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Research Question

. Research has provided a variety of data cleaning tools [1]
= Pattern-based [6]
= Rule-based [7]
= Statistical [8]
[ But, there are still challenges in applying these tools
" No one-size-fits-all solution
" [terative data cleaning
" Trial-and-error parametrization

. How can we leverage machine learning and data profiling
techniques to automatically build data cleaning workflows?

" How can we featurize data values to explain the context
of a data error?

" How can we capture similarities of data cleaning tasks to
assess the effectiveness of each tool on a new dataset?

" How can we aggregate the results of stand-alone
cleaning strategies in a holistic manner?

We need a workflow orchestrator that learns
from previous tasks to propose promising data
cleaning workflows for a new dataset.

Architecture

Current Status = Future Work
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1) Dataset profiler

" Generates metadata to describe data quality
problems of datasets

2) Error detection engine

" Leverages the metadata to compare the similarity
of datasets
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| " Selects and aggregates the promising error
| detection tools
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3) Orchestrator

" |everages error detection results and metadata to
generate dataset-specific cleaning workflows

Current Status and System Artifacts
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