1. Unarity:

Let us assume that K does not comply with the unarity property, i.e. there
is t ∈ T and (term1, p), (term2, p) ∈ TΣ(X)⊗P s.t. (term1, p)⊕(term2, p) ≤
pre(t) or (term1, p)⊕ (term2, p) ≤ post(t).
The set of transitions T is the Pushout T1

i1T← ∅ i2T→ T2 which is the disjoint
union of T1 and T2, and hence there is tx ∈ Tx with t = i′x,T (tx) where either
x = 1 or x = 2.
Since i′x is an AHL-morphism it preserves pre and post domains, i.e. pre ◦

29

i′x,T (tx) = (idTΣ(X) ⊗ i′x,P)⊕ ◦ prex(tx).
This implies for (term1, p)⊕(term2, p) ≤ pre(t) = pre(ix,T (tx)) that (term1, p)⊕
(term2, p) ≤ (idTΣ(X)⊗i′x,P)⊕◦prex(tx), which means that there are (term1, p1),
(term2, p2) ∈ TΣ(X) ⊗ Px s.t. (term1, p1) ⊕ (term2, p2) ≤ prex(tx) and
i′x,P (p1) = p = i′x,P (p2).
The fact that i′x,P (p1) = i′x,P (p2) implies that p1 = p2 because i′x,P is injec-
tive and hence (term1, p1)⊕ (term2, p1) ≤ prex(tx) contradicts the fact that
Kx complies with the unarity property.

The case (term1, p)⊕ (term2, p) ≤ post(t) works analogously.

2. No forward conflict:

We have to show:
∀t, t′ ∈ T : t 6= t′ ⇒ •t ∩ •t′ = ∅

Let us assume that there is a forward conflict, i.e. there exist t, t′ ∈ T, p ∈ P ,
s.t. t 6= t′ and p ∈ •t, p ∈ •t′.

Case 1: Both transitions t and t′ have a preimage in the same net, i.e. there
are tx, t′x ∈ Tx with i′xT (tx) = t and i′xT (t′x) = t′ where either x = 1 or x = 2.
Due to i′xT (tx) 6= i′xT (t′x) we also have tx 6= t′x.
p ∈ •t and p ∈ •t′ implies that there exist px, p′x ∈ Px, s.t. i′xP (px) =
i′xP (p′x) = p and px ∈ •tx, p′x ∈ •t′x, because i′x is an AHL-morphism which
preserves pre and post domains. Since i′xP is injective i′xP (px) = i′xP (p′x)
implies px = p′x and hence px ∈ •tx and px ∈ •t′x which contradicts the fact
that Kx has no forward conflict.

Case 2: The transitions t, t′ have their preimage in different nets, i.e there
exist t1 ∈ T1, t2 ∈ T2 with t = i′1T (t1), t′ = i′2T (t2). Since i′1 and i′2 preserve
pre and post domains, there exist p1 ∈ P1, p2 ∈ P2 with p1 ∈ •t1, p2 ∈ •t2
and i′1P (p1) = i′2P (p2). This means that there is a p0 ∈ PI with i1P (p0) = p1

and i2P (p0) = p2, because K is the Pushout of K1
i1← I

i2→ K2. The fact
that K1 and K2 are composable wrt. (I, i1, i2) implies for p1 ∈ i1(PI) that
p1 ∈ OUT (K1) which contradicts p1 ∈ •t1.

3. No backward conflict:

We have to show:
∀t, t′ ∈ T : t 6= t′ ⇒ t • ∩t′• = ∅

Let us assume that there is a backward conflict, i.e. there exist t, t′ ∈ T, p ∈
P , s.t. p ∈ t• and p ∈ t′•.
Case 1: Both transitions t and t′ have a preimage in the same net, i.e. there
are tx, t′x ∈ Tx with i′xT (tx) = t and i′xT (t′x) = t′ where either x = 1 or x = 2.
Analogously to case 1 of the forward conflicts it follows that there exist

30

px ∈ Px, s.t. px ∈ tx• and px ∈ t′x•. This contradicts the fact that Kx has
no backward conflict.
Case 2: The transitions t, t′ have their preimage in different nets, i.e there
exist t1 ∈ T1, t2 ∈ T2 with t = i′1T (t1), t′ = i′2T (t2). Analogously to case
2 of the forward conflicts there exist p1 ∈ P1, p2 ∈ P2 with p1 ∈ t1• and
p2 ∈ t2• where i′1P (p1) = i′2P (p2). Due to the fact that K is the Pushout
of K1

i1← I
i2→ K2 there is a p0 ∈ PI with i1P (p0) = p1 und i2P (p0) = p2,

which implies for p2 ∈ i2P (PI) that p2 ∈ IN(K2), because K1 and K2 are
composable wrt. (I, i1, i2). This contradicts p2 ∈ t1•.

