Optimization Algorithms

Stochastic Gradient Descent

Marc Toussaint
Technical University of Berlin
Winter 2024/25

References

e Léon Bottou: Stochastic Gradient Descent Tricks! (2012)

e Bottou, Curtis, Nocedal: Optimization Methods for Large-Scale Machine Learning
(2018)

Lecture by Mark Schmidt “SGD Convergence Rate”
Nemirovski et al: Robust Stochastic Approximation Approach to Stochastic (2009)
Lecture by Christopher De Sa https://www.cs.cornell.edu/courses/cs4787/2020sp/

Wikipedia “Stochastic approximation”

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 2/22

e For consistency with references, we change our notation a bit:

e We consider the problem

min, f(w)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 3/22

Stochastic Gradient Descent Basics & Convergence

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 4/22

Plain Gradient Descent — Recall

e Plain gradient descent iterates, e.g. with constant «

w — w — aVf(w)

e Core issue (cf. Part 1): Stepsize! (e.g., small gradient — small step?)

e Solution: Backtracking line search

— Theorem: Gradient descent with backtracking line search converges exponentially with
convergence rate v = (1 — 237 0s04)

— we have regret O(v") for some v < 1

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 5/22

Typical Setting for Stochastic Gradient Descent
e Additive cost function: .,
min = 3 fi(uw)
=1

— E.g.: least squares problem min,, >, ¢i(w)?

e Core example: Machine Learning, with data D = {(z;, yi)}}",
fw) = 23 st)
w —ni:1 Zi; W), Yi

e We are interested in large n (big data)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 6/22

Stochastic Gradient Descent (SGD)

e Instead of computing Vf in each iteration, we only compute Vf; of one cost
component
— E.g., only the gradient w.r.t. a mini-batch (subset) of the full data

e Stochastic Gradient Descent:

Input: initial wo € R™, gradient functions Vf;(w), stepsize schedule o
1: fork =0,..,do
2: Sample < uniformly (iid) from {1, .., n}
3: W41 — W — akai(wk)
4: end for

e Vf;(w) has expectation E{Vf;(w)} = Vf(w)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 7/22

Stochastic Gradient Descent (SGD)

¢ Instead of computing Vf in each iteration, we only compute Vf; of one cost
component
— E.g., only the gradient w.r.t. a mini-batch (subset) of the full data

e Stochastic Gradient Descent (episodic):

Input: initial wo € R™, gradient functions Vf;(w), stepsize schedule oy,
1: initialize k = 0
2: for episode 5 =0, .., do
3: fori=1,..,n (or: = RandomPermutation({1, ..,n})) do

4 W41 < Wi — akal(wk)
5: k<« k+1

6 end for

7: end for

e Vf;(w) has expectation E{Vf;(w)} = Vf(w)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 7/22

Converenge of SGD

e SGD is a method to find a point such that Vf(w) ~ 0
e Convergence analysis investigates how |Vf(wy)| decreases with k (in expectation)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 8/22

Converenge of SGD

e SGD is a method to find a point such that Vf(w) ~ 0
e Convergence analysis investigates how |Vf(wy)| decreases with k (in expectation)

e Mathematics: see “Stochastic Approximation”

e Typical assumptions:
— Lipschitz continuity of Vf(w):

L ER st Vw,@: |Vf(w) — V(@) < L |w—a],

where |w| = vVw? is the Ly-norm; L is called Lipschitz constant.
— This means, “the change of gradient Vf(w) is limited”

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 8/22

Convergence of SGD

e Theorem: Assuming Vf(w) is L-continuous, and Var{Vf;(w)} = o2, we have

f(wo) — f* k Oak Lo*
Zk 0 %k Zk:oak 2

m}jn{E{!!Vf(wk)||2}} <

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 9/22

Convergence of SGD

e Theorem: Assuming Vf(w) is L-continuous, and Var{Vf;(w)} = o2, we have

f(wo) — f* koak Lo*
Zko k Zioak 2

m}jn{E{!!Vf(wk)||2}} <

¢ Implications:
— If gradient had no noise o = 0 (plain GD): constant « leads to convergence O(1/t)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 9/22

Convergence of SGD

e Theorem: Assuming Vf(w) is L-continuous, and Var{Vf;(w)} = o2, we have

f(wo) — f* koak Lo*
Zko k Zioak 2

m}jn{E{!!Vf(wk)||2}} <

¢ Implications:
— If gradient had no noise o = 0 (plain GD): constant « leads to convergence O(1/t)

— Stochasticity: rate is determined by %’510 Zk Ensure lim; Zk 0 a? < oo and lim; Zk ok = 00.

