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Abstract. Based on the notion of processes for low-level Petri nets we
analyse in this paper high-level net processes defining the non-sequential
behaviour of high-level nets. In contrast to taking low-level processes of
the well known flattening construction for high-level nets our concept of
high-level net processes preserves the high-level structure. The main re-
sults are the composition, equivalence and independence of high-level net
processes under suitable conditions. Independence means that they can
be composed in any order leading to equivalent high-level net processes
which especially have the same input/output behaviour. All concepts and
results are explained with a running example of the ”House of Philoso-
phers”; a high-level net extension of the classical ” Dining Philosophers”.
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1 Introduction

For low-level Petri nets it is well known that processes are essential to capture
their non-sequential truly concurrent behaviour (see e.g. [1-5]). Processes for
high-level nets are often defined as processes of the low-level net which is obtained
from flatting the high-level net. In [6,7] we have defined high-level net processes
for high-level nets based on a suitable notion of high-level occurrence nets which
are defined independently of the flattening construction. The flattening of a high-
level occurrence net is in general not a low-level occurrence net due to so called
assignment conflicts in the high-level net.

The essential idea is to generalise the concept of occurrence nets from the
low-level to the high-level case. This means that the net structure of a high-level
occurrence net has similar properties like a low-level occurrence net, i.e. unitarity,
conflict freeness, and acyclicity. But we drop the idea that an occurrence net
captures essentially one concurrent computation. Instead, a high-level occurrence
net and a high-level process are intended to capture a set of different concurrent
computations corresponding to different input parameters of the process. In fact,
high-level processes can be considered to have a set of initial markings for the
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input places of the corresponding occurrence net, whereas there is only one
implicit initial marking of the input places for low-level occurrence nets.

In this paper we extend the notion of high-level net processes with initial
markings by a set of corresponding instantiations. An instantiation is a subnet of
the flattening defining one concurrent computation of the process. The advantage
is that we fix for a given initial marking a complete firing sequence where each
transition fires exactly once.

The main ideas and results in this paper concern the composition of high-
level net processes. In general the composition of high-level net processes is not
a high-level net process, because the composition may contain forward and/or
backward conflicts as well as the partial order might be violated. Thus we state
suitable conditions, so that the composition of high-level processes leads to a
high-level process.

We introduce the concept of equivalence of high-level net processes, where
the net structures of these high-level net processes might be different, but they
have especially the same input/output behaviour. Hence their concurrent com-
putations are compared in the sense that they start and end up with the same
marking, but even corresponding dependent transitions may be fired in a dif-
ferent order. The main problem in this context which is solved in this paper is
to analyse the independence of high-level net processes, i.e. under which con-
dition high-level processes can be composed in any order leading to equivalent
processes.

The paper is organised as follows. In Section [2] we explain the concepts and
results of this paper using the "House of Philosophers” from [8] as an example.
In Section [3] on the one hand we review the notions for high-level net processes
and on the other hand we introduce the new notion of high-level net processes
with instantiations. In Section 4] we present our main theorems concerning the
composition, equivalence and independence of high-level net processes. In this
section we give proof sketches and the detailed proofs can be found in the Ap-
pendix. Finally we conclude with related work and some interesting aspects of
future work in Section

2 House of Philosophers

In this section we review our example of the ”House of Philosophers” [8] in order
to illustrate the concepts in the following sections. This example is an extension
of the well-known classical ” Dining Philosophers” where in addition philosophers
may move around e.g. by leaving and entering a table in the restaurant. For this
reason three different locations, the library, the entrance-hall, and the restaurant,
are represented by places in the algebraic high-level (AHL) net in Fig.

The marking of the AHL-net shows the distribution of the philosophers at
different places in the house. Initially there are two philosophers at the library,
one philosopher at the entrance-hall, and four additional philosophers are at the
two tables in the restaurant. The mobility aspect of the philosophers is modeled
by transitions termed enter and leave library as well as enter and leave restaurant



in Fig. [T} while the static structure of the net for philosophers is changed by rule-
based transformations using the rules ruleq, ..., ruley. The transitions start/stop
reading and start/stop activities realise the well known token game.

start/stop
reading

t : Transitions
enabled(n, t) = tt

fire(n, t)

Library : System

-—
n transform(r, m)
Rule; : Rules Ruley : Rules
leave library enter library
r K K r
R g i —
cod m =n cod m =n
applicable(r, m) = tt applicable(r, m) = tt

Entrance-Hall : System

transform(r, m)

no prpni(transform (r, m))
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enter restaurant leave restaurant
r |m :Mor m :Mor r
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——

Restaurant : System

transform(r, m) Priable (transform(r, m))

fire(n, t)

start/stop
activities

t : Transitions
enabled(n,t) = tt

Fig. 1. AHL-net ANgoyse of the "House of Philosophers”

In the following we concentrate on the behaviour of the transitions start/stop
activities and enter restaurant, while a detailed explanation of the other tran-
sitions and the corresponding formal framework can be found in Section 3, the

Appendix and [8].



On the left hand side of Fig. the P /T-system of the table tableys is depicted,
where both the philosophers 4 and 5 are in the state thinking. The P/T-system
is used as a token on the place Restaurant in Fig. [1} To start eating we use
the transition start/stop activities of the AHL-net in Fig. |1} First we give an
assignment of the variables v; and assign the table tabless to the variable n and
the transition that realises the eating of philosopher 5 to the variable ¢. The
firing condition checks that the philosopher 5 has his left and right forks. The
evaluation of the net inscription fire(n,t) realises the well-known token game by
computing the follower marking of the P/T-system and we obtain the new P/T-
system tablelj; depicted on the right hand side of Fig. [2| where the philosopher
9 is eating.

table table]
45 thinkinga 45
— —

thinkinga

l eatingq i eating4
O O

left ® ® left left left
forky forks start eatings forky forks
—
eatings eatings

i 1
b .

thinkings thinkings

Fig. 2. P/T-systems tableys and tablel; of philosophers 4 and 5

Assume the philosopher 3, consisting of one marked place and one transition
with corresponding arrows, would like to enter the restaurant in order to take
place as a new guest at the table tableys (see left hand side of Fig. , so that the
seating arrangement of the table has to be changed. Formally, we apply the rule
rules, which is depicted in the upper row of Fig. [3| and used as token on place

Ruley. In general a rule 7 = (L <~ T 2 R) is given by three P/T-systems called
left-hand side, interface, and right-hand side respectively and the application of
a rule discussed below describes the replacement of the left-hand side by the
right-hand side preserving the interface.

The philosopher 3 sits down at table tableys by firing the transition en-
ter restaurant in the AHL-net in Fig. [I] using the following assignment of the
variables n1,no,r and m given in the net inscriptions of the transition enter
restaurant: va(ny) = tableys, va(ng) = phis, va(r) = ruley, and va(m) = g (see
match morphism ¢ : Ly — (phis,tableys) in Fig. . In our case the match g
maps thinking; and eating; in Lo to thinkings and eatings in (phis, tabless). In



the first step we compute the disjoint union of the P/T-system phiz and the
P/T-system tableys as denoted by the net inscription ny coproduct ng resulting
in the P/T-system (phis, tableys) in Fig. [3] The firing conditions makes sure that
on the one hand the rule is applied to the P/T-system (phis, tableys) and on the
other hand the rule is applicable with match g to this P/T-system provided that
a suitable gluing condition holds which is essential for the construction of the
intermediate P/T-system.

Finally we evaluate the term transform(r,m) resulting in the direct trans-
formation shown in Fig. |3) where we delete in a first step g(La \ I2) from
(phis, tableys) leading to P/T-system C'. In a second step we glue together the
P/T-systems C' and Ry along I leading to P/T-system tablesys in Fig. |3 where
the philosophers 3, 4, and 5 are sitting at the table, all of them in state think-
ing. The effect of firing the transition enter restaurant in the AHL-net in Fig. [I]
with assignments of variables as discussed above is the removal of P/T-systems
phis from place Entrance Hall and tableys from place Restaurant and adding
the P/T-System tablesys to the place Restaurant.

L3 Iz Ry
thinking; thinking;
) thinking ;
@ thinkingj J @hinking j @ hinking;
eating ;
left fork ; % \b
eatin, 5 O eatin;
@] lefi-forky, O -
left left O left left
fork ; forky, fork ; forky,
9y 4 1
(phig, tableys) c tablegys
thinkings thinkingq
T @hinkinga @hinkinga @hinkinga
catingy eatingy
thinking3
left @ @ left left left left l«—@
fork 4 forks fork 4 forks fork 4
eating g
J ® ®
thinking s thinking s thinkings

Fig. 3. Transformation of phis and tableys using rule rules

Consider now a different situation where the table table)s (see right hand side
of Fig.|2)) is in place Restaurant in Fig.|l} Using a different variable assignment vs
the philosopher 3 sits down at table table); where the philosopher 5 is in the state
eatings. In this case the variable nq is assigned to the table table);, the variable m
to a suitable match morphism ¢’ (i.e. from Ly in Fig. to (phis, tableys) in Fig.



similar to ¢ in Fig. [3)) and the evaluation of the net inscription transform(r,m)
of the transition enter restaurant in the AHL-net in Fig. [I] leads to the direct
transformation depicted in Fig. [5] As a result we have now table},s on place

Restaurant.
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Fig. 4. P/T-systems tablesss and tablel, of philosophers 3, 4 and 5
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Fig. 5. Transformation of phis and table); using rule rules

Summarising, we have explained two different firing sequences of the AHL-
net in Fig. [} The first one starts with the token firing of tabless leading to
the P/T-system table); (see Fig. [2) before philosopher 3 sits down at the table
table)s, so that we get the table tablel,s (see Fig. [5)). The second one begins by
philosopher 3 sitting down at table tabless (see Fig. [3)) before the philosopher 5

starts eating (see Fig. [4).



According to the spirit of processes for low-level nets we want to consider
now processes for AHL-nets based on AHL-occurrence nets. In fact the two fir-
ing sequences considered above correspond to different AHL-occurrence nets. An
AHL-occurrence net is similar to a low-level occurrence net concerning unitarity,
conflict freeness, and acyclicity. However, in contrast to a low-level occurrence
net an AHL-occurrence net realises more than one concurrent computation de-
pending on different initial markings and variable assignments. For this reason we
consider AHL-occurrence nets with a set of initial markings of the input places
and corresponding instantiations of places and transitions by data and consistent
variable assignments, respectively. For more details we refer to Section

For the two different firing sequences we get the two different AHL-occurrence
nets with initial markings Kpai/pnter and Kgpter/par With corresponding in-
stantiations Lgqt)gnter a0d Lgnter/por depicted in Fig. |§| and Fig. m Note that
the AHL-occurrence nets Kpqi/pnter a0d Kppter/par have the same input and
output places as well as the same initial marking. But due to the firing of the
transitions start/stop activities and enter restaurant in opposite order we use dif-
ferent variable evaluations vy and v3 in Lpai/pnier and va and vy in Lgypier/Bat;
respectively. Nevertheless, the AHL-occurrence nets have the same input/output
behaviour, i.e. the two different firing sequences end up with the same marking
of the output places where the philosopher 3 sits together with the philosopher
4 and 5 at the table and philosopher 5 has started to eat (see table tablel,; on
the right hand sides of Fig. 4| and Fig. .