4. The causal relation is a finitary strict partial order:

The composability of K1 and K2 wrt. (I, i1, i2) requires that i1(PI) ⊆
OUT (K1) and i2(PI) ⊆ IN(K2). That means that exclusively output places
(i.e. places without post domain) of K1 with input places (i.e. places without
pre domain) of K2 are identified.
Due to the fact that AHL-morphisms preserve pre and post domains of tran-
sitions, we obtain the causal relation <K as the transitive closure of
{(i′1(x), i′1(y))|x, y ∈ PK1] TK1 , x <K1 y} ∪ {(i′2(x), i′2(y))|x, y ∈ PK2]
TK2 , x <K2 y}.
This means that the causal relations of the nets K1 and K2 are also causal
relations in K and additionally it is possible that nodes x2 ∈ PK2] TK2

originated from K2 can be successor of nodes x1 ∈ PK1] TK1 originated
from K1 (i.e. i′1(x1) <K i′2(x2)), but not vice versa (i.e. i′2(x2) 6<K i′1(x1)).

Let us assume that <K is not finitary, i.e. there exists x ∈ PK] TK with an
infinite number of predecessors. That means that there are infinite xn <K x
(n ∈ N).
Case 1: Let x = i′1(x′) with x′ ∈ PK1] TK1 . Then we have x′n ∈ PK1] TK1

(n ∈ N), s.t. for all n ∈ N : x′n <K1 x
′. This contradicts the fact that <K1 is

finitary.
Case 2: Let x = i′2(x′′) with x′′ ∈ PK2] TK2 . Let us assume that there
exist infinite x′′n ∈ PK2] TK2 (n ∈ N), s.t. for all n ∈ N : x′′n <K2 x

′′. This
contradicts the fact that <K2 is finitary.
Hence there exists m ∈ N, s.t. for 0 ≤ k ≤ m : x′′k <K2 x

′′ and x′′m ∈ IN(K2).
Due to the fact that i′2(x′′m) has an infinite number of predecessors in <K ,
there exists y ∈ PI , s.t. i′2(x′′m) = i′2(i2(y)) = i′1(i1(y)) has an infinite number
of predecessors. This is equal to case 1.
<K is finitary.

Let us assume that <K is not irreflexive, i.e. there exists x ∈ PK] TK ,
s.t. x <K x. This means that there is a cycle in K and hence there exists
x′ ∈ PK] TK , s.t. x <K x′ and x′ <K x.
Case 1: Both nodes x and x′ are derived from the same net, i.e. for ei-
ther n = 1 or n = 2 there exist xn, x′n ∈ PKn] TKn , s.t. x = i′n(xn) and
x′ = i′n(x′n). Then we have i′n(xn) <K i′n(x′n) and i′n(x′n) <K i′n(xn), which

31

implies xn <Kn x
′
n and x′n <Kn xn. This contradicts the fact that <Kn is

irreflexive.
Case 2: The nodes x and x′ are derived from different nets, i.e. there ex-
ist x1 ∈ PK1] TK1 , x

′
2 ∈ PK2] TK2 with x = i′1(x1) and x′ = i′2(x′2), s.t.

i′1(x1) <K i′2(x′2) and i′2(x′2) <K i′1(x1). This contradicts the fact that ac-
cording to the construction it is not possible that there exist a ∈ PK1] TK1

and b ∈ PK2] TK2 , s.t. i′2(b) <K i′1(a).
Hence <K is irreflexive.

A.4 Proof of Theorem 2 in Section 4

Theorem 11 (Natural Transformation proj : Flat→ Skel).
proj : Flat→ Skel defined for AHL-nets AN by
proj(AN) : Flat(AN)→ Skel(AN) with
proj(AN)P (a, p) = p for (a, p) ∈ CP = A⊗ P and
proj(AN)T (t, v) = t for (t, v) ∈ CT
is a natural transformation.

Proof. First we show that proj(AN) is P/T-net morphism

Flat(AN)

proj(AN)

��

CT
preA //
postA

//

proj(AN)T

��

(1)

CP⊕

proj(AN)⊕P

��
Skel(AN) T

preS //
postS

// P⊕

Given (t, v) ∈ CT with pre(t) =
∑n
i=1(termi, pi) we have

proj(AN)⊕P ◦ preA(t, v) = proj(AN)⊕P (
∑n
i=1(v](termi), pi)) =

∑n
i=1 pi

preS ◦ proj(AN)T (t, v) = preS(t) =
∑n
i=1 pi

and similar for postA, postS .

In order to show that proj is natural transformation let f : AN1 → AN2 be
an AHL-net morphism then we have to show commutativity of

Flat(AN1)
Flat(f)=(idA⊗fP ,fC) //

proj(AN1)

��
(2)

Flat(AN2)

proj(AN2)

��
Skel(AN1)

Skel(f)=(fP ,fT)
// Skel(AN2)

This follows for (a, p) ∈ A⊗ P1 from
proj(AN2)P ◦ (idA ⊗ fP)(a, p) = fP (p) = fP ◦ proj(AN1)P (a, p)
and for (t, v) ∈ CT1 from
proj(AN2)T ◦ fC(t, v) = proj(AN2)T (fT (t), v) = fT (t) = fT ◦ proj(AN1)T (t, v).

