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Motivation

❑ Research has provided a variety of data cleaning tools [1]

▪ Pattern-based [6]

▪ Rule-based [7]

▪ Statistical [8]

❑ But, there are still challenges in applying these tools

▪ No one-size-fits-all solution

▪ Iterative data cleaning

▪ Trial-and-error parametrization
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Research Question

❑ How can we leverage machine learning and data profiling 
techniques to automatically build data cleaning workflows?

▪ How can we featurize data values to explain the context 
of a data error?

▪ How can we capture similarities of data cleaning tasks to 
assess the effectiveness of each tool on a new dataset?

▪ How can we aggregate the results of stand-alone 
cleaning strategies in a holistic manner?
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We need a workflow orchestrator that learns
from previous tasks to propose promising data 

cleaning workflows for a new dataset.
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Wrangler [6] NADEEF [7] dBoost [8]

Union All [1] PBO [1] MDED [3]

1) Dataset profiler

▪ Generates metadata to describe data quality 
problems of datasets 

2) Error detection engine

▪ Leverages the metadata to compare the similarity 
of datasets 

▪ Selects and aggregates the promising error 
detection tools 

3) Orchestrator

▪ Leverages error detection results and metadata to 
generate dataset-specific cleaning workflows

❑MDED, a system that learns to aggregate error 
detection strategies via metadata [3]

❑REDS, a system that estimates the performance 
of error detection strategies via metadata [2]

❑ ED2, an active learning-driven error detection 
system [4]

❑Raha, a configuration-free error detection 
system to detect data errors holistically [5]

https://github.com/bigdama/reds

http://bit.ly/systems-aggregation

http://bit.ly/2mjyiTO

https://github.com/BigDaMa/raha

https://github.com/bigdama/

