il
I

Al & Robotics:
Lab Course

Motion Generation

Marc Toussaint
Technical University of Berlin
Summer 2020

Outline

Motion generation as optimization

Designing features

Advanced: equalities & inequalities, path optimization

Glimpse on available features

2/9

Basic Control as Optimization

¢ Notation
qg €R"” vector of joint angles (robot configuration)
geR" vector of joint angular velocities
¢: qr—yeR? feature (or fwd kinematic)
e.g. position € R? or vector € R?
J(q) = 32 e RXm Jacobian
o3, = v"TWwo squared norm of v w.r.t. metric W

3/9

Basic Control as Optimization

¢ Notation
qg €R"” vector of joint angles (robot configuration)
geR" vector of joint angular velocities
¢: qr—yeR? feature (or fwd kinematic)
e.g. position € R? or vector € R?
J(q) = 32 e RXm Jacobian
o3, = v"TWwo squared norm of v w.r.t. metric W

e Inverse Kinematics:
y* ¢ = argmin |¢(q) — y*|& + lg — qoliv
q

(Solution with linearization at go: ¢* = go + J#(y* — yo) with
JE=WAJTIWLIT 4+ c)

3/9

Basic Control as Optimization

¢ Notation
qg €R"” vector of joint angles (robot configuration)
geR" vector of joint angular velocities
¢: qr—yeR? feature (or fwd kinematic)
e.g. position € R? or vector € R?
J(q) = 32 e RXm Jacobian
o3, = v"TWwo squared norm of v w.r.t. metric W

e Inverse Kinematics:
. 2 2
y" = q" =argmin|¢(q) — y" o + g — ol
q
(Solution with linearization at go: ¢* = go + J#(y* — yo) with
JE =W (JWLJT + c
e Operational Space Control:

ij* > u* = argmin |¢(q) — §° | + |ulF
u
3/9

It’s all about features

o Let’s rewrite IK a bit:
¢* = argmin |¢(q) — y*|& + la — ol
q

— qo is the current state

— We want to compute ¢, the next state

- Let 1 = VC(¢(q) — y*), and &2 = VW (q — qo)

— And let @ = (®1; ®o;...), stacking all features in a single vector

e Then IK is a sum-of-squares problem

¢* = argmin ®'®
q

— To design motion

think of all kinds of features you want to penalize,
zero calibrate them (subtract the target),

scale them (multiply with some v/C),

stack them into a big feature vector,

call an efficient SOS optimization method.

4/9

Hard constraints: beyond just penalizing

e We can not only solve SOS problems, but also

min Y " ¢r(q) dr(e) stV dr(g) <0, ¥ ¢rlg) =0,
q kel E

keS

where
— some features ¢, k € S, are SOS
— some features ¢, k € I, impose inequalities
— some features ¢, k € E, impose equalities

— To design motion
— define features as above
— but also specify the type of each feature: if sos, eq, or ineq

5/9

Generalizing this to dynamics

¢ In Operational Space Control we solve for acceleration/torques of the
robot. But we discretize time anyway. So we can also just optimize the
next configuration:

e Let gy be the current configuration, ¢_, be the previous configuration,
we want to solve for the next configuration ¢; subject to costs that
depend on the acceleration (¢; + ¢_1 — 2q0) /7>

e Optimizing for ¢, falls exactly into the same category of optimization
problems — we can now do hard-constrained operational space
control. One of the hard constraints can be about the dynamics
constraints

6/9

k-order Features

e In IK we had to define a feature ®; = vVW(q1 — qo) to penalize
motion/velocity — this is a feature over 2 configurations (qo, ¢1)

¢ In Operational Space Control we have to define a feature that depends
on the acceleration (q; + q_1 — 2q0) /72 — this is a feature over 3
configurations (g—1, qo, q1)

¢ In general we can have k-order features, which depend on & — 1
consecutive configurations and typically compute — in some feature
space — finite difference velocities, accelerations, jerks, etc.

— To design motion
— define features
— specify the type of each feature (sos, eq, or ineq)

— but also specify the k-order of each feature (i.e., if the feature is meant to
be a finite difference velocity over 2 configurations, or the finite difference
acceleration over 3 configurations)

7/9

Finally, Path Optimization

¢ All the above generalizes to not only solve for the next configuration ¢,
but also a whole sequence of future configurations ¢, .., gr.

. T
- - s.t.) <0,) =0,
(1)

— Each feature computes something for (at most & — 1) consecutive
configurations 7,

— Each feature ¢x penalizes some aspect of the path locally in time

— To design motion
— define features
— specify their type (sos, ineq, eq)
— specify their order (velocity?, acceleration?)

— specify at which time ¢ € {1, .., T} in the path they apply 8/9

Predefined features in KOMO

e Symbols for pre-defined features

position, positionDiff, positionRel,

quaternion, quaternionDiff, quaternionRel,

pose, poseDiff, poseRel, [avoid these]

vectorX, vectorXDiff, vectorXRel,

vectorY, vectorYDiff, vectorYRel,

vectorZ, vectorZDiff, vectorZRel,

scalarProductXX, scalarProductXY, scalarProductXZ, scalarProductYX, scalarProductYY,
scalarProductYZ, scalarProductZZ,

gazeAt, angularVel,

accumulatedCollisions, jointLimits, distance, oppose,
qltself,

aboveBox, insideBox,

standingAbove,

physics, contactConstraints, energy,
transAccelerations, transVelocities,

gQuaternionNorms,

e Full objective specification

addObjective(times, featureSymbol, frameNames, objectiveType, scale, target, order)

(There are many more features defined in the code, but not interfaced with a symbol.) 9/9