32

Lemma 1 (Instantiation interface is Pullback).
The induced instantiation interface (J, j1, j2) of (Linit1 , Linit2) as defined in

Definition 11 in Section 4 is Pullback of Linit1
in1−→ Flat(K1)

Flat(i1)←− Flat(I),
i.e. the diagram (1) is Pullback in PTNet where in1, inI are inclusions.

Linit1
in1 //

(1)

Flat(K1)

J

j1

<<xxxxxxxxx

inI
// Flat(I)

Flat(i1)

99rrrrrrrrrr

Proof (Lemma 1).
We will show that the places and transitions are Pullbacks, i.e. (2) and (3)

are Pullbacks in SET.

TLinit1
in1,T //

(2)

TFlat(K1) PLinit1
in1,P //

(3)

PFlat(K1)

TJ

j1,T
??��������

inI,T
// TFlat(I)

Flat(i1)T

<<xxxxxxxx
PJ

j1,P
??��������

inI,P
// PFlat(I)

Flat(i1)P

<<xxxxxxxx

1. Pullback (2)

Since TI = ∅ also TFlat(I) = ∅ and hence the Pullback of TLinit1
in1,T−→

TFlat(K1)
Flat(i1)T←− TFlat(I) is ∅ = TJ .

2. Pullback (3)
(a) Commutativity of (3):

For (a, p) ∈ PJ we have
in1P ◦j1P (a, p) = in1P ◦(idA⊗i1P)(a, p) = in1P (a, i1P (p)) = (a, i1P (p)) =
Flat(i1)P (a, p) = Flat(i1)P ◦ inIP (a, p)

(b) Universal property:
Given (Y, k1, k2) with in1P ◦ k1 = Flat(i1)P ◦ k2.

PLinit1
in1,P //

(3)

PFlat(K1)

PJ

j1,P
??��������

inI,P
// PFlat(I)

Flat(i1)P

<<xxxxxxxx

Y

k1

//

(4)

k2

AA

(5)

k

==

33

We define k := k2. First we have to show that for all y ∈ Y : k2(y) ∈ PJ .
Let y ∈ Y . Then we have k2(y) = (a, p) ∈ PFlat(I) and hence Flat(i1)P (k2(y)) =
(a, i1P (p)) ∈ PFlat(K1).
in1P ◦ k1 = Flat(i1)P ◦ k2 implies in1P (k1(y)) = Flat(i1)P (k2(y)) and
since in1P is an inclusion, we have k1(y) = Flat(i1)P (k2(y)) = (a, i1P (p)) ∈
PLinit1 .
By Def. 10 we have i1P (PI) ⊆ OUT (K1) and by Def. 7 we have that
in1P ◦ proj(K1)P : PLinit1 → Skel(K1) is bijective, which implies that
for (a, i1P (p)) ∈ PLinit1 follows that (a, i1P (p)) ∈ OUT (Linit1). Per con-
struction of J follows that (a, p) ∈ PJ and hence k2(y) ∈ PJ .
For k = k2 we have:
inIP ◦ k(y) = k(y) = k2(y) (5) commutes.
and
in1P ◦ k1 = Flat(i1)P ◦ k2 = Flat(i1)P ◦ iIP ◦ k = in1P ◦ j1P ◦ k
and since in1P is monomorphism, this implies
k1 = j1P ◦ k (4) commutes

(c) Uniqueness:
Let us assume there exists k′ : Y → PJ with j1P ◦k′ = k1 and inIP ◦k′ =
k2. Then follows
inIP ◦ k′ = k2 = inIP ◦ k
and due to the fact that inIP is injective we have k′ = k. Hence k is
unique.

Since the sets of places and transitions are componentwise Pullbacks in SET,
(1) is Pullback in PTNet.

Proof (Theorem 2 in Section 4).
We have to show that

1. K is an AHL-occurrence net and
2. all Linit ∈ INS are instantiations of K:

(a) Linit ⊆ Flat(K), i.e. there exists an injection in : Linit → Flat(K) and
(b) the projection proj(K) ◦ in : Linit → Skeleton(K) is an isomorphism.

Proof (Part 1). Follows directly from Theorem 1 in Section 4.

Proof (Part 2). Given the Pushout (1) we obtain the instantiation interface J as

the Pullback (2) of Linit1
in1−→ Flat(K1)

Flat(i1)←− Flat(I) in PTNet using Lemma
1.

I
i1 //

i2

��
(1)

K1

i′1

��

Linit1
in1 //

(2)

Flat(K1)

K2
i′2

// K J

j1

<<xxxxxxxxx

inI
// Flat(I)

Flat(i1)

99rrrrrrrrrr

34

Since Pullbacks are closed under monomorphisms, the injectivity of in1 and
Flat(i1) lead to the injectivity of j1 : J → Linit and inI : J → Flat(I).
First we will show in Lemma 2 that the projection proj(I)◦inI is an isomorphism.