Restaurant; : System (tableys,Restauranty)

start /stop start/sto
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fire(n, t) Entrance-Hall (table45,
Restauranty : System Restaurants) (phiz, Entrance-Hall)
: System

Ruley : Rules ny (mlEQ,RuleQ)
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-
’V‘
{ transform (r, m) {
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Fig. 6. AHL-occurrence net Kgqi/pnier With instantiation Lgasgnier

Moreover we will show in Section [ that there are basic AHL-occurrence nets
Kpat and Kgnter; 8.4 Kgat/Enter a0d Kppier/par can be obtained as compo-



Restaurantz : System Entrance-Hall : System (tableys ,Restauranty) (phiz, Entrance-Hall)
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Restauranty : System

Fig. 7. AHL-occurrence net Kpgpier/par With instantiation Lppierpat

sition in different order of Kg,.: and Kgnter. This allows to consider the cor-
responding processes of Kpo: and Kgpter With instantiations as independent
processes of the AHL-net ANpoyse in Fig.

3 Algebraic High-Level Net Processes

In this section we review the concept of algebraic high-level nets and we give
a formal definition of high-level processes [6,7] based on high-level occurrence
nets. Moreover we extend this definition by a suitable notation of instantiations
for each initial marking. As net formalism we use place/transition nets following
the notation of “Petri nets are Monoids” in [9].

Definition 1 (Place/Transition Net). A place/transition (P/T) net N =
(P, T,pre,post) consists of sets P and T of places and transitions respectively,
and pre- and post domain functions pre,post : T — P® where P® is the free
commutative monoid over P.

A P/T-net morphism f : Ny — Ny is given by f = (fp, fr) with functions
fp: P — Py and fr: Ty — Ty satisfying

ff,B oprey = pres o fr and ff;‘? o posty = posts o fr

where the extension f : PP — Ps of fp: Py — Py is defined by 5 (31, ki -
pi) = Yoiy ki fp(pi). A P/T-net morphism f = (fp, fr) is called injective if
fp and fr are injective and is called isomorphism if fp and fr are bijective.

The category defined by P/T-nets and P/T-net morphisms is denoted by PT-
Net where the composition of P/T-net morphisms is defined componentwise for
places and transitions.



Because the notion of pushouts is essential for our main results we state
the construction of pushouts in the category PTNet of place/transition nets.
Intuitively a pushout means the gluing of two nets along an interface net. The
construction is based on the pushouts for the sets of transitions and places in the
category SET. In the category SET of sets and functions the pushout object D
for given f; : A — Band fy : A — C is defined by the quotient set D = BWC/ =,
short D = B oy C, where B W C' is the disjoint union of B and C' and = is the
equivalence relation generated by fi(a) = fa(a) for all a € A. In fact, D can be
interpreted as the gluing of B and C' along A: Starting with the disjoint union
B W C we glue together the elements fi(a) € B and f2(a) € C for each a € A.

The pushout object N3 in the category PTNet is constructed componentwise
for transitions and places in SET with corresponding pre- and post domain
functions. For given P/T-net morphisms f; : Ny — Ny and fo : Ng — Ny the
pushout of f; and f5 is defined by the pushout diagram (PO) in PTNet and is
denoted by N3 = N1 o(n,,,,f,) No. For details we refer to [10].

Definition 2 (Pushouts of Place/Transition Nets). Given P/T-net mor-
phisms f1 : No — Ny and fa : No — No then the pushout diagram (1) and the
pushout object N3 in the category PTNet, written N3 = N1 o, ¢, f,) N2, with
N, = (P, T, pres, post,) for x = 0,1,2,3 is constructed as follows:

— T3 =Tiop, T with fLT and fiT as pushout (2) of f1.r and for in SET.
— Py=Piop, Py with f{ p and f; p as pushout (3) of f1.p and fa p in SET
Y _
pT€3(t) _ [p’rel(tl)] ) Zf f},T(tl) =t
[prea(te)] 5 if fop(te) =t
Ry _
pOStg(t) _ [pOStl(tl)] ) Zf f},T(tl) =t
[posta(ta)] ;5 if for(ta) =t

Ny f1 Ny T fi,r T P, fi,p P,

f2i (1) lf{ szl (2) if{,T fz,Pl (3) \Lf{,P

Ny —— N3 T —— T3 Py—— P
fa 2, T 2P

Two examples of the pushout construction of P/T-nets are depicted in Fig.
where the pushouts describes the gluing of the nets Lo and C' along I> and the
gluing of the nets Ry and C' along I, respectively.

In the following we review the definition of AHL-nets from [6,7].

Definition 3 (Algebraic High-Level Net). An algebraic high-level (AHL)
net AN = (SP, P,T, pre, post, cond, type, A) consists of

— an algebraic specification SP = (X, E; X) with signature X = (S, OP), equa-
tions E, and additional variables X ;

— a set of places P and a set of transitions T ;

— pre- and post domain functions pre,post : T — (Ts(X) @ P)¥;



— firing conditions cond : T — Pyin(Eqns(X; X));
— a type of places type : P — S and
— a (X, E)-algebra A

where the signature X = (S, OP) consists of sorts S and operation symbols OP,
Tx(X) is the set of terms with variables over X, (Ts(X)® P) = {(term, p)|term
€ Ts(X)type(p): P € P} and Eqns(X; X) are all equations over the signature X
with variables X .

An AHL-net morphism f : ANy — ANy is given by f = (fp, fr) with
functions fp: PL — P> and fr: 1Ty — Ty satisfying

(1) (id® fp)® o pre; = pres o fr and (id ® fp)® o post; = posts o fr,
(2) conds o fr = condy and
(3) typea o fp = type.

The category defined by AHL-nets and AHL-net morphisms is denoted by
AHLNet where the composition of AHL-net morphisms is defined component-
wise for places and transitions.

In the following we omit the indices of functions fp and fr if no confusion
arises. An example of an AHL-net is given in Section [2] where the "House of
Philosophers” in Fig. [[] is an AHL-net with data type part consisting of the
signature HLRN-System-SIG and algebra A according to [8] (see Appendix.

The construction of pushouts in the category AHLNet of AHL-nets with
fixed specification SP and algebra A can be analogously defined to the construc-
tion of pushouts in PTNet described above (for details see [10]).

Now we introduce high-level occurrence nets and processes according to [6,7].
The net structure of a high-level occurrence net has similar properties like a low-
level occurrence net, but it captures a set of different concurrent computation due
to different initial markings. In fact, high-level occurrence nets can be considered
to have a set of initial markings for the input places, whereas there is only one
implicit initial marking of the input places for low-level occurrence nets.

Definition 4 (AHL-Occurrence Net). An AHL-occurrence net K is an AHL
-net K = (SP, P, T, pre, post, cond, type, A) such that for all t € T with pre(t) =
Yoi (termi, p;) and notation et = {p1,...,p,} and similarly te we have

1. (Unarity): et,te are sets rather than multisets for all t € T, i.e. for ot the
places py . ..pyn are pairwise distinct. Hence | ® t| = n and the arc from p; to
t has a unary arc-inscription term;.

2. (No Forward Conflicts): et N et' = for all t,t' € T,t # ¢t

3. (No Backward Conflicts): t e Nt'e =@ for all t,t' € T\t # ¢

4. (Partial Order): the causal relation <C (P x T) U (T x P) defined by the
transitive closure of {(p,t) € PxT |pc ot} U{(t,p) €T x P|p € te} isa
finitary strict partial order, i.e. the partial order is irreflexive and for each
element in the partial order the set of its predecessors is finite.

10



The notion of high-level net processes generalises the one of low-level net
processes, where a P/T-process of a P/T-net N is a P/T-net morphism p : K —
N and K is a low-level occurrence net, i.e. a net satisfying conditions 1.-4. in
Def. [d] Examples of high-level and low-level occurrence nets are given in Fig. [f]
and Fig. [7]in Section

Definition 5 (AHL-Process). An AHL-process of an AHL-net AN is an
AHL-net morphism p : K — AN where K is an AHL-occurrence net.

Because in general there are different meaningful markings of an AHL-oc-
currence net K, we introduce a set of initial markings of the input places of
K.

Definition 6 (AHL-Occurrence Net with Initial Markings). An AHL-
occurrence net with initial markings (K, INIT) consists of an AHL-occurrence
net K and a set INIT of initial markings init € INIT of the input places
IN(K), where the input places of K are defined by IN(K) = {p € Plep =0}
and similarly the output places of K are defined by OUT(K) = {p € P|pe = 0}.

The following notion of instantiation defines one concurrent execution of a
marked high-level occurrence net. In more detail an instantiation is a subnet of
the flattening of the AHL-occurrence net corresponding to the initial marking.
In [6,7] it is shown that for a marked AHL-occurrence net there exists a complete
firing sequence if and only if there exists an instantiation which net structure
is isomorphic to the AHL-occurrence net and has the initial marking of the
AHL-occurrence net as input places. Note that in general we may have different
instantiations for the same initial marking.

The flattening Flat(AN) of an AHL-net AN results in a corresponding low-
level net N, where the data type part (SP, A) and the firing behaviour of the
AHL-net AN is encoded in the sets of places and transitions of IN. Thus the
flattening Flat(AN) leads to an infinite P/T-net NV if the algebra A is infinite.
In contrast the skeleton Skel(AN) of an AHL-net AN is a low-level net N’
preserving the net structure of the AHL-net but dropping the net inscriptions.
While there is a bijective correspondence between firing sequences of the AHL-
net and firing sequences of its flattening, each firing of the AHL-net implies a
firing of the skeleton, but not vice versa. For details we refer to [6,7] and to the

Appendix [A72]

Definition 7 (Instantiations of AHL-Occurrence Net). Given an AHL-
occurrence net with initial markings (K, INIT) with init € INIT. An instanti-
ation Lini of (K, init) is a low-level occurrence net Lip;e C Flat(K) with input
places IN (Lipnit) = init such that the projection proj : Liny — Skel(K) defined
by projp(a,p) = p and projr(t,v) =t is an isomorphism of low-level occurrence
nets.

As mentioned above for a given initial marking of an AHL-occurrence net
there exist in general more than one instantiation and thus different firing
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sequences resulting in different markings of the output places of the AHL-
occurrence net. For this reason we introduce the new notion of AHL-occurrence
nets and AHL-processes with instantiations, where we fix exactly one instanti-
ation for a given initial marking, i.e. one concurrent execution of the marked
AHL-occurrence net.

Definition 8 (AHL-Occurrence Net with Instantiations). An AHL-oc-
currence net with instantiations KI = (K,INIT,INS) is an AHL-occurrence
net with initial markings (K, INIT) and a set INS of instantiations, such that
for each init € INIT we have a distinguished instantiation L;n;; € INS, i.e.
INS = {Ljp|init € INIT}.

An AHL-occurrence net with instantiations K1 defines for each init € INIT
with IN (L) = init an output out = OUT(Ljpit) with projp(out) = OUT(K).
Let EXIT be the set of all markings of the output places OUT(K), then we
obtain a function inout : INIT — EXIT by inout(init) = OUT(L;nt).

Definition 9 (AHL-Process with Instantiations). An instantiated AHL-
process of an AHL-net AN is an AHL-occurrence net with instantiations KI =
(K,INIT,INS) together with an AHL-net morphism mp : K — AN.

Restaurant; : System Restaurant; : System (tableys,Restaurant) (tableg,5,Restauranty)

start/stop start/stop start/stop start/stop
activities activities activities activities
T : Transitions © : Transitions 1 g
enabled(n, t) = tt enabled(n, t) = tt
fire(n, t) fire(n, t)
Restaurantgy : System Restaurantgy : System (mblefw,Restaurantz) (tableé45,Restaurant2)

Fig. 8. AHL-occurrence net K g, with instantiations Lgg; and Lggy

As an example the AHL-occurrence net with instantiations KIg.: = (Kgat,
INITg., INSg.) is depicted in Fig. |8 according to the discussion in Sec-
tion The AHL-occurrence net Kgg is the AHL-net on the left hand side
of Fig. |§] without the marking of the place Restaurant;. There are two differ-
ent initial markings, i.e the set of initial markings is defined by INITgar =
{(tabless, Restaurant, ), (tablesas, Restaurant;)} and the set of instantiations by
INSg. = {LEat, Lear} (see the two instantiations on the right hand side of
Fig. .

