
AI & Robotics:
Lab Course

Motion Generation

Marc Toussaint
Technical University of Berlin

Summer 2020



Outline

• Motion generation as optimization

• Designing features

• Advanced: equalities & inequalities, path optimization

• Glimpse on available features
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Basic Control as Optimization
• Notation

q ∈ Rn vector of joint angles (robot configuration)

q̇ ∈ Rn vector of joint angular velocities

φ : q 7→ y ∈ Rd feature (or fwd kinematic )
e.g. position ∈ R3 or vector ∈ R3

J(q) = ∂φ
∂q ∈ Rd×n Jacobian

||v||2W = v>Wv squared norm of v w.r.t. metric W

• Inverse Kinematics:

y∗ 7→ q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

(Solution with linearization at q0: q∗ = q0 + J](y∗ − y0) with
J] = W -1J>(JW -1J>+ C-1)-1)

• Operational Space Control:

ÿ∗ 7→ u∗ = argmin
u
||φ̈(q)− ÿ∗||2C + ||u||2H
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It’s all about features
• Let’s rewrite IK a bit:

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

– q0 is the current state
– We want to compute q1, the next state
– Let Φ1 =

√
C(φ(q)− y∗), and Φ2 =

√
W (q − q0)

– And let Φ = (Φ1; Φ2; ...), stacking all features in a single vector

• Then IK is a sum-of-squares problem

q∗ = argmin
q

Φ>Φ

→ To design motion
– think of all kinds of features you want to penalize,
– zero calibrate them (subtract the target),
– scale them (multiply with some

√
C),

– stack them into a big feature vector,
– call an efficient SOS optimization method. 4/9



Hard constraints: beyond just penalizing

• We can not only solve SOS problems, but also

min
q

∑
k∈S

φk(q)>φk(q) s.t. ∀
k∈I

φk(q) ≤ 0, ∀
k∈E

φk(q) = 0 ,

where
– some features φk, k ∈ S, are SOS
– some features φk, k ∈ I, impose inequalities
– some features φk, k ∈ E, impose equalities

→ To design motion
– define features as above
– but also specify the type of each feature: if sos, eq, or ineq
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Generalizing this to dynamics

• In Operational Space Control we solve for acceleration/torques of the
robot. But we discretize time anyway. So we can also just optimize the
next configuration:

• Let q0 be the current configuration, q−1 be the previous configuration,
we want to solve for the next configuration q1 subject to costs that
depend on the acceleration (q1 + q−1 − 2q0)/τ2

• Optimizing for q1 falls exactly into the same category of optimization
problems→ we can now do hard-constrained operational space
control. One of the hard constraints can be about the dynamics
constraints
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k-order Features

• In IK we had to define a feature Φ2 =
√
W (q1 − q0) to penalize

motion/velocity – this is a feature over 2 configurations (q0, q1)

• In Operational Space Control we have to define a feature that depends
on the acceleration (q1 + q−1 − 2q0)/τ2 – this is a feature over 3
configurations (q−1, q0, q1)

• In general we can have k-order features, which depend on k − 1

consecutive configurations and typically compute – in some feature
space – finite difference velocities, accelerations, jerks, etc.

→ To design motion
– define features
– specify the type of each feature (sos, eq, or ineq)
– but also specify the k-order of each feature (i.e., if the feature is meant to

be a finite difference velocity over 2 configurations, or the finite difference
acceleration over 3 configurations)
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Finally, Path Optimization

• All the above generalizes to not only solve for the next configuration q1,
but also a whole sequence of future configurations q1, .., qT .

min
x1,..,xn

∑
k∈S

φk(xπk
)>φk(xπk

) s.t. ∀
k∈I

φk(xπk
) ≤ 0, ∀

k∈E
φk(xπk

) = 0 ,

(1)

– Each feature computes something for (at most k − 1) consecutive
configurations πk

– Each feature φk penalizes some aspect of the path locally in time

→ To design motion
– define features
– specify their type (sos, ineq, eq)
– specify their order (velocity?, acceleration?)
– specify at which time t ∈ {1, .., T} in the path they apply
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Predefined features in KOMO
• Symbols for pre-defined features

position, positionDiff, positionRel,
quaternion, quaternionDiff, quaternionRel,
pose, poseDiff, poseRel, [avoid these]
vectorX, vectorXDiff, vectorXRel,
vectorY, vectorYDiff, vectorYRel,
vectorZ, vectorZDiff, vectorZRel,
scalarProductXX, scalarProductXY, scalarProductXZ, scalarProductYX, scalarProductYY,
scalarProductYZ, scalarProductZZ,
gazeAt, angularVel,
accumulatedCollisions, jointLimits, distance, oppose,
qItself,
aboveBox, insideBox,
standingAbove,
physics, contactConstraints, energy,
transAccelerations, transVelocities,
qQuaternionNorms,

• Full objective specification
addObjective(times, featureSymbol, frameNames, objectiveType, scale, target, order)

(There are many more features defined in the code, but not interfaced with a symbol.) 9/9