Lemma 2. The projection proj(I) ◦ inI : J → Skel(I) is an isomorphism.

Proof (Lemma 2). Injectivity of proj(I) ◦ inI :
Since proj is a natural transformation, diagramm (3) commutes

Linit1
in1 //

(2)

Flat(K1)
proj(K1) //

(3)

Skel(K1)

J

j1

<<xxxxxxxxx

inI
// Flat(I)

Flat(i1)

99rrrrrrrrrr

proj(I)
// Skel(I)

Skel(i1)

99rrrrrrrrrr

and hence proj(K1) ◦ in1 ◦ j1 = Skel(i1) ◦ proj(I) ◦ inI .
proj(K1)◦in1◦j1 is injective, because j1 is injective and proj(K1)◦in1 is isomor-
phic, and hence Skel(i1)◦proj(I)◦inI is injective. This implies that proj(I)◦inI
is injective.

Surjectivity of proj(I) ◦ inI :
Since I has no transitions, it suffices to show that (proj(I) ◦ inI)P is surjective,
i.e. for all x ∈ PSkel(I) there exists y ∈ PJ , s.t. (proj(I) ◦ inI)P (y) = x.
Let x ∈ PSkel(I). Then we have i1P (x) ∈ PSkel(K1). Since (proj(K1)◦ in1)P is bi-
jective because Linit1 is an instantiation, there exists an unique a ∈ Atype(x), s.t.
(a, i1P (x)) ∈ PLinit1 . Furthermore x ∈ PSkel(I) implies x ∈ PI and hence by Def.
17 there is also (a, x) ∈ PFlat(I) with proj(I)P (a, x) = x and Flat(i1)P (a, x) =
(a, i1(x)) ∈ PFlat(K1).
The fact that (a, i1P (x)) ∈ PLinit1 with in1(a, i1P (x)) = (a, i1P (x)) ∈ PFlat(K1)

implies because of the Pullback-property that there exists y ∈ PJ , s.t. inI(y) =
(a, x) ∈ PFlat(I).
Hence we have (proj(I) ◦ inI)P (y) = proj(I)P (inIP (y)) = proj(I)P (a, x) = x.

(a, i1,P (x)) � in1 //

(2)

(a, i1,P (x)) � proj(K1) //

(3)

i1,P (x)

y
4

j1
99tttttttttt

inI
// (a, x)

3 Flat(i1)

99ssssssssss
�

proj(I)
// x

: Skel(i1)

<<zzzzzzzzz

Since proj(I) ◦ inI is injective and surjective, it also is bijective.

in ◦ proj(K) is isomorphic:
We construct Linit as Pushout of j1 and j2 leading to an unique in : Linit →
Flat(K), s.t. the following cube commutes:

35

Linit1 in1 //

��1
11111111
(PB)

Flat(K1)

��8888888888

J inI
//

j1
77oooooooo

j2

��,
,,,,,,,,

(PO1)

Flat(I)

Flat(i1)iii
44iii

Flat(i2)

7777777

��77

(PO2)

Linit in // Flat(K)

Linit2 in2 //

66mmmmmmm
Flat(K2)

44iiiiiiiii

Also the following cube commutes because proj is a natural transformation:

Flat(K1) proj(K1) //

��8888888888 Skel(K1)

��8888888888

Flat(I) proj(K1) //
Flat(i1)iii

44iii

Flat(i2)

7777777

��77

(PO2)

Skel(I)

Skel(i1)iiii

44iii

Skel(i2)

8888888

��88

(PO3)

Flat(K) proj(K) // Skel(K)

Flat(K2) proj(K2) //

44iiiiiiiii
Skel(K2)

44iiiiiiiii

Since proj(K1) ◦ in1, proj(K2) ◦ in2 and proj(I) ◦ inI are isomorphisms and
the following cube commutes, the fact that Skel(K) is Pushout implies that
proj(K) ◦ in is an isomorphism.

Linit1 in1 //

��1
11111111
(PB)

Flat(K1) proj(K1) //

��8888888888 Skel(K1)

��8888888888

J inI
//

j1
77oooooooo

j2

��,
,,,,,,,,

(PO1)

Flat(I) proj(K1) //
Flat(i1)iii

44iii

Flat(i2)

7777777

��77

(PO2)

Skel(I)

44iiiiiiiii

��8888888888
(PO3)

Linit in // Flat(K) proj(K) // Skel(K)

Linit2 in2 //

66mmmmmmm
Flat(K2) proj(K2) //

44iiiiiiiii
Skel(K2)

44iiiiiiiii

Injectivity of in:
Due to the fact that proj(K) ◦ in is isomorphic, it is injective and hence in
injective.

Remark 2. We can obtain an inclusion by renaming the elements of the instantia-
tion by taking the image L̂init = in(Linit) which is isomorphic to Linit providing
an inclusion în : L̂init → Flat(K).