The instantiated AHL-process is the AHL-occurrence net with instantiations
KlIg, together with the AHL-net morphism mpgq : Kgat — ANHouse- The
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morphism mpg,; consists of an obvious inclusion of the transition start/stop
activities, while the places named Restaurant; and Restaurants are mapped to
the place Restaurant of the AHL-net ANy use in Fig.

Further examples are given in Section [2} where in Fig. [f] we have the AHL-
occurrence net with instantiations KIg,t/gnter and in Fig. mthe AHL-occurrence
net with instantiations K1gnier/Eat-

4 Composition, Equivalence and Independence of
Algebraic High-Level Net Processes

Based on the construction of pushouts of low-level and high-level nets intro-
duced in the previous section we define in this section the composition of AHL-
occurrence nets and AHL-processes with instantiations and we introduce the
concept of equivalence and independence of high-level net processes. Two in-
dependent high-level net processes can be composed in any order leading to
equivalent high-level net processes which especially have the same input/output
behaviour.

The composition of two AHL-occurrence nets K3 and K is defined by merg-
ing some of the output places of K; with some of the input places of Ks, so that
the result of the composition definitely is an AHL-occurrence net. In general
the composition of AHL-occurrence nets is not an AHL-occurrence net, because
the result of gluing two high-level occurrence nets may contain forward and/or
backward conflicts as well as the partial order might be violated. Thus we state
suitable conditions, so that the composition of AHL-occurrence nets leads to
an AHL-occurrence net. Moreover we generalise this construction on the one
hand to corresponding instantiations and on the other hand to AHL-net mor-
phisms, so that the composition of AHL-processes with instantiation leads to an
AHL-process under suitable conditions.

Definition 10 (Composability of AHL-Occurrence Nets). Given the AHL-
occurrence nets K, = (SP, P, T, preg, posty,, condy, type,, A) for x = 1,2 and
I =(SP, P, Ty, preg, posty, condy, typer, A) with Tr = 0 and two injective AHL-
net morphisms i1 : I — Ky and iz : I — K. Then (K1, K3) is composable
w.rt. (I,iy,iz) if i1(Pr) € OUT(Ky) and is(Py) € IN(K3).

Theorem 1 (Composition of AHL-Occurrence Nets). Given the AHL-
occurrence nets K1, Ko and I as above and two injective AHL-net morphisms
i1: 1 — K, an‘d iz I — Ko such that (Kl,KQ) is compos- I— s K
able w.r.t. (I,i1,42). Then the pushout digram (PO) exists
in the category AHLNet and the pushout object K, with wl (PO) lh
K = K10(1,4,,i,) K2, is an AHL-occurrence net and is called K K
composition of (K1, Ks) w.r.t. (I,i1,1i2). 2Ty
Proof. (Sketch) The detailed proof can be found in Appendix

For the existence and construction of pushouts in AHLNet we refer to [10].
As mentioned in Section [3] it can be constructed componentwise similar to
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pushouts in PTNet. It remains to show that the result of the composition of
(K1, Ks) wrt. (I,i1,i2) given by K = (SP, P, T, pre, post, cond, type, A) is an
occurrence net indeed:

1. Unarity: is obtained as the set of transitions T is obtained by disjoint union.

2. No forward conflicts: Since AHL-net morphisms preserve the adjacencies of
transitions (i.e. pre and post domain), in case of t; # to and p € ety N ety
for t1,t; € T both transitions have a preimage in 77 and 75, respectively.
Moreover, p has a preimage in both P; and P», so one of the preimages is
in the corresponding OUT set. But this contradicts the fact that this place
has to be in the preset of the corresponding transition.

. No backward conflicts: Analogously.

4. Partial Order: follows from the partial order of K; and K5 and from the

composability condition.

w

Note that the order of Ky and K» in the pair (K, K>) and the result K =
Ky o(1,4,,i,) K2 is important because i; and 4y relate output places of K7 with
input places K5. The composition of two AHL-occurrence nets is called strict
parallel if P = ) and is called strict sequential if i;(P;) = OUT(K;) and
io(Pr) = IN(K>).

Definition 11 (Composition of Instantiations). Given the AHL-occurrence
nets K1, Ko and I as above and two injective AHL-net morphism i1 : I — Ky
and iy : I — Ky such that (K1, K3) is composable w.r.t. (I,i1,12). Let KI, =
(K., INIT,,INS,) for x = 1,2 be two AHL-occurrence nets with instantia-
tions and Linit, € INSy and Lipit, € INSs. Then (Linit,, Linit,) 1S composable
w.r.t. (I,i1,i2) if for all (a,p) € Apypepy ® Pr i (a,i1(p)) € OUT(Linst,) =
(a,i2(p)) € IN (Linit,)-

From (I,i1,i2) we construct the induced instantiation interface (J,j1,72) of
(Linity s Linit,) with J = (Py, Ty, prey,posty) by

J1

— Py ={(a,p)|(a,i1(p)) € OUT(Linit, )}, J —— Linit,
- TJ = (07 ) .
— prej = posty = 0 (the empty function) and J2 (PO) J1

— Jo :J = Lini, for x =1,2 defined by Linit, Linit
Jo,p = idA Qg p and jy 7 = 0. J2
The composition of (Linit,, Linit,) w.r.t. the instantiation interface (J, j1, j2)
induced by (I,i1,12) is defined by the pushout diagram (PO) in PTNet and is
denoted by Linit = Linit, O(J,j1,ja) Linits-

The AHL-occurrence net with instantiations K Igpnier = (Kpnter, INITEnter,
INSgpier) is given in Figs. [9] and The sequential composition of Kgg:
(see Fig. |8 in Section and Kpgpter is defined by merging the output place
Restaurants of Kgq and the input place Restaurants of Kpgnier leading to
the AHL-occurrence net Kpgqi/pnier (see Fig. |§| in Section . In more de-
tail Kgat/Enter = KEat 9(1,i1,i5) KEnter 18 the gluing of the two basic AHL-
occurrence nets along I with P; = {Restaurant}, i1 (Restaurant) = Restauranty
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(phiz,Entrance-Hall)

Restaurant3 : System Entrance-Hall : System

Rules : Rules

enter restaurant

m :Mor
cod m = ny coproduct no

applicable(r, m) = tt

transform(r, m)

tableys ,Restaurant
45 3

(ruleg,Rules)

enter restaurant

v2

(ruleg,Rule)) (tablegys,Restauranty)

Restaurant, : System

Rule), : Rules

Fig. 9. AHL-occurrence net K g, e, with instantiation Lgpter

(phizg,Entrance-Hall)

Restaurantz : System Entrance-Hall : Syste

Ruley : Rules
2 ny

enter restaurant

m :Mor

cod m = mq coproduct ng
applicable(r, m) = tt

transform(r, m)

Rule/2 : Rules Restaurant, : System

m (tubleilS,Restaurantg_)

(ruleg,Ruley)

enter restaurant

v3

(mleQ,Ruleé) (tableé45,Restaurant4)

Fig. 10. AHL-occurrence ne

t K gnter With instantiation L gpter
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and is(Restaurant) = Restaurantz. The corresponding instantiations Lg.; in
Fig. § and Lgter in Fig. [I0] can be analogously composed to the instanti-
ation Lpet/pnter in Fig. |6l Note that (Lgat, LEnter) is composable, because
we have (table)s, i1 (Restaurant)) € OUT(Lga) and (tableys,iz( Restaurant)) €
IN(LEnter’)~

Theorem 2 (Composition of AHL-Occurrence Nets with Instantia-
tions). Given the AHL-occurrence nets K1, Ko and I as above and two injective
AHL-net morphism iy : I — Ky and is : I — Ko such that (K1, Ks) is com-
posable w.r.t. (I,41,i2). Let KI, = (K., INIT,,INS,) for x = 1,2 be two
AHL-occurrence nets with instantiations. Then the composition of (KI, KI5)
w.r.t. (I,i1,12) is defined by KI = (K,INIT,INS) with

— K = K 0(1,4,,i5) Ko,

= INS = {Linit, °(14,,js) Linits| Linit, € INSg for x = 1,2, (Linit, , Linit,)
is composable w.r.t. (J, j1,j2) induced by (I,41,i2)},

— and INIT = {IN(Linit)|Linit € INS}

and KI = K1 O(I,i1,in) K12 is an AHL-occurrence net with instantiations.

Proof. (Sketch) The detailed proof can be found in Appendix

To prove that KI = (K,INIT,INS) is well-defined, first note that K is an
occurrence net due to Theorem [I} Moreover, for each L;,;; € INS we need to
show L, C Flat(K) and inoproj(K) : Lini — Skel(K) is an isomorphism in
the diagram below where we have the following pushouts: (PO1) by construc-
tion, (PO2) since Flat preserves pushout K = K; oy Ky and (PO3) since Skel
preserves pushout K = Kj oy K.

proj(I),proj(K1),proj(Ks) and proj(K) are projections from the flattening
to the skeleton construction (see Remark [1] in Appendix and iny,iny, ing
are inclusions where J C Flat(I) = (A® P,0,0,0) and in is induced by (PO1).

Linit1 in Flat(K1) proj (K1) Skel(K1)

> (PB) antul)ﬁ'
/

J ing Flat(I) proj (K1) Skel(I)
(PO1) \ (PO2) \ (PO3)
jo Linit in Flat(K) proj (K Skel(K)
Flat(ig) / \ /
_— x
Linit2 in Flat(K>) proj(Ka) Skel(K2)

Since proj(I) o in; can be shown to be an isomorphism (using that J is
pullback of Flat(i1) and iny) and proj(K,)oin, are by assumption isomorphisms
for x = 1,2, we conclude that proj(K) o in is isomorphic as well. Hence in is
injective and can be chosen to be an inclusion in : L, — Flat(K).

Given the two basic AHL-occurrence nets with instantiations KIg, and
KIgnter, then the composition of (KIgat, KIgnter) results in the AHL-occur-
rence net with instantiation K1ga:/gnter (see Fig. |§|in Sectiom7 while the oppo-
site composition of (K Ignter, K Ipq:) is the AHL-occurrence net with instantia-
tion K1gnier/Eat (see Fig. in Section. Different to IN Sg.: and I N Sgpter the

16



set of instantiations INSgat/pnter Only consists of one instantiation Lga:/pnter
(and analogously I NSgyter/Eat), because we require in Theorem [2] the compos-
ability of instantiations.

Definition 12 (Composability of AHL-Processes with Instantiations).
Given the AHL-occurrence nets Ky, Ko and I as above and two injective AHL-
net morphism i1 : I — Ky and iy : [ — Ky. Let KI, = (K,,INIT,,INS,)
together with the AHL-net morphisms mp, : K, — AN for x = 1,2 be two
instantiated AHL-processes of the AHL-net AN . Then (mp1, mps) is composable
w.r.t. (I,?:l,l'g) ’Lf

1. (K1, K3) is composable w.r.t. (I,i1,12) and
2. mpy 011 = mps O is.

Theorem 3 (Composition of AHL-Processes with Instantiations). Gi-
ven the AHL-occurrence nets Ky, Ko and I as above and two injective AHL-net
morphism i1 : I — Ky and io : I — Ksy. Let _

KI, = (K,;,INIT,,INS,) together with the AHL-net | —"s [,
morphisms mp, : K, — AN for x = 1,2 be two in-

stantiated AHL-processes of the AHL-net AN such that izl (PO) J/i’l \

(mpl,.mpg) is composable w.r.t. (I,i1,i2). Then the in- Ky —> K mp1
stantiated AHL-occurrence net KI = K1y 0o(p;, i,) K12 iy \n
together with the induced AHL-net morphism mp : \

K — AN is an instantiated AHL-process of the AHL- mp2 AN

net AN, where K is the AHL-occurrence net of K1I.

