
AI & Robotics:
Lab Course

Brief Notes on Behavior Organization

Marc Toussaint
Technical University of Berlin

Summer 2020



• Disclaimer: This is not at all a proper lecture on behavior organization

• Instead, some practical comments to let you consider how to organize
your code

Brief Notes on Behavior Organization – – 2/7



• Disclaimer: This is not at all a proper lecture on behavior organization

• Instead, some practical comments to let you consider how to organize
your code

Brief Notes on Behavior Organization – – 2/7



Spaghetti Code & Finite State Machines

• All code we’ve seen in this course was sequential, single-threaded
– At any time, you are at a single point of execution
– The location of that point of execution is the ’state’ of the execution
– With if-then-else, and hierarchical method calls, you can navigate that

state into any scope, or mode of operation

• That’s like a FSM!
– You have one(!) finite state variable
– At any time, you are in one particular state
– Some conditions transition you between states

Brief Notes on Behavior Organization – – 3/7



Spaghetti Code & Finite State Machines

• All code we’ve seen in this course was sequential, single-threaded
– At any time, you are at a single point of execution
– The location of that point of execution is the ’state’ of the execution
– With if-then-else, and hierarchical method calls, you can navigate that

state into any scope, or mode of operation

• That’s like a FSM!
– You have one(!) finite state variable
– At any time, you are in one particular state
– Some conditions transition you between states

Brief Notes on Behavior Organization – – 3/7



Spaghetti Code & Finite State Machines

• Using a formal FSM library may have advantages, allows for analysis,
etc

• But in principle, any coordination you can achieve with a FSM you can
also represent directly in non-threaded code

• So, for the sake of flexible refactoring and flexibility, I would recommend
against using a formal FSM to organize your behavior

• BUT, it does make a lot of sense to think about what can be a finite
state, and perhaps introduce variables to explicitly represent the “state”
in your code

Brief Notes on Behavior Organization – – 4/7



Spaghetti Code & Finite State Machines

• Using a formal FSM library may have advantages, allows for analysis,
etc

• But in principle, any coordination you can achieve with a FSM you can
also represent directly in non-threaded code

• So, for the sake of flexible refactoring and flexibility, I would recommend
against using a formal FSM to organize your behavior

• BUT, it does make a lot of sense to think about what can be a finite
state, and perhaps introduce variables to explicitly represent the “state”
in your code

Brief Notes on Behavior Organization – – 4/7



2 basic paradigms

• Single-threaded, single FSM

• ROS-like: many parallel processes or threads

• Combining these views:
– Think of each thread as its own FSM, being in a discrete state
– The overall state is then a distributed state machine, where the state is

factored or hybrid
– Either there is a “master manager” that manages the transitions on the

factored state
– Or the processes themselves transition the factored state

Brief Notes on Behavior Organization – – 5/7



2 basic paradigms

• Single-threaded, single FSM

• ROS-like: many parallel processes or threads

• Combining these views:
– Think of each thread as its own FSM, being in a discrete state
– The overall state is then a distributed state machine, where the state is

factored or hybrid
– Either there is a “master manager” that manages the transitions on the

factored state
– Or the processes themselves transition the factored state

Brief Notes on Behavior Organization – – 5/7



Relational Activity Processes
– Model the state of concurrent cooperation using first order logic, and

formulate a semi-MDP
Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent
Cooperation. ICRA’16

– Monte-Carlo Tree Search
– Imitation and Inverse RL in relational domains

Munzer, Piot, Geist, Pietquin, Lopes: Inverse reinforcement learning in relational domains.
IJCAI’15

◦
Brief Notes on Behavior Organization – – 6/7



Practical comments for this course

• In this course, go as far as you can with plain sequential code

• Refactor code into reusable perceptual/manipulation routines

• Have some main code that sequences the routines

• Perhaps it helps to explictly represent a notion of ’state’

Brief Notes on Behavior Organization – – 7/7