A.5 Proof of Theorem 3 in Section 4

Proof. By Theorem 2 in Section 4 the composition (K, INIT, INS) of the AHL-
occurrence nets with instantiations is an AHL-occurrence net with instantiations
and hence (K, INIT, INS) together with mp : K → N is an AHL-Process with
instantiations, where mp is the unique morphism induced by Pushout (1) with

36

mp = (mpP ,mpT)

mpP (p) =

{
mp1P (p1) p = i′1P (p1)
mp2P (p2) p = i′2P (p2)

mpT (t) =

{
mp1T (t1) t = i′1T (t1)
mp2T (t2) t = i′2T (t2)

A.6 Proof of Theorem 4 in Section 4

Proof. We have to show that

1. there are bijections eP : PK → PK′ and eT : TK → TK′ , s.t. the diagram in
Def. 12 commutes componentwise and

2. the instantiations INS and INS′ are equivalent using that the instantiations
INS1 and INS2 are consistent.

Proof of Part 1. Let us define gluing points GP (PK) and GP (PK′ by

– GP (PK) = (i′1 ◦ i3(PI)∪ i′2 ◦ i4(PI)∪ i′1 ◦ i1(PI)) where i′1 ◦ i1(PI) = i′2 ◦ i2(PI)
– GP (PK′) = (i′4◦i2(PI)∪i′3◦i1(PI)∪i′3◦i3(PI)) where i′3◦i3(PI) = i′4◦i4(PI).

First we show that the three components of GP (PK) are disjoint which fol-
lows symmetrically for GP (PK′).

i′1 ◦ i3(PI) ∩ i′1 ◦ i1(PI) = i′1(i3(PI) ∩ i1(PI)) ⊆ i′1(IN(K1) ∩OUT (K1)) = ∅

by assumption IN(K1) ∩OUT (K1) = ∅.

i′2 ◦ i4(PI) ∩ i′2 ◦ i2(PI) = i′2(i4(PI) ∩ i2(PI)) ⊆ i′2(OUT (K2) ∩ IN(K2)) = ∅

by assumption IN(K2) ∩OUT (K2) = ∅.
For the third intersection we need

Lemma 3. IN(K) ∩OUT (K) = ∅ and similar IN(K ′) ∩OUT (K ′) = ∅.

Using Lemma 3 we can show i′1 ◦ i3(PI) ∩ i′2 ◦ i4(PI) = ∅:

i′1 ◦ i3(PI) ∩ i′2 ◦ i4(PI) ⊆ i′1(IN(K1)) ∩ i′2(OUT (K2)) ⊆ IN(K) ∩OUT (K) = ∅

Proof of Lemma 3 Assume that there exists p ∈ IN(K) ∩OUT (K), we have

IN(K) ⊆ i′1(IN(K1)) ∪ i′2(IN(K2))

and
OUT (K) ⊆ i′1(OUT (K1)) ∪ i′2(OUT (K2)).

Case 1 p ∈ i′1(IN(K1)) ∩ i′1(OUT (K1)) = i′1(IN(K1)) ∩ OUT (K1)) = ∅ (con-
tradiction)

37

Case 2 p ∈ i′2(IN(K2)) ∩ i′2(OUT (K2)) = ∅ (contradiction)
Case 3

p ∈ i′1(IN(K1)) ∩ i′2(OUT (K2))
⇒ ∃p1 ∈ IN(K1), p2 ∈ OUT (K2) with p = i′1(p1) = i′2(p2)
⇒ ∃p ∈ PI : i1(p) = p1, i2(p) = p2 by pushout (1)
⇒ i1(p) = p1 ∈ OUT (K1)

contradicts p1 ∈ IN(K1) and IN(K1) ∩OUT (K1) = ∅.
Case 4 symmetric to Case 3.

This implies that GP (PK) is the disjoint union

GP (PK) = GP1(PK) ∪GP2(PK) ∪GP3(PK)

with GPx(PK) for x = 1, 2, 3 defined below.
Now we are able to define eP : PK → PK′ via the non gluing points NGP .

Let NGP (PK) = PK \GP (PK) then we have the following disjoint unions:

PK = GP1(PK) ∪GP2(PK) ∪GP3(PK) ∪NGP (PK)
PK′ = GP1(PK′) ∪GP2(PK′) ∪GP3(PK′) ∪NGP (PK′)

with
GP1(PK) = i′1 ◦ i3(PI), GP1(PK′) = i′4 ◦ i2(PI)
GP2(PK) = i′2 ◦ i4(PI), GP2(PK′) = i′3 ◦ i1(PI)
GP3(PK) = i′1 ◦ i1(PI), GP3(PK′) = i′3 ◦ i3(PI)

and we define eP by ePx : GPx(PK) → GPx(PK′) for x = 1, 2, 3 for all p ∈ PI
by

5. eP1(i′1 ◦ i3(p)) = i′4 ◦ i2(p)
6. eP2(i′2 ◦ i4(p)) = i′3 ◦ i1(p)
7. eP3(i′1 ◦ i1(p)) = i′3 ◦ i3(p)

which are bijections because all morphisms are injective. Moreover we have
GP (PK1) = i1(PI) ∪ i3(PI) and GP (PK2) = i2(PI) ∪ i4(PI).