Proof. (Sketch) The detailed proof can be found in Appendix
Due to Def. [12]and the universal property of pushouts there is the morphism
mp : K — AN, that uniquely commutes mp; = i} o mp and mpy = i, o mp.

Because for low-level occurrence nets the input/output behaviour is fixed by
the net structure, two low-level occurrence nets should be considered to be equiv-
alent if they are isormorphic. For high-level occurrence nets the input/output
behaviour additionally depends on the marking of their input places and on
corresponding variable assignments. Hence we introduce the equivalence of two
AHL-processes with instantiations, where the net structures of equivalent AHL-
processes may be different, but they have especially the same input/output be-
haviour.

In more detail they have (up to renaming) the same sets of transitions and
places and their instantiations are equivalent, i.e. there exist corresponding in-
stantiations with the same input/output behaviour. So specific firing sequences
of equivalent AHL-processes are comparable in the sense that they start and
end up with the same data elements as marking of their input places and output
places, respectively, but in general the corresponding transitions are fired in a
different order.

Definition 13 (Equivalence of AHL-Processes with Instantiations). Let
KI = (K,INIT,INS) and KI' = (K',INIT',INS’) together with AHL-net
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morphisms mp : K — AN and mp' : K' — AN two AHL-processes of an
AHL-net AN. Then these two processes are called equivalent if

1. there are bijections ep : Pk — P/ and er : Ty — Tx such the following
diagram commutes componentwise

K

ep
K/
er
k x/mp’

AN

2. and the instantiations are equivalent, i.e. for each L;,;+ € INS there exists
a Linie € INS' and vice versa such that

V(a,p) € Ayypep) @ Px : (a,p) € IN(Linit) < (a,ep(p)) € IN(Linirr) and
(a,p) € OUT(Linit) < (a,ep(p)) € OUT(Linir)

The equivalence of the instantiations means that there is a bijection be-
tween the input places IN(K) and IN(K’) (resp. output places OUT(K) and
OUT(KT)), s.t. the input-output function inout : INIT — EXIT of KI and
inout’ : INIT' — EXIT' of KI' are equal up to bijection of input and output
places. But it is not required that e = (ep,er) : K — K’ is an isomorphism, i.e.
in general e = (ep, er) is not compatible with pre- and post domains.

In Section [2 the AHL-processes with instantiations Klg./gnier in Fig. |§|
and Klgpier/par in Fig. |Z| together with the obvious AHL-net morphisms mpy :
KIEat/Enter — ANHouse and mps : KIEat/Ente'r — ANgouse are equivalent.
There is a bijection between their transitions and places, which is not an iso-
morphism. The bijection of places is defined by mapping the input places of
KIgat/Enter to the input places of KIgnier/par (and analogously the output
places) and the place Restaurant; of KIgat/pnter to the place Restauranty of
KlIgnter/Eats such that the diagram in Def. [13| commutes componentwise. More-
over the instantiations Lga¢/pnter in Fig. [0l and Lppier/Eqe are equivalent.

The main result in this context are suitable conditions s.t. AHL-net processes
with instantiation can be composed in any order leading to equivalent high-level
net processes. Here we use especially the assumption that the instantiations are
consistent, i.e. there is a close relation between their input and output places.

Definition 14 (Consistency of Instantiations). Given AHL-occurrence nets
Ki,Ky and I as in Def. and injective AHL-net morphism i1 : I — Ky,
io 1 I — Ko, i3 : 1 — Ky and iy : I — Ky such that (K7, Ks) is composable
w.r.t. (I,i1,i2) and (K2, K1) is composable w.r.t. (I,i4,43) with pushout (1) and
(2), respectively. Moreover let KI, = (K., INIT,,INS,) be AHL-occurrence
nets with instantiations for K, (x = 1,2).

Then (INSy,INS,) is called consistent if for all composable (Lipnit, s Linit,)
€ INSy x INSy w.r.t. (J,j1,72) induced by (I,i1,12) with pushout (8) there are
composable (Linity, Linit;) € INSg x INSy w.r.t. (J, Ja,j3) induced by (I,14,13)
with pushout (4) and vice versa, s.t. in both cases the instantiations satisfy the
following properties 1.-4. for gluing points GP defined below:
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Moreover we require for all (a,p) € Apypep) ® Pr:

3. (a,i3(p)) € IN(Linit,) < (a,i2(p)) € IN(Linir,)
4. (a,i1(p)) € OUT(Linirr) < (a,is(p)) € OUT(Linit,)

a,t
a,t

The gluing points GP are defined by

— GP(PKl) = il(P]) U ig(P]), GP(PKZ) = iQ(P]) U i4(P]),
— GP(Linit,) = {(a,p) € Linit,|p € GP(Pk,)} and
— GP(Linit) = {(a,p) € Linir|p € GP(Pxk,)} for x =1,2.
j K j Ky J — Linit, J B Liniy,
i W l l @ i ”i ®) lji jsl () ijg
Ky —=K K —K Linity —> Linit Linity, —> Liny
L) 13 J2 J3

Let KIgq: and KIgpier be the two instantiated AHL-processes as described
above. Their sets of instantiations IN Sgq; and I N Sg,te- are consistent, because
for the composable instantiations (Lgat, LEnter’) € INSEqt X INSEnter there
are the composable instantiations (Lgnter, LEar) € INSEnter X INSpq: (and
vice versa) satisfying the properties 1.-4. in Def.

Theorem 4 (Equivalence and Independence of AHL-Processes). Giv-
en an AHL-net AN and AHL-occurrence nets KI,, = (K,,INIT,,INS,) with
consistent instantiations as in Def. with AHL-net morphisms mp, : K, —
AN forxz=1,2.

Then we have instantiated AHL-processes KI = (K,INIT,INS) with mp :
K — AN and KI' = (K',INIT',INS’) with mp' : K' — AN defined by
opposite compositions K1 = K1y o(y;, ;,) K12 and KI'=KI, O(I,is,iz) K11 and
both are equivalent processes of AN, provided that

1. K; and K5 have no isolated places, i.e. IN(K;)NOUT(K,) =0 forz =1,2
2. mp1 and mpy are compatible with 11,192,153 and i4, t.e. mpy 01 = MPy 0 iy =
mpyoiz=mpaoiy:l — AN.

Under these conditions K1, and K1y are called independent.

Proof. (Sketch) The detailed proof can be found in Appendix The instanti-
ated AHL-processes KI and KI' with mp : K — AN and mp’ : K/ — AN exist
by Theorem [3| It remains to show that they are equivalent.

Construction of bijections. The bijection e : Ty — Tk follows from the fact
that It = 0 and hence Tk =2 Tk, WTk, and Tk = Tk, WTk, . In order to obtain
the bijection ep : P — P/ we show that Px and Pg can be represented by
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the following disjoint unions of gluing points GP and non gluing points NGP
in pushout (1) and (2) in Def.

Py = GPl(PK) U GPQ(PK) U GPg(PK) U NGP(PK) with
GPl(PK) = Z/l Oig(P[),GPQ(PK) = 2/2 Oi4(P]) and GPg(PK) = le Oil(P[)

Py = GP(Py+) U GPy(Pg/) UGP3(Py:) U NGP(Pg/) with
GPl(PK/) = Zﬁl o iQ(PI), GPQ(PK/) = Zé o il(P[) and GPg(PK/) = Zé o i3(P[)

This allows to define ep, : GP,(Px) — GP,(Pg/) for x = 1,2,3 by ep, (i} o
iz(p)) = i) oiz(p) for all p € P and similar for ep, and ep,. Since i}, i3, 4}, and
i2 are all injective ep, is bijective and similar also ep, and ep, are bijective.

Finally also ep, : NGP(Px) — NGP(Pg/) can be defined as bijection.
Using IN(K,) N OUT(K,) = 0 for x = 1,2 it can be shown that Px (and
similar Pg-) is a disjoint union of all four components leading to a bijection
ep =ep Uep, Uep, Uep, : Px — Pgs. With these definitions it can be shown
explicitly that the diagram in Def. [[3] commutes componentwise.
Equivalence of instantiations. Given Linit = Linit, ©(7j, js) Linit, With pushout
(3) in Def. |14 we have by consistency of (INS1,INS2) Linitr = Linit, ©(1,4sjs)
L with pushout (4) s.t. properties 1.-4. in Def. |l4] are satisfied. This allows
to show by case distinction using the definition of ep above that we have for
all (a,p) € Agypep) @ Pr: (a,p) € IN(Linit) < (a,ep(p)) € IN(Linir) and
(a,p) € OUT (Linit) < (a,ep(p)) € OUT(Lipv).

The opposite direction, where Linir = Linit, (7,j4,55) Linit; 15 given with
pushout (4), follows by symmetry.

Equivalence of KT and KI' in Theorem [4] intuitively means that the AHL-
processes KI; and K I, with consistent instantiations can be considered to be
independent, because composition in each order leads to equivalent processes.

Given the two basic AHL-processes KIgq; and KIg,ie,r with the AHL-net
morphisms MPEat - KIEat - ANHouse and MpEnter - KIEnter - ANHousea
where mpg,: is defined in Section [2| and mpgpter can be analogously defined.
Because the properties 1. and 2. in Theorem [ are satisfied by Kgq: and K gpter
as well as by mpga: and mpgnier, we get the equivalent processes Klpat)pnter =
KIE% O(1,i1,i2) KE'nter in Flg @ and KIEnter/Eat = KIE'nter O(I,i4,i3) KIE'at in
Fig.

5 Conclusion and Related Work

In this paper we have presented main results of a line of research concerning the
modeling and analysis of high-level net processes. Based on the notions of high-
level net processes with initial markings in [6,7] we have introduced high-level
net processes with instantiations. As main results we have presented suitable
conditions for the composition and independence of high-level net processes. We
have shown under these conditions that the composition of two high-level net
processes leads to a high-level net process and they can be composed in any order
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leading to equivalent processes. In this case the two high-level net processes are
called independent.

In [11,12] the semantics of object Petri nets is defined by a suitable extension
of low-level processes. Objects Petri nets are high-level nets with P/T-systems
as tokens. A process for an object Petri net is given by a pair of processes, a
high-level net process containing low-level processes of the corresponding P/T-
systems. In contrast the approach presented in this paper extends the notion of
high-level net processes for algebraic high-level nets. The token structure of an
algebraic high-level net is defined in its data type part that is not restricted to
P/T-systems and we also use rules as tokens. For this reason low-level processes
of P/T-systems as tokens are not considered.