— Constant « is bad choice: right becomes a constant ﬂ
— Diminishing step size ax, = is good: we have Zk ar = O(logt) and error O(1/log(t))

1+k

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 9/22

Converenge of SGD — Derivation

e Based on assuming Lipschitz continuity of Vf(w), we derive how SGD decreases
function values in expectation:

— We assume |Vf(w) — Vf(w)| < L |w — w| for any w, w.
— For any step § = w — w the Hessian V2 f(w) fulfills | V2 f(w)d] < L|5].
— Using this in a 2nd order Taylor, it follows
1
f(w) < f(w) + Vf (@) (w — @) + 5 Llw~— o) .

— And applying this to w11 + wi — ok Vfi(wy), we get in expectation

E{f(wri1)} < fwr) — anl¥f i)l + 3 of LE{IVfiwn)|?} -

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 10/22

Converenge of SGD — Derivation

e From this, we derive how | Vf(wy)| decreases with & in expectation:
— Assume o is the variance of Vf;(w), and rearrange terms

E{f(wis1)} < flwr) — VS (wi)|* + ok L JE{\IVfi(wk)HQ}

< fwn) — | ()P QL;’
OISl < fus) ~ E{funen)} + 0F 2T

— Sum over k = 1, ..t, pull min. gradient out of left sum, and notice the telescope sum on the right:

> cwal S (wa)l” < 3[f (i) ~ E{f w0} + Zai-l%‘

t

L
min{E{|Vf (ws)] }}Zak1<fwo) E{f(wt}+2 Lo
k=1
— Replace E{f(w:)} > f*, and rearrange terms:
wo) — f* 2100‘% Lo?

min{E{| 7/ (we)[*}} <

Learning and Intelligent Systems Lab, TU Berlin Zk 0 Qk Zkzgg){bcha%‘uc Gradient Descent — 11/22

When is SGD efficient?

(from Bottou “tricks”)
e For strongly convex assumptions, deterministic gradient can converge exponentially,

requiring O(log %) iterations to reach precision p. SGD requires O(%) iterations.

e HOWEVER: The time-per-iteration is also important!: (see 3rd line)

GD 2GD SGD 2SGD
Time per iteration : n n 1 1
Iterations to accuracy p: log % log log % 1/p 1/p
Time to accuracy p: n log % n log logi 1/p 1/p
2
Time to excess error ¢: 51% log é 21% log% log log % 1/e 1/¢

2GD = “2nd order gradient method” (that uses some approx. of the inv. Hessian)

— for large n, SGD is faster!

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 12/22

Practical Recommendations

(from Bottou “tricks”)

e Randomly shuffle 4, but then ‘zip’ through

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 13/22

Practical Recommendations

(from Bottou “tricks”)

e Randomly shuffle 4, but then ‘zip’ through
¢ In ML: Monitor training and validation after each zip, through full data

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 13/22

Practical Recommendations

(from Bottou “tricks”)

e Randomly shuffle 4, but then ‘zip’ through
¢ In ML: Monitor training and validation after each zip, through full data

e Use learning rate oy, = 73557,
(e.g., Lo-regularization in ML)

when X is a known minimal eigenvalue of Hessian

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 13/22

Practical Recommendations

(from Bottou “tricks”)

e Randomly shuffle 4, but then ‘zip’ through
¢ In ML: Monitor training and validation after each zip, through full data

e Use learning rate oy, = 73557,
(e.g., Lo-regularization in ML)

when X is a known minimal eigenvalue of Hessian

e Empirically choose best oy on small data subset

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 13/22

How to improve Stochastic Gradient Descent

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 14/22

How to improve over basic SGD?

e There are three core approaches:

e Gradient Variance Reduction
e 2nd-order information
e Momemtum Methods

Learning and Intelligent Systems Lab, TU Berlin

Stochastic Gradient Descent — 15/22

Reducing Gradient Variance

e Use flexible mini-batch sizes,

a
Wit 4 Wk + Z Vfi(w)
|Bk‘ 1€By

and increase | By | over time. But how? (cf. Bottou et al. Sec 5.2)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 16/22