Now let NGP (PKx) = PKx \GP (PKx) for x = 1, 2 then we have by Lemma
4 below:

NGP (PK) = i′1(NGP (PK1)) ∪ i′2(NGP (PK2)) = NGP1(PK) ∪NGP2(PK)
NGP (PK′) = i′3(NGP (PK1)) ∪ i′4(NGP (PK2)) = NGP1(PK′) ∪NGP2(PK′)

and we define for p1 ∈ NGP (PK1) and p2 ∈ NGP (PK2)

8. eP4 : NGP1(PK)→ NGP1(PK′) by eP4(i′1(p1)) = i′3(p1)
9. eP5 : NGP2(PK)→ NGP2(PK′) by eP5(i′2(p2)) = i′4(p2)

which are bijections because all morphisms are injective.
Alltogether we have a bijection

eP = eP1 + eP2 + eP3 + eP4 + eP5 : PK → PK′

Moreover there is a bijection eT : TK → TK′ because we have the following
disjoint unions

TK ∼= TK1] TK2 and TK′ ∼= TK1] TK2

38

Lemma 4. NGP (PK) = PK \GP (PK) = i′1(NGP (PK1))∪ i′2(NGP (PK2)) and
similar for NGP (PK′).

Proof of Lemma 4

i′1(NGP (PK1)) ∪ i′2(NGP (PK2))
= i′1(PK1 \GP (PK1)) ∪ i′2(PK2 \GP (PK2))
= i′1(PK1 \ (i1(PI) ∪ i3(PI))) ∪ i′2(PK2 \ (i2(PI) ∪ i4(PI)))
= i′1(PK1) \ (i′1 ◦ i1(PI) ∪ i′1 ◦ i3(PI)) ∪ i′2(PK2) \ (i′2 ◦ i2(PI) ∪ i′2 ◦ i4(PI))
= i′1(PK1) ∪ i′2(PK2) \ (GP1(PK) ∪GP2(PK) ∪GP3(PK))
= PK \GP (PK)

It remains to show for Proof of 1. the following:

Lemma 5 (Compatibility of ep and eT with mp and mp′). The following
diagram commutes componentwise.

K
mp

''OOOOOOOOOOOOO

eP

��

eT

��

AN

K ′
mp′

77ooooooooooooo

Proof of Lemma 5 mp and mp′ are defined by the induced morphisms of pushout
(1) and (2), where the outer diagrams commute by compatibility of mp1 and mp2

with i1, i2, i3 and i4.

K1

i′1 BBBBBBBB
mp1

**TTTTTTTTTTTTTTTTTTTT

(1)I

i1
>>~~~~~~~~

i2 @@@@@@@@ K
mp // AN

K2

i′2

>>||||||||
mp2

44jjjjjjjjjjjjjjjjjjjj

K2

i′4 !!BBBBBBBB
mp2

**UUUUUUUUUUUUUUUUUUUUU

(2)I

i4

??~~~~~~~~

i3 ��@@@@@@@@ K ′
mp′ // AN

K1

i′3

==||||||||
mp1

44iiiiiiiiiiiiiiiiiiiii

1. The bijection eT : TK → TK′ is induced by id1 and id2 in the following
diagrams (3) and (4), s.t. (5) commutes if the outer diagrams commute.

39

TK1

id1

��

i′1 //

(3)

TK

eT

��

mp

""EEEEEEEE

(5)

TK2

id2

��

i′2 //

(4)

TK

eT

��

mp

""EEEEEEEE

(5)TAN TAN

TK1
i′3

// TK′
mp′

<<yyyyyyyy
TK2

i′4

// TK′
mp′

<<yyyyyyyy

The outer diagrams commute because we have mp◦ i′1 = mp1 = mp′ ◦ i′3 and
mp ◦ i′2 = mp2 = mp′ ◦ i′4.

2. The bijection eP : PK → PK′ is given by eP1 + eP2 + eP3 + eP4 + eP5 . Note
that the bijections ePx are defined by commutativity of diagrams (x) for
x = 1, . . . , 5 and the required digram (6) commutes if all the outer diagram
commute.
(a)

mp ◦ i′1 ◦ i3 = mp1 ◦ i3
= mp2 ◦ i2 (by compatibility)
= mp′ ◦ i′4 ◦ i2

GP1(PK)

eP1

��

� � //

(1)

PK

eP

��

mp

""EEEEEEEE

(6)PI

i′1◦i3
::uuuuuuuuu

i′4◦i2 $$IIIIIIIII PAN

GP1(PK′)
� � // PK′

mp′

<<yyyyyyyy

(b)
mp ◦ i′2 ◦ i4 = mp2 ◦ i4

= mp1 ◦ i1 (by compatibility)
= mp′ ◦ i′3 ◦ i1

GP2(PK)

eP2

��

� � //

(2)