Our main result of independence of high-level net processes is inspired by the
results of local Church-Rosser for graph resp. net transformation [10,13], where
under suitable conditions transformation steps can be performed in any order
leading to the same result. In [14] we have transferred these results, so that net
transformations and token firing can be executed in arbitrary order provided that

certain conditions are satisfied. For example in Section [2] the firing step tableys

start eatings rules
—

tableys (see Fig. [2) and the transformation step (phis, tabless) =
tablesss (see Fig.|3]) are independent of each other, so that each of this evolution
steps can be postponed after the realization of the other yielding the same result,
the P/T-system tablel,- in Fig. |4l Hence an interesting aspect of future work
will be to investigate the correspondence between these different concepts of
independence in more detail to gain further results for high-level net processes.
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Appendix

A.1 Signature and Algebra for P/T-Systems and Rules as Tokens

Definition 15 (HLNR-System-SIG Signature and Algebra).
Given vocabularies Ty and Py, the signature HLNR-System-SIG is given by

HLNR-System-SIG =

sorts: Transitions, Places, Bool, System, Mor, Rules
opns: tt, ff:— Bool

enabled : System x Transitions — Bool
fire : System x Transitions — System
applicable : Rules x Mor — Bool
transform : Rules x Mor — System
coproduct : System x System — System
Prphi : System — System

Driaple © System — System

cod : Mor — System

and the HLNR-System-SIG-algebra A for P/T-systems and rules as tokens is
given by

ATTansitions = To, APlaces = PO7 ABool = {true, false};
Agystem the set of all P/T-systems over Ty and Py, i.e.
Agystem = {PN|PN = (P,T,pre, post, M) P/T-system, P C Py,T C Ty}
U {undef},
Anror the set of all P/T-morphisms for Asystem, i€
Apntor ={f|f : PN — PN' P/T-morphism with PN, PN’ € Agystem},
ARutes the set of all rules of P/T-systems, i.e.
Apuies = {r|r = (L & I 2 R) rule of P/T-systems with
strict inclusions 11,12},
tt4 = true, ffa = false,
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— enabled : Agystem X Ty — {true, false} for PN = (P, T, pre, post, M) with

true ift € T,pre(t) <M

enableds (PN, t) = {false olse

— firea : Asystem X To — Agystem for PN = (P, T, pre, post, M) with

(P, T, pre,post, M & pre(t) @ post(t))
fire,(PN,t) = if enabledo(PN,t) = tt

undef else

— applicabley : Aruies X Anor — {true, false} with

. true if r is applicable at match m
applicable s (r,m) = false  else

— transformay : Arules X Anror — Asystem With

H if applicables(r,m
transforma(r,m) = {undef else | |

where for L 5 G and applicable o(r, m) = true we have a direct transforma-
tion G = H,

— coproduct o : Asystem X Agystem — Asystem the disjoint union (i.e. the two
P/T-systems are combined without interaction) with

coproduct A(PNy, PNy) = if (PN, = undef V PNy = undef) then undef
else (P1 W Ps), (Th W13), pres, posts, M1 & M)

where pres, posts : (T1 WTy) — (P W Py)® are defined by

pres(t) = ift € T\ then pre;(t) else prea(t)
postz(t) = ift € T1 then posty(t) else posts(t)
— DPTphi,A * ASystem - ASystem with

phi; if PN = coproduct s (phi;, PN")

iA(PN) =
Proni.a(PN) {undef else

where phi; = ({pi}, {ti}, prei, post;) with pre;(t;) = posti(t;) = pi,
— PTtable,A * ASystem - ASystem with

Priabie,A(PN) = PN \ prpni, a(PN)

- COdA : AMor — ASystem with COdA (f : PNl — PNQ) = PN2
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A.2 Flattening and Skeleton Construction

Definition 16 (Firing Behaviour of AHL-Nets). A marking of an AHL-net
AN is given by M € CP® where CP = (A® P) = {(a,p)|a € Ayyperpy, p € P}.

The set of variables Var(t) € X of a transition t € T are the variables
of the net inscriptions in pre(t),post(t) and cond(t). Let v : Var(t) — A
be a variable assignment with term evaluation v* : Tx(Var(t)) — A, then
(t,v) is a consistent transition assignment iff condan(t) is validated in A un-
der v. The set CT of consistent transition assignments is defined by CT =
{(t,v)|(t,v) consistent transition assignment}.

A transition t € T is enabled in M under v iff (t,v) € CT and prea(t,v) <
M, where pres : CT — CP® defined by prea(t,v) = d(pre(t)) € (A® P)® and
v : (Ts(Var(t)) ® P)® — (A® P)® is the obvious extension of v to terms and
places (similar posty : CT — CP®). Then the follower marking is computed by
M= M & prea(t,v) @ posta(t,v).

Definition 17 (Flattening). Given AHL-net AN as above then the flattening
of AN is a P/T-net Flat(AN) = N = (CP,CT, pre,post 4) with

-~ CP=A®P={(a,p)la € Ayype(p),» € P},
— CT ={(t,v)[t e T,v:Var(t) — A s.t. cond(t) valid in A under v } and
— prea and post 4 as defined in Def. [16,

Given an AHL-net morphism [ : ANy — ANy by f = (fp, fr) then Flat(f)
= (idga ® fp : CP; — CPa, fc : CTY — CTy) is given by ida @ fp(a,p) =
(a, fp(p)) and fc(t,v) = (fr(t),v).

Definition 18 (Skeleton). Given an AHL-net AN as above then the skeleton
of AN is a P/T-net Skel(AN) = (P, T, preg,posts) with pres(t) = >, p; for
pre(t) = >0, (term;, p;) and similar for posts : T — P®. Given an AHL-net
morphism f : ANy — ANy by f = (fp, fr) then Skel(f) = f = (fp: P —
Pg,fT : T1 — Tg)

Remark 1. The flattening construction defined in Def. [17] and the skeleton con-
struction defined in Def. [[8 are well-defined and can be turned into a functor
Flat : AHLNet — PTNet and a functor Skel : AHLNet — PTNet which
preserve pushouts, i.e. given the pushout (1) in AHLNet then there are cor-
responding pushouts (2) and (3) in PTNet. Moreover we have for each AN a
projection proj(AN) : Flat(AN) — Skel(AN) leading to a natural transforma-
tion proj : Flat — Skel.

ANO le ANl

fzi (1) lf{

AN2 ? AN3
2
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Flat(ANy) Y2 prat(any) Skel(ANg) 22 Ser(ANy)
Flat(fg)l (2) iFlat(f{) Skel(f2)i (3) iSkel(.f{)
Flat(ANg)Im)Flat(ANg) Skel(AN2)smT(f>§)Skd(AN3)

Theorem 5 (Flat is functor). The construction Flat : AHLNet — PTNet
as defined in Def. s a functor.

Proof.

1. Flat(AN) is well-defined:
We have to show that prea,posty € CP®. This follows for pres from the
fact that term; of type(p;) implies v¥(term;) € Ayype(p,) and similar for
post 4.
2. Flat(f) is well-defined:
(a) Let (a,p) € CP.
By definition we have Flat(f)p(a,p) = (ida®fp)(a,p) = (ida(a), fp(p)) =
(a, fp(p)) € CPs because fp(p) € P and a € Ayype, (p) = Atypes(fr(p))-
(b) (t, 11) e CT) = fc(t,v) e CTy
(t,v) € CTy means v : Var(t) — A s.t. cond;(t) valid in A under v,
fe(t,v) = (fr(t),v) € CTy means v : Var(fr(t)) — As.t. conda(fr(t)) =
condy (t) valid in A under v. This follows from (¢,v) € CT} because

Var(t) = Var(condi(t)) U Var(prei(t)) U Var(posty(t))
= Var(condy(fr(t))) UVar(prea(fr(t))) U Var(posta(fr(t)))
= Var(fr(t))

3. Flat(f) is P/T-net morphism:
For symmetry reasons it suffices to show commutativity for pre4 of

pre1 A

CT, —= CPP
fcl (1) l(idA®fp)®
CTy — CPy

prez2 A
Given (t1,v1) € CTy with prei(t1) = Z:-L:l(termi,pi) we have
pTez(rfT(tl)) = (idyy, (x)@fp)®(prei(t1)) = (idry,x)@Fp)® (3=, (termi, p;))
= Zizl(termi, fP(pi))

because f is an AHL-morphisms and hence
(ida ® fp)® (prevalts, o) = (ida @ fp)® (S (v (termi), pi)
=Y (Wi (terms), fp(pi)) = preaa(fr(ty), v1) = presa(fo(ty,vr)).

25



4. Obviously we have Flat(f) = idpjqiany for f = idan. Furthermore we
have for the composition Flat(g o f) = ((ida ® (go f)p)®,(go flc) =
((ida® (9o f)p)®,9c 0 fo) = ((idaoida @ (go f)p)¥, gc o fo) = ((ida ®
gp)® o (ida @ fp)®, gc o fc) = Flat(g) o Flat(f).

Theorem 6 (Flat preserves Pushouts). Given Pushout (1) in AHLNet
then (2) is Pushout in PTNet.

AN, s AN, Flat(ANg) ——_ prag(any)

le (1) lgl Flat(fz)l (2) \LFlat(gl)

ANy — ANj Flat(ANy) ————— Flat(AN3)
92 Flat(g2)

Proof. Pushout (1) in AHLNet is constructed componentwise by the Pushouts

fi,r fi,p

Ty ——T Pp———P
fo,r (3) 91,7 fo,p (4) g1,p
T2 92,7 T3 P2 92,pP P3

in SET. Since Pushouts in PTNet are also constructed componentwise in SET
it suffices to show that (5) and (6) are Pushouts in SET.

X ida® fu,
oy~ s o7y A® P AT Ae P
fz,c‘/ (5) g1,c ‘/idA®f2,P (6) ida®g1,p
ida®
CT, ——= CT; A® Py 2 I

We show the universal properties for (6), because we cannot directly use that
the cartesian product A x _ preserves Pushouts, since A® P C A x P. Given
h1, ho with hy o (ida @ fip) = ho o (ida ® fop) we define h: A® P3 — X by

h(a,ps) = hi(a,p1) for ps = g1p(p1) with p; € Py
’ h2(a7p2) for p3 = 92P(p2) with ps € P2

It suffices to show that h is well-defined, i.e. p3 = g1p(p1) = gap(p2) implies
hi(a,p1) = ha(a,p2), because with this definition (7) and (8) commute by con-
struction and h is unique with this property.
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Given p3 = g1p(p1) = gop(p2) we have by definition of Pushout (4) in SET a
sequence po1, - - -, Pon € Py with

DPo1 Po2 Po3 - Pon
f:.P/\ /&P fy /\fl‘,\P fy\ /Y:’
D1 P21 P11 D2

This implies

hi(a,p1) = hi(a, fip(po1))
= hy o (ida @ fip)(a,po1)
= he o (ida ® fap)(a,po1)
= ha(a, fap(po1))
= hz(a,p21)
= ha(a, far(po2))
= hy o (ida ® far)(a, po2)
= hy o (ida ® fip)(a,po2)

= hi 0 (ida @ fip)(a,pos)

=hyo (idA & fQP)(aaPOn)
= hg(a7f2P(pOn))
= ha(a, p2)

All steps are well-defined, because (a,po1),- .-, (a,pon) € A® Po:
In fact (a7p3) € A® P; implies a € Atyp€3(p3) = Atype1(p1) = Atypeo(p()z‘) for
i=1,...,n using type compability of g1p for ps = g1p(p1) and of fip, fop, gap
for the other cases (see proof of Theorem [5)).

For similar reasons we can show explicitely the universal properties of (5)
using Pushout (3). Given k; : CTy; — X, ko : CTy — X with k1 o fic = ka0 foc
there is a unique k : C'T3 — X defined by

k(ts,v) = ki(t1,v) for t3 = gir(t1) with t; € T}
) ka(t2,v)  for t3 = gor(t2) with to € Tp

Similar to above we can show that t3 = g17(t1) = gar(t2) implies k1 (t1,v) =
ko(to,v) where all steps are well-defined using Theorem

Theorem 7 (Flat preserves Monomorphisms). Given f : AN; — AN,
monomorphism in AHLNet, then Flat(f) : Flat(ANy) — Flat(AN3) is monomor-
phism in PTNet.
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Proof. Since monomorphisms in AHLNet and PTNet are the injective mor-
phisms, it suffices to show: If f is injective, Flat(f) is injective.