Reducing Gradient Variance

e Use flexible mini-batch sizes,

a
Wh+1 4 Wk + ﬁ Z Vfi(w)
1€By

and increase | By | over time. But how? (cf. Bottou et al. Sec 5.2)

o Gradient aggregation: E.g., store all gradients Vf;(wy;) you've seen latest for j, then
sample i, update wy;) < wg, query&store Vf;(wy) and iterate (Bottou Sec 5.3.2)

Wr41 < wi + (1/n) Z Vf;j(wyy)

j=1

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 16/22

Reducing Gradient Variance

e Use flexible mini-batch sizes,

a
Wit 4 Wk + Z Vfi(w)
|Bk‘ 1€By

and increase | By | over time. But how? (cf. Bottou et al. Sec 5.2)

o Gradient aggregation: E.g., store all gradients Vf;(wy;) you've seen latest for j, then
sample i, update wy;) < wg, query&store Vf;(wy) and iterate (Bottou Sec 5.3.2)

Wr41 < wi + (1/n) Z Vf;j(wyy)

j=1

e lterate Averaging: Let w;, create “noise”, but care about w, = 1 S Wi
(Polyak-Ruppert method)

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 16/22

Second Order Information

e Try to estimate Hessian, e.g. stochastic version of BFGS
— Many possible approaches & maths, Sec 6
— But require more complex operations that plain SG

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 17/22

Second Order Information

e Try to estimate Hessian, e.g. stochastic version of BFGS
— Many possible approaches & maths, Sec 6
— But require more complex operations that plain SG

— Estimate diagonal of Hessian, or “scaling” of gradient only coordinate-wise

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 17/22

Second Order Information

e Try to estimate Hessian, e.g. stochastic version of BFGS
— Many possible approaches & maths, Sec 6
— But require more complex operations that plain SG

— Estimate diagonal of Hessian, or “scaling” of gradient only coordinate-wise
e RMSprop (running avg. of elem-wise gradient squares)

v & (1= A) v + A [Vi(wg)]? [elem-wise]
o,

VUL + [

e Adagrad (accumulate squares for diminishing stepsize with constant «)

Why1 — WE — Vii(wg) [elem-wise]

Vg ¢ Vg1 + [Vf,(wk)]Q [elem-wise]

a uvfi(wk) [elem-wise]

VU +

W41 < Wk —

Leammg(ﬂ‘;;l'lnbeﬁsoreticgtll%Hlaination for good performance pending”; Bottou_et EIL,S t\%egraediggt Descent — 17/22

igent Systems

Stoc

Why divide by /(¢?)?

e RMSprop makes a step — \/é‘;ﬁVfi (elem-wise), where <92> averages gradient

squares (elem-wise) — Why?

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 18/22

Why divide by /(¢?)?

e RMSprop makes a step — \/é‘;ﬁVfi (elem-wise), where <g2> averages gradient
squares (elem-wise) — Why?

e Scale invariance: Rescaling f; «+ af; scales V,f and \/(g?) equally
e Accounts for different conditioning along different coordinates
e Gradient steps in all directions become somewhat equal/normalized

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 18/22

Why divide by /(¢?)?

e RMSprop makes a step — \/#Vfi (elem-wise), where <g2> averages gradient
"

squares (elem-wise) — Why?

Scale invariance: Rescaling f; «+ af; scales V,f and \/(g?) equally
Accounts for different conditioning along different coordinates
Gradient steps in all directions become somewhat equal/normalized

If ; has some curvature, e.g. f; = aw?, then Vf; = 2aw, and /(¢2) x a
\/{g?) is proportional to curvature, and mimics a diagonal Hessian

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 18/22

SGD with Momentum

e SGD with momentum: (c.f. conjugate gradient method)
W41 Wi — o Vfi(w) + Br(wr — wi1)
Written as low-pass of the adaptation step (mj, = wi41 — wg):
mp < Bemga — o Vfi(wr) , Wk1 < wi +my
Recommended version, easier to tune with constant beta 8 and decay ax = ao/(1 + Ak):

my = Bmpg — (1 =) apVfi(wg) , Wit < wi +my,

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 19/22

SGD with Momentum

e SGD with momentum: (c.f. conjugate gradient method)

W1 — wy — o Vfi(wr) + Br(wr, — wi-1)
Written as low-pass of the adaptation step (mj, = wi41 — wg):

my < Bpmpy — apVfi(we) , wWig1 < wg +mg

Recommended version, easier to tune with constant beta 8 and decay ax = ao/(1 + Ak):

my = Bmpg — (1 =) apVfi(wg) , Wit < wi +my,

e Nesterov Accelerated Gradient (“Nesterov Momentum”):
Wy, < w, + Br(wy — wi1)
W1+ Wg — g Vfi (W)