PK

eP

��

mp

""EEEEEEEE

(6)PI

i′2◦i4
::uuuuuuuuu

i′3◦i1 $$IIIIIIIII PAN

GP2(PK′)
� � // PK′

mp′

<<yyyyyyyy

(c)
mp ◦ i′1 ◦ i1 = mp1 ◦ i1

= mp2 ◦ i4 (by compatibility)
= mp′ ◦ i′4 ◦ i4
= mp′ ◦ i′3 ◦ i3

40

GP3(PK)

eP3

��

� � //

(3)

PK

eP

��

mp

""EEEEEEEE

(6)PI

i′1◦i1
::uuuuuuuuu

i′3◦i3 $$IIIIIIIII PAN

GP3(PK′)
� � // PK′

mp′

<<yyyyyyyy

(d)
mp ◦ i′1 = mp1

= mp′ ◦ i′3
NGP1(PK)

eP4

��

� � //

(4)

PK

eP

��

mp

""EEEEEEEEE

(6)NGP (PK1)

i′1

77ooooooooooo

i′3 ''OOOOOOOOOOO
PAN

NGP1(PK′)
� � // PK′

mp′

<<yyyyyyyyy

(e)
mp ◦ i′2 = mp2

= mp′ ◦ i′4
NGP2(PK)

eP5

��

� � //

(5)

PK

eP

��

mp

""EEEEEEEEE

(6)NGP (PK2)

i′2

77ooooooooooo

i′4 ''OOOOOOOOOOO
PAN

NGP2(PK′)
� � // PK′

mp′

<<yyyyyyyyy

Remark 3. For the existence of mp and mp′ we need already the compatibilities
mp1 ◦ i1 = mp2 ◦ i2 and mp1 ◦ i3 = mp2 ◦ i4. In 2(a) - 2(c) we need in addition
that all these morphisms are equal.

Proof of Part 2. Given Linit = Linit1 ◦(J,j1,j2) Linit2 with pushout (3) we have
by consistency of INS1 and INS2 Linit′ = Linit′2 ◦(J,j4,j3) Linit′1 with pushout
(4) and vice versa, s.t. properties 1-4 in Def. 14 are satisfied.

First we have to show according to Def. 13.2 that

∀(a, p) ∈ Atype(p) ⊗ PK : (a, p) ∈ IN(Linit)⇔ (a, eP (p)) ∈ IN(Linit′)

”⇒” Let (a, p) ∈ IN(Linit). By construction we have

IN(Linit) = j′1(IN(Linit1)) ∪ j′2(IN(Linit2) \ j2(J))

and
IN(Linit′) = .j′4(IN(Linit′2)) ∪ j′3(IN(Linit′1) \ j3(J)).

41

Case 1 Let (a, p) ∈ j′1(IN(Linit1)). Then there exists (a, p1) ∈ IN(Linit1)
with

j′1(a, p1) = (a, i′1(p1)) = (a, p)

So we have i′1(p1) = p.
Case 1.1 Let (a, p1) 6∈ GP (Linit1). Then we have

(a, p1) ∈ IN(Linit1) \GP (Linit1) ⊆ IN(Linit′1)
(by consistency)

⇒ j′3(a, p1) = (a, i′3(p1)) ∈ IN(Linit′)
(because p1 6∈ i3(PI) and Def. IN(Linit′))

⇒ (a, eP (p)) = (a, ep ◦ i′1(p1)) = (a, i′3(p1)) ∈ IN(Linit′)
(by eP commutes on NGP (see 8.))

⇒ (a, eP (p)) ∈ IN(Linit′)

Case 1.2 Let (a, p1) ∈ GP (Linit1).
Case 1.2.1 Let p1 = i3(pI) for pI ∈ PI .

(a, p1) ∈ IN(Linit1)
⇒ (a, i3(pI)) ∈ IN(Linit1)
⇒ (a, i2(pI)) ∈ IN(Linit′2) (by consistency (see 3.))
⇒ j′4(a, i2(pI)) ∈ IN(Linit′) (by Def.IN(Linit′))
⇒ (a, i′4 ◦ i2(pI)) ∈ IN(Linit′)

Then we have (a, eP (p)) = (a, ep(i′1 ◦ i3(pI)) = (a, i′4 ◦ i2(pI)) ∈
IN(Linit′) using p = i′1 ◦ i3(pI)⇒ ep(p) = i′4 ◦ i2(pI) (see 5.).

Case 1.2.2 Let p1 = i1(pI) for pI ∈ PI . Then p1 ∈ OUT (K1) ∩
IN(K1) which is a contradiction to the assumption that

OUT (K1) ∩ IN(K1) = ∅

Case 2 Let (a, p) ∈ j′2(IN(Linit2) \ j2(J)). Then there exists (a, p2) ∈
IN(Linit2) \ j2(J) with

j′2(a, p2) = (a, i′2(p2)) = (a, p)

So we have i′2(p2) = p.
Case 2.1 Let (a, p2) 6∈ GP (Linit2). Then we have

(a, p2) ∈ IN(Linit2) \GP (Linit2) ⊆ IN(Linit′2)
(by consistency (see 1.))