Let us assume that f is injective. That means fp and fr are injective func-
tions.
Let Flat(f)p(a1,p1) = Flat(f)p(az,p2). By Def. [[7] we have:
Flat(f)p(ar, p1) = Flat(f)p(az,p2)
= (ida ® fp)(a1,p1) = (ida ® fp)(az, p2)
= (a1, fr(p1)) = (az, fr(p2))
= a1y =ax A fp(p1) = fr(p2)
= a1 = as A p1 = p2 because fp is injective
= (a1,p1) = (a2, p2)
= Flat(f)p is injective.

Let Flat(f)r(t1,v1) = Flat(f)r(t2,v2). By Def. [17] we have:
Flat(f)r(ty,v1) = Flat(f)r(t2, va)
= (fr(t1),v1) = (fr(t2), v2)
= fr(t1) = fr(t2) Avi = vo
=11 =ty A vy = vy because fr is injective
= (t1,v1) = (t2,v2)
= Flat(f)r is injective.
Flat(f)p and Flat(f)r are injective implies that Flat(f) is injective.

Theorem 8 (Skel is functor). The construction Skel : AHLNet — PTNet
as defined in Def. s a functor.

Proof. Given f : ANy — ANs then Skel(f) : Skel(AN;) — Skel(AN) is P/T-

net morphism, i.e. (1) commutes componentwise.

T —=x PP
posty s
fr (1) i3
prez, s
Ty Pg
posta, s

For t; € Ty and prei(t1) = >, (term;, p;) we have
fpoprews(ty) = fE (I pi) = Yiey fP(pi)l
prez o fr(ty) = (ida ® fp)® oprei(t1) = i, (term;, fp(pi)) and hence
press o fr(ty) = press(fr(t1)) = >, fp(p;) which implies
fpopreis(t1) = preas o fr(t1) and similar for post;s and postag.

Theorem 9 (Skel preserves Pushouts). Given Pushout (1) in AHLNet the
(2) is Pushout in PTNet.
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1 S € 1
ANy > AN, Skel(ANg) — =) Srer(ANy)
f2l (1) lgl Skel(fz)l (2) lSkEl(m)
ANy —> ANy Skel(AN;) ————> Skel(ANy)

Proof. Pushout (1) in AHLNet implies Pushouts (3) and (4) as in Theorem []
But this implies that (2) is Pushout in PTNet , because Pushouts in PTNet
are based on Pushouts (3) and (4) in SET.

Theorem 10 (Skel preserves Monomorphisms). Given f : ANy — AN»
monomorphism in AHLNet, then Skel(f) : Skel(ANy) — Skel(ANs) is monomor-
phism in PTNet.

Proof. Similar to the proof that Flat preserves monomorphisms, we will show:
If f is injective, Skel(f) is injective.

Let us assume that f : AN; — AN, is injective. That means fp and fr are
injective functions.
Let Skel(f)p(p1) = Skel(f)p(p2) for p1,p2 € Pskei(any)- By Def. We have:
Skel(f)p(p1) = Skel(f)p(p2)
= fr(p1) = fr(p2)
= p; = py because fp is injective. Hence Skel(f)p is injective.

Let Skel(f)r(t1) = Skel(f)r(t2) for t1,t2 € Tsgeian,)- By Def. [18[ we have:
Skel(f)r(t1) = Skel(f)r(t2)
= fr(t1) = fr(t2)

= t1 = to because fr is injective. Hence Skel(f)r is injective.

A.3 Proof of Theorem [I] in Section [
Proof. We have to show

1. Unarity

2. No forward conflicts

3. No backward conflicts

4. The causal relation is a finitary strict partial order.

1. Unarity:

Let us assume that K does not comply with the unarity property, i.e. there
ist € T and (termq, p), (terma,p) € Tx(X)®P s.t. (termq,p)® (terma,p) <
pre(t) or (termy,p) @ (terma,p) < post(t).

The set of transitions T is the Pushout T} % § 2% Ty which is the disjoint
union of 77 and T5, and hence there is t, € T, with ¢t = i;,T(tl’) where either
r=1lorz=2.

Since i/, is an AHL-morphism it preserves pre and post domains, i.e. pre o
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Z';’T(tl-) = (ide(X) ® i;:,P)EB o preg(ts).

This implies for (termq, p)®(terma, p) < pre(t) = pre(iy v(t;)) that (termq, p)®
(terma,p) < (idpg(x)®i), p)Popre,(t,), which means that there are (termi,p1),
(terma,p2) € Tx(X) ® Py s.t. (termy,p1) @ (terma,p2) < preg(t,) and

ir p(P1) = p = i}, p(p2)-

The fact that i/, p(p1) = 7, p(p2) implies that p; = pa because i/, p is injec-
tive and hence (termy,p1) ® (termse,p1) < pre,(t,) contradicts the fact that
K, complies with the unarity property.

The case (termy,p) @ (terma,p) < post(t) works analogously.
. No forward conflict:

We have to show:
Vit eT:t £t = eotNet’ =0

Let us assume that there is a forward conflict, i.e. there exist ¢,t' € T,p € P,
st.t £t and p € o, p € of’.

Case 1: Both transitions ¢ and ¢’ have a preimage in the same net, i.e. there
are ty, t,, € T, with i/, (t;) =t and i/ ;(t},) = t’ where either x =1 or = 2.
Due to i, (t,) # i, (t,,) we also have t, # t..

p € ot and p € et implies that there exist p,p, € Py, s.t. i p(ps) =
i\, p(pl) = p and p, € ot,,p), € ot because i/, is an AHL-morphism which
preserves pre and post domains. Since i) p is injective ¢, p(ps) = i p(p})
implies p, = p, and hence p,, € ot, and p, € ot/ which contradicts the fact
that K, has no forward conflict.

Case 2: The transitions ¢,¢' have their preimage in different nets, i.e there
exist t1 € T1,ta € Ty with ¢ = i 1.(t1),t’ = i5p(t2). Since i} and i} preserve
pre and post domains, there exist p; € Py, p2 € P> with p1 € ey, py € ety
and 7} p(p1) = t5p(p2). This means that there is a pg € P; with i1p(po) = p1
and iap(pg) = pa, because K is the Pushout of K & T 2 K, The fact
that Ky and Ky are composable wrt. (I,i1,42) implies for p; € i1(Py) that
p1 € OUT(K7) which contradicts p; € ety.

. No backward conflict:

We have to show:
Vi eT:t#t =tent'e =1

Let us assume that there is a backward conflict, i.e. there exist t,t' € T, p €
P,st.pecteand p e t'e.

Case 1: Both transitions ¢ and ' have a preimage in the same net, i.e. there
are ty, tl, € T, with i\, (t,) = ¢t and i, .(t},) = t’ where either x =1 or x = 2.
Analogously to case 1 of the forward conflicts it follows that there exist
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Pz € Py, s.t. p, € tye and p, € t,e. This contradicts the fact that K, has
no backward conflict.

Case 2: The transitions ¢,t have their preimage in different nets, i.e there
exist t; € Th,te € Ty with t = @\ (t1),t = i5p(t2). Analogously to case
2 of the forward conflicts there exist p; € P;,ps € P> with p; € t;e and
p2 € tae where ¢} p(p1) = thp(p2). Due to the fact that K is the Pushout

of K, ari K5 there is a pg € Py with i1p(pg) = p1 und i2p(po) = p2,
which implies for ps € iop(Pr) that py € IN(K3), because K7 and Ky are
composable wrt. (I,i1,42). This contradicts ps € t;e.

. The causal relation is a finitary strict partial order:

The composability of Ky and Ko wrt. (I,41,42) requires that i;(P;) C
OUT(K,) and i2(Pr) C IN(K32). That means that exclusively output places
(i.e. places without post domain) of K with input places (i.e. places without
pre domain) of Ky are identified.

Due to the fact that AHL-morphisms preserve pre and post domains of tran-
sitions, we obtain the causal relation <y as the transitive closure of
(@), ()le,y € Pi, & Tieyso <x, y} U {(i5(0), i),y € P,
Tr,,x <k, y}

This means that the causal relations of the nets K; and K5 are also causal
relations in K and additionally it is possible that nodes xy € Pk, W Tk,
originated from Ky can be successor of nodes z1 € Pk, W Tk, originated
from K; (i.e. i) (z1) <k i5(z2)), but not vice versa (i.e. i5(z2) £x i} (z1)).

Let us assume that <y is not finitary, i.e. there exists x € Px W Tk with an
infinite number of predecessors. That means that there are infinite x,, <x =
(n eN).

Case 1: Let x = i} (2’) with 2’ € Px, W Tk, . Then we have 2}, € Py, W Tk,
(n € N), s.t. for all n € N: 2/, <k, «’. This contradicts the fact that <y, is
finitary.

Case 2: Let x = i4(2”) with " € Pk, W Tk,. Let us assume that there
exist infinite z], € Pk, W Tk, (n € N), s.t. for all n € N : 2!/ <k, «”. This
contradicts the fact that <y, is finitary.

Hence there exists m € N, s.t. for 0 < k < m: 2} <k, 2" and 2!}, € IN(K>).
Due to the fact that i5(2) ) has an infinite number of predecessors in <f,
there exists y € Py, s.t. i5(x,) = i5(i2(y)) = 41 (41 (y)) has an infinite number
of predecessors. This is equal to case 1.

<k is finitary.

Let us assume that <y is not irreflexive, i.e. there exists © € Px W Tk,
s.t. * <x «. This means that there is a cycle in K and hence there exists
2 € Pk WTk,st. o <g x' and 2’ < z.

Case 1: Both nodes z and z’ are derived from the same net, i.e. for ei-
ther n = 1 or n = 2 there exist z,,2, € Pk, WTk,, s.t. x = i, (x,) and

x' =i, (z},). Then we have ¢} (z,,) <k i, (x}) and i (z],) <k i, (xy,), which
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implies z,, <k, ), and z,, <k, ®,. This contradicts the fact that <, is
irreflexive.

Case 2: The nodes z and 2’ are derived from different nets, i.e. there ex-
ist x1 € Pg, WTk,,xh € Pg, W Tk, with x = i{(z1) and 2’ = i5(z}), s.t.
i1(x1) <k ih(xh) and i5(zh) <k i) (x1). This contradicts the fact that ac-
cording to the construction it is not possible that there exist a € Px, ¥ Tk,
and b € PK2 H‘JTKQ, s.t. Z,Q(b) <K le(a)

Hence < is irreflexive.

A.4 Proof of Theorem [2] in Section [4]

Theorem 11 (Natural Transformation proj : Flat — Skel).
proj : Flat — Skel defined for AHL-nets AN by

proj(AN) : Flat(AN) — Skel(AN) with

proj(AN)p(a,p) =p for (a,p) € CP = A® P and
proj(AN)p(t,v) =t for (t,v) € CT

s a natural transformation.

Proof. First we show that proj(AN) is P/T-net morphism

Flat(AN) or == cp®
post a
proj(AN) proj(AN)r (1) proj(AN)%
pres
Skel(AN) T ———= p®
posts

Given (t,v) € CT with pre(t) = >_1_, (term;, p;) we have
proj(AN) o prea(t,) = proj( AN) (X et {termi).p)) = Sy
pres o proj(AN)r(t,v) = pres(t) = >, pi
and similar for post 4, postgs.

