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➢ Motivation
● Machine learning applications might reinforce 

bias against certain groups of people with a 
discrimination history [1, 2].

● State-of-the-art pre-processing approaches [3, 4, 
5] remove bias from the training set using a 
horizontal strategy, i.e., adding and removing 
tuples.

● This horizontal approach can cause a decrease in 
accuracy due to information loss and might also 
lead to fairness overfitting.
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➢ Research Questions

● How can we leverage feature engineering to find 
a viable alternative to horizontal approaches?
 
○ How can we generate features that replace 

existing inadmissible features?
○ How can we efficiently traverse the 

exponential space of feature 
transformations?

FairExp achieves competitive results compared to state-of-the-art 
pre-processing horizontal strategies.

➢ FairExp Architecture
1. Feature Construction

○ We apply recursively feature construction 
operators proposed by ExploreKit [6].
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➢ Experimental Results
Results for the Adult Dataset. Target: >50k usd/year; Sensitive: Sex; Inadmissible: Marital-status

Acknowledgment

The contribution of Felix Neutatz was funded by the German Ministry for Education and 
Research as BIFOLD - Berlin Institute for the Foundations of Learning and Data (ref. 01IS18025A 
and ref. 01IS18037A).