⇒ j′4(a, p2) = (a, i′4(p2)) ∈ IN(Linit′)
(by Def. IN(Linit′))

⇒ (a, eP (p)) = (a, ep ◦ i′2(p2)) = (a, i′4(p2)) ∈ IN(Linit′)
(by eP commutes on NGP (see 9.))

⇒ (a, eP (p)) ∈ IN(Linit′)

Case 2.2 Let (a, p2) ∈ GP (Linit2).

42

Case 2.2.1 Let p2 ∈ i2(I). Then (a, p2) ∈ j2(J) which is a con-
tradiction to the assumption (a, p) ∈ j′2(j2(J)) which implies
(a, p2) 6∈ j2(J).

Case 2.2.2 Let p2 ∈ i4(I).Then p2 ∈ OUT (K2) ∩ IN(K2) which is
a contradiction to the assumption that OUT (K2)∩IN(K2) = ∅.

”⇐” Let (a, p) ∈ IN(Linit′) for p ∈ PK′ . We have to show (a, e−1
p (p)) ∈

IN(Linit). By construction we have

IN(Linit′) = j′4(IN(Linit′2)) ∪ j′3(IN(Linit′1) \ j3(J)).

Case 1 Let (a, p) ∈ j′4(IN(Linit′2)). Then there exists (a, p2) ∈ IN(Linit′2)
with

j′4(a, p2) = (a, i′4(p2)) = (a, p)

So we have i′4(p2) = p.
Case 1.1 Let (a, p2) 6∈ GP (Linit′2). Then we have

(a, p2) ∈ IN(Linit′2) \GP (Linit′2) ⊆ IN(Linit2)
(by consistency)

⇒ j′2(a, p2) = (a, i′2(p2)) ∈ IN(Linit)
(because p2 6∈ i3(PI) and Def. IN(Linit))

⇒ (a, e−1
P (p)) = (a, e−1

P ◦ i′4(p2)) = (a, i′2(p2)) ∈ IN(Linit)
(by eP commutes on NGP (see 9.))

⇒ (a, eP (p)) ∈ IN(Linit)

Case 1.2 Let (a, p2) ∈ GP (Linit′2).
Case 1.2.1 Let p2 = i2(pI) for pI ∈ PI .

(a, p2) ∈ IN(Linit′2)
⇒ (a, i2(pI)) ∈ IN(Linit′2)
⇒ (a, i3(pI)) ∈ IN(Linit1) (by consistency)
⇒ j′1(a, i3(pI)) ∈ IN(Linit) (by Def.IN(Linit)
⇒ (a, i′1 ◦ i3(pI)) ∈ IN(Linit)

Then we have

(a, e−1
P (p)) = (a, e−1

p (i′4 ◦ i2(pI)) = (a, i′1 ◦ i3(pI)) ∈ IN(Linit)

using p = i′1 ◦ i3(pI)⇒ ep(p) = i′4 ◦ i2(pI) (see 5.).
Case 1.2.2 Let p2 = i4(pI) for pI ∈ PI . Then p2 ∈ OUT (K2) ∩

IN(K2) which is a contradiction to the assumption that

OUT (K2) ∩ IN(K2) = ∅

Case 2 Let (a, p) ∈ j′3(IN(Linit′1) \ j3(J)). Then there exists (a, p1) ∈
IN(Linit′1) \ j3(J) with

j′3(a, p1) = (a, i′3(p1)) = (a, p)

So we have i′3(p1) = p.

43

Case 2.1 Let (a, p1) 6∈ GP (Linit′1). Then we have

(a, p1) ∈ IN(Linit′1) \GP (Linit′1) ⊆ IN(Linit1)
(by consistency)

⇒ j′1(a, p1) = (a, i′1(p1)) ∈ IN(Linit)
(by Def. IN(Linit))

⇒ (a, e−1
P (p)) = (a, e−1

P ◦ i′3(p1)) = (a, i′1(p1)) ∈ IN(Linit)
(by eP commutes on NGP (see 8.))

⇒ (a, e−1
P (p)) ∈ IN(Linit)

Case 2.2 Let (a, p1) ∈ GP (Linit′1).
Case 2.2.1 Let p1 ∈ i3(I). Then (a, p1) ∈ j3(J) which is a con-

tradiction to the assumption (a, p) 6∈ j′3(j3(J)) which implies
(a, p1) 6∈ j3(J).

Case 2.2.2 Let p1 ∈ i1(I).Then p1 ∈ OUT (K1) ∩ IN(K1) which is
a contradiction to the assumption that OUT (K1)∩IN(K1) = ∅.

Moreover we have to show according to Def. 13.2 that

∀(a, p) ∈ Atype(p) ⊗ PK : (a, p) ∈ OUT (Linit)⇔ (a, eP (p)) ∈ OUT (Linit′)

This can be shown analogously to Case 1 and Case 2 above.

44

	Composition and Independence of High-Level Net Processes
	Hartmut Ehrig, Kathrin Hoffmann, Karsten Gabriel, Julia Padberg