In order to show that proj is natural transformation let f : AN; — ANy be
an AHL-net morphism then we have to show commutativity of

Flat(f)=(ida®fp,fc)

Flat(AN,) Flat(AN>)
proj(ANol @) ipmjmwg)
Skel(ANy) Skel(AN>)

Skel(f)=(fp,fr)

This follows for (a,p) € A® P, from

proj(ANa)p o (ida ® fp)(a,p) = fr(p) = fp oproj(AN1)p(a,p)
and for (t,v) € C'Ty from
proj(ANz)r o fo(t,v) = proj(AN2)r(fr(t),v) = fr(t) = froproj(AN1)r(t,v).
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Lemma 1 (Instantiation interface is Pullback).
The induced instantiation interface (J, j1,j2) of (Linit,, Linit,) as defined in

Definition |11 in Section is Pullback of Linit, i, Flat(Ky) Flat@) gy, t(I),
i.e. the diagram (1) is Pullback in PTNet where in1, iny are inclusions.

in1

Linitl Flat(Kl)
J1
/ w A;
J , Flat(I)
ing

Proof (Lemmali)).
We will show that the places and transitions are Pullbacks, i.e. (2) and (3)

are Pullbacks in SET.

iny,T ini,p
Triy, —— Triat(xy) Linit, Priat(k,)

e 2) 3)
Flat(i1)r Flat(i1)p

Ty e Triat(r) Py T Priat(n

1. Pullback (2)
Since Ty = 0 also Tryq ) = O and hence the Pullback of Tp,,, ey

inity
Flat(i1)r
Triary)  —— Trian) is0=Ty.

2. Pullback (3)
(a) Commutativity of (3):
For (a,p) € P; we have
inipojip(a,p) = inipo(ida®iip)(a,p) = inip(a,irp(p)) = (a,i1p(p)) =
Flat(i1)p(a,p) = Flat(i1)p o ingp(a,p)
(b) Universal property:
Given (Y, k1, ko) with inyp o ky = Flat(i1)p o ke.

ini,p

PLinu,l PFlat(Kl)

Jji,p
/ ® A:(h)zs

4 Py —— Pria(n
7 mi . p
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We define k := ky. First we have to show that for all y € Y : ka(y) € Pj.

Let y € Y. Then we have k2(y) = (a, p) € Ppiat(r) and hence Flat(iy)p(ka(y)) =

(a,i1p(p)) € Priat(ry)-

inip o k1 = Flat(i1)p o ko implies inq1p(k1(y)) = Flat(ir)p(ke(y)) and

since inq p is an inclusion, we have k1 (y) = Flat(i1) p(k2(y)) = (a,i1p(p)) €
Linit

By D(laf [10] we have i1p(P;) € OUT(K;) and by Def. [7] we have that

inip o proj(Ki)p : Pr,,,, — Skel(Ki) is bijective, which implies that

for (a,i1p(p)) € PL,,..0, follows that (a,i1p(p)) € OUT (Lipst, ). Per con-

struction of JJ follows that (a,p) € Py and hence ka(y) € Py.

For k = ko we have:

inrpok(y) = k(y) = ka(y) (5) commutes.

and

inip ok = Flat(iy)p o ke = Flat(iy)poijpok =inipojipok

and since ¢nqp is monomorphism, this implies

ki =jipok (4) commutes

(¢) Uniqueness:
Let us assume there exists k' : Y — Pj; with jipok’ = ky and inypok’ =
ko. Then follows
in[p 9] k/ = kz = in]p ok
and due to the fact that in;p is injective we have k¥’ = k. Hence k is
unique.

Since the sets of places and transitions are componentwise Pullbacks in SET,
(1) is Pullback in PTNet.

Proof (Theorem |9 in Section .
We have to show that

1. K is an AHL-occurrence net and

2. all L;,;+ € INS are instantiations of K:
(a) Linit C Flat(K), i.e. there exists an injection in : Ly, — Flat(K) and
(b) the projection proj(K) oin : Lijn; — Skeleton(K) is an isomorphism.

Proof (Part 1). Follows directly from Theorem (1] in Section

Proof (Part 2). Given the Pushout (1) we obtain the instantiation interface J as

the Pullback (2) of Lint, M Fla t(K1) Flait) Flat(I) in PTNet using Lemma
m
I $> K Linit1 i Flat(Kl)
) . J1
l @ l / @ %)
Ky ——K J , Flat(I)
19 wmry
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Since Pullbacks are closed under monomorphisms, the injectivity of in; and
Flat(i1) lead to the injectivity of ji : J — Lipit and ing : J — Flat(I).
First we will show in Lemmathat the projection proj(I)oiny is an isomorphism.

Lemma 2. The projection proj(I)oiny : J — Skel(I) is an isomorphism.
Proof (Lemma @) Injectivity of proj(I) oiny:

Since proj is a natural transformation, diagramm (3) commutes

ing proj(K1)

Linitl Flat(K1> Skel([ﬁ)
J1
/ @ %ﬁ(; ® %el(;)
J — Flat(I) g Skel(I)

and hence proj(Ky) oiny o j; = Skel(i1) o proj(I) oing.

proj(K7)oing ojy is injective, because ji is injective and proj(K7)oin, is isomor-
phic, and hence Skel(i1)oproj(I)oiny is injective. This implies that proj(I)oiny
is injective.

Surjectivity of proj(I) oing:
Since I has no transitions, it suffices to show that (proj(I) oin;)p is surjective,
i.e. for all x € Pgpey(ry there exists y € Py, s.t. (proj(I) oing)p(y) = .
Let € Pgpei(r)- Then we have i1p(2) € Pspe(k,)- Since (proj(Ki)oini)p is bi-
jective because Lint, is an instantiation, there exists an unique a € Ayype(a), 8-t
(a,i1p(7)) € Pr,,,,, - Farthermore x € Py () implies € Pr and hence by Def.
there is also (a,z) € Ppiat(ry with proj(I)p(a,z) = z and Flat(i1)p(a,x) =
(a,i1(x)) € Priat(k,)-
The fact that (a,i1p(z)) € Pr,,,,, with ini(a,i1p(2)) = (a,91p(2)) € Pria(x,)
implies because of the Pullback-property that there exists y € Py, s.t. iny(y) =
(a,x) € Prias(r)-
Hence we have (proj(I) oins)p(y) = proj(I)p(inip(y)) = proj(I)p(a,z) = x.

in X roj (K .
(a,ir,p (), : (a,ip (@) —2E) i) o (o)
J1
/ @) AZ) @) Az(n)
Y it (a,2)1 proj (D) v

Since proj(I) oiny is injective and surjective, it also is bijective.
in o proj(K) is isomorphic:

We construct L;,;+ as Pushout of j; and js leading to an unique in : Ljp —
Flat(K), s.t. the following cube commutes:
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Linit1 ing Flat(Ky)

i (PB) FlatG)
/

Flat(I)

J in g
(PO1) \ (PO2)

Linit Flat(K)

/ Flat(\iz) /

Linit2 in Flat(K>)

Also the following cube commutes because proj is a natural transformation:

Flat(Ky) proj (K1) Skel(K1)
Flat(i]) Skel(iy
S

Flat(I) proj (K1) kel(I)
(PO2) \ (PO3)
Flat(K) proj (K Skel(K)

Flat(is) Skel(ig)
§ / ¢ /7

Flat(K2) proj(Ko Skel(K>)

Since proj(K1) oiny, proj(Ks) oing and proj(I) oiny are isomorphisms and
the following cube commutes, the fact that Skel(K) is Pushout implies that
proj(K) o in is an isomorphism.

Linit1 ing Flat(Kl) proj(Ky) Skel(Kl)

/ (PB) Flat(i]) /
/
J ing Flat(I) proj (K1) Skel(I)
(PO1) \ (PO2) \ (PO3)

jo Linit in: Flat(K) proj (K Skel(K)
Flat(is) / \ /
7 N
Linit2 in Flat(K2) proj(Ka) Skel(K2)

Injectivity of in:
Due to the fact that proj(K) o in is isomorphic, it is injective and hence in
injective.

Remark 2. We can obtain an inclusion by renaming the elements of the instantia-
tion by taking the image Linit = in(Linst) which is isomorphic to L;,;+ providing
an inclusion in : Ljp;; — Flat(K).

A.5 Proof of Theorem [3] in Section [4]

Proof. By Theorem [2[in Section the composition (K, INIT,INS) of the AHL-
occurrence nets with instantiations is an AHL-occurrence net with instantiations
and hence (K,INIT,INS) together with mp : K — N is an AHL-Process with
instantiations, where mp is the unique morphism induced by Pushout (1) with
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mp = (mpp, mpr)

m _ mp1p(p1) p=1ip(p1)
pr(v) {mPQP(pQ) p = iyp(p2)

- _mpir(ty)  t=iip(t)
prit) = {mP2T(t2) t = iy (ta)

A.6 Proof of Theorem [4] in Section [
Proof. We have to show that

1. there are bijections ep : Px — Pg+ and ep : T — Tk, s.t. the diagram in
Def. [12] commutes componentwise and

2. the instantiations IN.S and IN S’ are equivalent using that the instantiations
INS; and IN S, are consistent.

Proof of Part 1. Let us define gluing points GP(Pk) and GP(Pk' by

— GP(PK) = (illOig(P[)UiIQOi4(P[)UiI10i1(P[)) where illo’il(PI) = ilzoi2(PI)
- GP(PK/) = (iiOiQ(P[)Uigoil(P[)Uiéoig(PI)) where ilgoi;g(P[) = iﬁloi4(P[).

First we show that the three components of GP(Pk) are disjoint which fol-
lows symmetrically for GP(Pg).

it 0 ig(Pr) Ny oiy(Pr) =14} (is(Pr) Niy(Pr)) Ci(IN(K1) NOUT(Ky)) =10
by assumption IN(K;) NOUT(K;) = 0.
2’2 o i4(P]) N ll2 o iQ(P]) = 2/2(24(131) ﬂiQ(P])) - 1’2(OUT(K2) N IN(KQ)) =0

by assumption IN(K3) NOUT(K2) = 0.
For the third intersection we need

Lemma 3. IN(K)NOUT(K) =0 and similar IN(K') NOUT(K') = 0.
Using Lemma [3| we can show i} o i3(Pr) Nih 0 is(Pr) = 0:
iy 0is(Pr) Niy 0ig(Pr) € iy (IN(K1)) Niy(OUT(K3)) € IN(K) N OUT(K) = §
Proof of Lemma[3 Assume that there exists p € IN(K) N OUT(K), we have
IN(K) € #(IN(Ky)) Ui, (IN(K>))

and
OUT(K) Ci{(OUT(K,)) Uis(OUT(K3)).

Case 1 p € i%(IN(Kl)) N (OUT(Ky)) = i{(IN(K1)) NOUT(K1)) = 0 (con-
tradiction
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Case 2 p € i5(IN(K2)) NiL(OUT(K>)) = () (contradiction)
Case 3
p € L (IN(K1)) Ni4(OUT(K>))
= Jp; € IN(K1),ps € OUT(K>) with p =i} (p1) = i5(p2)
= Jp € Pr :i1(p) = p1,i2(p) = p2 by pushout (1)
= il(p) =p1 € OUT(Kl)
contradicts p; € IN(Ky) and IN(K;) NOUT(Ky) = 0.
Case 4 symmetric to Case 3.

This implies that GP(P) is the disjoint union
GP(Pk) =GP (Pg)UGPy(Px)UGPs(Pxk)
with GP,(Pk) for z = 1,2, 3 defined below.