Yurii Nesterov (1983): A method for solving the convex programming problim WIthSz%g/gKeggg

Learning an Inte\gem ystemsL

rate O

ra lent

E)lgsce%t -19/22

Adam

e Adam: A Method for Stochastic Optimization (DP. Kingma, J. Ba) arXiv:1412.6980

“Our method is designed to combine the advantages of two recently popular
methods: AdaGrad (Duchi et al., 2011), which works well with sparse gra- dients,
and RMSProp (Tieleman & Hinton, 2012), which works well in on-line and
non-stationary settings”

(Roughly, Adam = cleaner version of RMSprop with momentum.)

e Prove convergence rate

1 T
Z w)] <O(1/T)

k=1

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 20/22

Adam

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2 indicates the elementwise
square g; @ g¢. Good default settings for the tested machine learning problems are o = 0.001,
B = 0.9, B2 = 0.999 and € = 10~%. All operations on vectors are element-wise. With B4 and g
we denote 31 and 5 to the power ¢.

Require: «: Stepsize
Require: (31, 32 € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters #
Require: 6j: Initial parameter vector
myg < 0 (Initialize 1*' moment vector)
vy < 0 (Initialize 2" moment vector)
t + 0 (Initialize timestep)
while 6; not converged do
t—t+1
gt = Ve fi(f:—_1) (Get gradients w.r.t. stochastic objective at timestep t)
my « 1 -my_y + (1 — F1) - g (Update biased first moment estimate)
vt < B2 ve—1 + (1 — 32) - g (Update biased second raw moment estimate)
e < my /(1 — B%) (Compute bias-corrected first moment estimate)
Ty < v¢/(1 — BL) (Compute bias-corrected second raw moment estimate)
; + 0;_1 —a - iy /(T + €) (Update parameters)
end while
return 6, (Resulting parameters)

(all operations inte%preted element-wise) arXiv:1412.6980
Learning and Intelligent Systems Lab, TU Berl

lin Stochastic Gradient Descent — 21/22

Adam & Nadam

e Adam interpretations (everything element-wise!):
— m¢ = (g) the mean gradient in the recent iterations
— v ~ (g*) the mean gradient-square in the recent iterations
— 1, ¢ are bias corrected (check: in first iteration, ¢t = 1, we have m,; = g:, unbiased, as desired)

- Af~ — <‘12> g would be a Newton step if \/(g?) were the Hessian...
g

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 22/22

Adam & Nadam

e Adam interpretations (everything element-wise!):
— m¢ = (g) the mean gradient in the recent iterations
— v ~ (g*) the mean gradient-square in the recent iterations
— 1, ¢ are bias corrected (check: in first iteration, ¢t = 1, we have m,; = g:, unbiased, as desired)

- Af~ — <‘12> g would be a Newton step if \/(g?) were the Hessian...
g

¢ Incorporate Nesterov into Adam: Replace parameter update by

(1—pB1)g

Op < 01 — o/ (Vo1 +€) - (ﬁﬂht—i‘l_iﬁt
1

)

Dozat: Incorporating Nesterov Momentum into Adam, ICLR’16

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 22/22

Appendix: Convergence & Convergence Rate

e Convergence: limzy =2* < Ve>0: 3K : Vk>k: |z — 2" <e

e Convergence Rate: limy_, o, 227 =

T —T*

e We care about convergence of the gradient limy_, ., |gx| = 0 to zero

Learning and Intelligent Systems Lab, TU Berlin Stochastic Gradient Descent — 23/22

Appendix: Convergence & Convergence Rate

e Convergence: limzy =2* < Ve>0: 3K : Vk>k: |z — 2" <e
o Convergence Rate: limg—00 25 = 4

e We care about convergence of the gradient limy_, ., |gx| = 0 to zero

e Typically you try to prove a step-wise decrease inequality, e.g.:

|gr+1] < |9k
We call this “convergence with rate 1", which is also called linear convergence
(“convergence with linear step-wise reduction”) or exponential convergence, as we have
lgk| < O(u").
e Or one directly finds a converging upper bound, e.g.
lgx| < O(1/k)

Ve £all this ‘converges to zero with 1/k”, but not with a constant (‘linear”) rate, but slower.

ystem: toc escent — 23/22