Now we are able to define ep : Py — Pg/ via the non gluing points NGP.
Let NGP(Pk) = Pk \ GP(Pk) then we have the following disjoint unions:

Pr = GPl(PK) U GPQ(PK) U GPg(PK) U NGP(PK)
Py = GPl(PK/) @] GPQ(PK/) UGP3(PK/) UNGP(PK/)
with
GPl(PK) = le Oig(P[),GPl(PK/) = Zﬁl
GPQ(PK) = 2/2 Oi4(P[),GP2(PK/) = 7,:/3 Oil(P[)
GP3(PK):illoil(P[),Gpg(PK/):ié )
and we define ep by ep, : GP,(Px) — GP,(Pk/) for ¢ = 1,2,3 for all p € Py
by

5. ep, (i} 0i3(p)) = i} o ia(p)
6. ep,(i5 0is(p)) = i3 0i1(p)
7. ep, (i1 0i1(p)) = i3 0 i3(p)

which are bijections because all morphisms are injective. Moreover we have
GP(PKI) = il(P]) @] ig(P]) and GP(PKz) = iQ(P]) @] i4(P[).
Now let NGP(Pxk,) = Pk, \ GP(Px,) for x = 1,2 then we have by Lemma
A below:
NGP(Pg) = iy(NGP(Pg,)) Uis(NGP(Pk,)) = NGP(Px) UNGPy(Pk)
NGP(Pyr) = iy(NGP(Pi,)) Ui{(NGP(Px,)) = NGPy(Pi') UNGPy(Pic)

and we define for p; € NGP(Pk,) and po € NGP(Pk,)

8. ep, : NGP1(Pr) — NGP1(Pk) by ep, (i1 (p1)) = i5(p1)
9. €p5 : NGPQ(PK) — NGPQ(PK’) by ep5(i'2(p2)) = ’L'ﬁl(pg)

which are bijections because all morphisms are injective.
Alltogether we have a bijection

ep =¢€p, +ep, +€p, +ep, +€p; : Py — Py

Moreover there is a bijection e : T — Tk because we have the following
disjoint unions
T =Tk, WTk, and T = Ty, Wk,
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Lemma 4. NGP(Px) = Pk \GP(Pk) = #{(NGP(Pg,))UiL(NGP(Px,)) and
similar for NGP(Pk).

Proof of Lemma [

i1 (NGP(Pk,)) Uiy(NGP(Pk,))
= 'Lll(PKl \GP(PKl)) U iQ(PK2 \GP(PK2))
= i1 (P, \ (i1(Pr) U ZS(PI))) Uiy (Pr, \ (42(Pr) Uia(Pr)))
= i1 (Pr, ) \ (71 041 (Pr) Uiy 0i3(Pr)) Uis(Pr,) \ (i3 0 i2(Pr) Uiy 0ds(Pr))
i} (Pr,) Ui5(Pk,) \ (GP1(Pg) U GPy(Pk) U GPs(Pr))
P\ GP(Be)

It remains to show for Proof of 1. the following:

Lemma 5 (Compatibility of e, and ey with mp and mp’). The following
diagram commutes componentwise.

K
R
er| |er AN
mp’
K’

Proof of Lemma@ mp and mp’ are defined by the induced morphisms of pushout
(1) and (2), where the outer diagrams commute by compatibility of mp; and mps
with il, i27i3 and i4.

Ky
V mp1
iy
I (1) K—"" S AN
\ %
[ mp2
Ky
K>
74 mpsa
i
I 2) K —— 2 S AN
13 mpi
Ky

1. The bijection ey : Ty — Tk is induced by id; and ids in the following
diagrams (3) and (4), s.t. (5) commutes if the outer diagrams commute.
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i iy
TK1 ——Tg TK2 — Tk

X N

idy (3) er (5) Tan idz (4) er (5) Tan
mp’ mp’
TKl ﬁ TK/ TK2 H’- TK/
if il

The outer diagrams commute because we have mpoi} = mp; = mp’ oi} and
mp o iy, = mps = mp’ o i}.
. The bijection ep : Pk — Pk is given by ep, +ep, + ep, + ep, + ep,. Note
that the bijections ep, are defined by commutativity of diagrams (x) for
x=1,...,5 and the required digram (6) commutes if all the outer diagram
commute.
(a)
mp oi} oiz = mpy oig
= mpy 0 1o (by compatibility)
=mp’ ody oy

GP,(Pg)—— Pk
= X
Pr (1) epy ep (6) Pan

m A

GP1 (PK/)C—> PK/

mpoihoiy =mpsoiy
=mpy 0y (by compatibility)
=mp' oifoiy

GPQ(PK)C—> PK
e AN
Pr (2) €Py er (6) Pan

-/ . ’
k mp

GP2(PKI)(H PK/

mpoijoi] =mpyoi
= mpy 0y (by compatibility)
=mp' oijoiy
=mp' oifois
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GP3(PK)C—> PK

Pr (3) €P3 er (6) Pan

il oig mp’

GP3(PKI)(% PK/

mp oy = mpy

=mp ol
ST N
NGP(Pg,) @ Py ep (6) Pan

-/ ’

NGP1 (PK/)C—> PK/

mp o iy = mpsy

= mp' o
N
NGP(Pg,) (5) e er (6) Pan

iy mp

NGPQ(PK/)C—> PK/

Remark 3. For the existence of mp and mp’ we need already the compatibilities
mpy © i1 = mpg 0 iy and mpy 0 i3 = mps 0 i4. In 2(a) - 2(c) we need in addition
that all these morphisms are equal.

Proof of Part 2. Given Linit = Linit, ©(J,j,,j») Linit, With pushout (3) we have
by consistency of INSy and INSy Linitr = Linit; ©(J,j4,j5) Lini; With pushout
(4) and vice versa, s.t. properties 1-4 in Def. are satisfied.

First we have to show according to Def. [13]2 that

V(a,p) € Atypep) ® P : (a,p) € IN(Linit) < (a,ep(p)) € IN(Linirr)
?=" Let (a,p) € IN(Linit). By construction we have
IN(Linit) = ji(IN (Linit,)) U jo(IN (Linit,) \ j2(J))

and
IN(Linit) = -ja(IN(Linig)) U j5(IN (Linigr ) \ 33(J)).
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Case 1 Let (a,p) € j5(IN(Linst,)). Then there exists (a,p1) € IN(Linit,)
with
jila,p1) = (a,(p1)) = (a,p)
So we have | (p1) = p.
Case 1.1 Let (a,p1) € GP(Linit, ). Then we have

(a,p1) € IN(Linit,) \ GP(Linit,) € IN(Linity)
(by consistency)
= Jjs(a,p1) = (a,i3(p1)) € IN (Linir')
(because py € i3(Pr) and Def. IN(Ljpiv))
= (a,ep(p)) = (a,ep 0 i1 (p1)) = (a,i5(p1)) € IN(Linir)
(by ep commutes on NGP (see 8.))
= (U,, €P(p)) € IN(Linit’)

Case 1.2 Let (a,p1) € GP(Linit,)-
Case 1.2.1 Let p; = i3(p;) for p; € Py.

(a,p ) S IN(Linitl)
= (a,23( )) € IN(Linit1)
= (a,z (p1)) € IN(Linity) (by consistency (see 3.))
= Ja (a i2(p1)) € IN(Lini')  (by Def.IN (Liniv))
= (a,iy oia2(pr)) € IN(Linit)

Then we have (a,ep(p)) = (a, e, (i} o iz(pr)) = (a,iy 0 ia(pr)) €
IN(Linir) using p =4} o ig(pr) = e,(p) = iy o ia(pr) (see 5.).
Case 1.2.2 Let p1 = i1(ps) for p;y € P;. Then p; € OUT (K1) N

IN(K;) which is a contradiction to the assumption that

OUT(K;)NIN(K;) = 0

Case 2 Let (a,p) € j5(IN(Linit,) \ j2(J)). Then there exists (a,ps) €
IN(Linit,) \ j2(J) with

jé(a’pQ) = (a’iIQ(p2)) = (a,p)

So we have 5 (p2) = p.
Case 2.1 Let (a,p2) € GP(Linit,). Then we have

(a,p2) € IN (Linit,) \ GP(Linit,) € IN(Linit,)
(by consistency (see 1.))
= ji(a,p2) = (a,i4(p2)) € IN (Linitr)
= (a,ep(p)) = (a,ep 0 i5(p2)) = (a,i4(p2)) € IN(Linir)
(by ep commutes on NGP (see 9.))
= (a,ep(p)) € IN(Linit')

Case 2.2 Let (a,p2) € GP(Linit,)-
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Case 2.2.1 Let ps € is(I). Then (a,p2) € ja2(J) which is a con-
tradiction to the assumption (a,p) € j5(j2(J)) which implies
(a,p2) & Jo().
Case 2.2.2 Let pg € i4(I).Then py € OUT(K3) N IN(K3) which is
a contradiction to the assumption that OUT (K2)NIN(K3) = 0.
7" Let (a,p) € IN(Lini) for p € Pgs/. We have to show (a,e,'(p)) €
IN(Ljpit). By construction we have

IN(Linivr) = j3(IN (Linity)) U j5(IN (Linit; ) \ 53(J))-

Case 1 Let (a,p) € jy(IN(Linit,)). Then there exists (a,p2) € IN(Linit,)
with
ji(a,p2) = (a,iy(p2)) = (a,p)
So we have (p2) = p.
Case 1.1 Let (a,p2) € GP(Liniy,). Then we have

(a,pg) € IN(LGzté) \GP(Linit;) - IN(L'L'nitg)
(by consistency)
= js(a,p2) = (a,i5(p2)) € IN(Linit)
(because py € i3(Pr) and Def. IN(Lipit))
= (a,ep' (p)) = (a,¢p" 0 i)(p2)) = (a,i5(p2)) € IN(Linit)
(by ep commutes on NGP (see 9.))
= (a,ep(p)) S IN(L”L”)

Case 1.2 Let (a,p2) € GP(Linity,)-
Case 1.2.1 Let py = is(p;) for p; € Py.

(a,p2) € IN(Linir,)

(a,iz2(pr)) € IN(Linir,)

(ayis(pr)) € IN(Linit,)  (by consistency )
= ji1(a,i3(pr)) € IN(Linit)  (by Def.IN (Linit)
= (a,iy 0i3(pr)) € IN(Linit)

=
=

Then we have
(a,ep' (p) = (a,e; " (ih 0 i2(p1)) = (a,4) 0 i3(p1)) € IN(Linit)
using p =4} oiz(pr) = ep(p) = i) o ia(pr) (see 5.).
Case 1.2.2 Let py = i4(ps) for p;y € P;. Then py € OUT(K3) N
IN(K3) which is a contradiction to the assumption that
OUT(K») N IN(Ks) = 0

Case 2 Let (a,p) € j5(IN(Linitr) \ ja(J)). Then there exists (a,p1) €
IN(Linir;) \ j3(J) with

J3(a,pr) = (a,i5(p1)) = (a,p)

So we have i4(p1) = p.
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Case 2.1 Let (a,p1) € GP(Liniy ). Then we have

(a,p1) € IN(Linit;) \ GP(Linit;) € IN(Linit, )
(by consistency)
= jila,p1) = (a,41(p1)) € IN(Linit)
= (a,ep' (p)) = (a,ep' 0 d5(p1)) = (a,i1(p1)) € IN (Linit)
(by ep commutes on NGP (see 8.))
= (a,ep'(p)) € IN(Linit)

Case 2.2 Let (a,p1) € GP(Lint)-
Case 2.2.1 Let p; € i3(I). Then (a,p1) € j3(J) which is a con-
tradiction to the assumption (a,p) ¢ j4(j3(J)) which implies

(a,p1) & js(J).
Case 2.2.2 Let p; € i1(I).Then p; € OUT (K1) N IN(K7) which is
a contradiction to the assumption that OUT (K1) NIN(K;) = 0.

Moreover we have to show according to Def. [I3]2 that
V(a,p) € Atype(p) & PK : (a7p) S OUT(LGzt) < (aa eP(p)) S OUT(LGzt’)

This can be shown analogously to Case 1 and Case 2 above.
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