AI \& Robotics: Lab Course

Motion Generation

Marc Toussaint Technical University of Berlin Summer 2020

Outline

- Motion generation as optimization
- Designing features
- Advanced: equalities \& inequalities, path optimization
- Glimpse on available features

Basic Control as Optimization

- Notation

$$
\begin{aligned}
& q \in \mathbb{R}^{n} \\
& \dot{q} \in \mathbb{R}^{n} \\
& \phi: q \mapsto y \in \mathbb{R}^{d} \\
& J(q)=\frac{\partial \phi}{\partial q} \in \mathbb{R}^{d \times n} \\
& \|v\|_{W}^{2}=v^{\top} W v
\end{aligned}
$$

vector of joint angles (robot configuration)
vector of joint angular velocities
feature (or fwd kinematic)
e.g. position $\in \mathbb{R}^{3}$ or vector $\in \mathbb{R}^{3}$

Jacobian
squared norm of v w.r.t. metric W

Basic Control as Optimization

- Notation

$$
\begin{array}{ll}
q \in \mathbb{R}^{n} & \text { vector of joint angles (robot configuration) } \\
\dot{q} \in \mathbb{R}^{n} & \text { vector of joint angular velocities } \\
\phi: q \mapsto y \in \mathbb{R}^{d} & \text { feature (or fwd kinematic) } \\
& \text { e.g. position } \in \mathbb{R}^{3} \text { or vector } \in \mathbb{R}^{3} \\
J(q)=\frac{\partial \phi}{\partial q} \in \mathbb{R}^{d \times n} & \text { Jacobian } \\
\|v\|_{W}^{2}=v^{\top} W v & \text { squared norm of } v \text { w.r.t. metric } W
\end{array}
$$

- Inverse Kinematics:

$$
y^{*} \mapsto q^{*}=\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2}
$$

(Solution with linearization at q_{0} : $\quad q^{*}=q_{0}+J^{\sharp}\left(y^{*}-y_{0}\right)$ with $\left.J^{\sharp}=W^{-1} J^{\top}\left(J W^{-1} J^{\top}+C^{-1}\right)^{-1}\right)$

Basic Control as Optimization

- Notation

$$
\begin{array}{ll}
q \in \mathbb{R}^{n} & \text { vector of joint angles (robot configuration) } \\
\dot{q} \in \mathbb{R}^{n} & \text { vector of joint angular velocities } \\
\phi: q \mapsto y \in \mathbb{R}^{d} & \begin{array}{l}
\text { feature (or fwd kinematic) } \\
\\
J(q)=\frac{\partial \phi}{\partial q} \in \mathbb{R}^{d \times n}
\end{array} \\
\|v\|_{W}^{2}=v^{\top} W v & \text { Jacobian } \\
\text { e.gosition } \in \mathbb{R}^{3} \text { or vector } \in \mathbb{R}^{3}
\end{array}
$$

- Inverse Kinematics:

$$
y^{*} \mapsto q^{*}=\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2}
$$

(Solution with linearization at $q_{0}: \quad q^{*}=q_{0}+J^{\sharp}\left(y^{*}-y_{0}\right)$ with $\left.J^{\sharp}=W^{-1} J^{\top}\left(J W^{-1} J^{\top}+C^{-1}\right)^{-1}\right)$

- Operational Space Control:

$$
\ddot{y}^{*} \mapsto u^{*}=\underset{u}{\operatorname{argmin}}\left\|\ddot{\phi}(q)-\ddot{y}^{*}\right\|_{C}^{2}+\|u\|_{H}^{2}
$$

It's all about features

- Let's rewrite IK a bit:

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2}
$$

- q_{0} is the current state
- We want to compute q_{1}, the next state
- Let $\Phi_{1}=\sqrt{C}\left(\phi(q)-y^{*}\right)$, and $\Phi_{2}=\sqrt{W}\left(q-q_{0}\right)$
- And let $\Phi=\left(\Phi_{1} ; \Phi_{2} ; \ldots\right)$, stacking all features in a single vector
- Then IK is a sum-of-squares problem

$$
q^{*}=\underset{q}{\operatorname{argmin}} \Phi^{\top} \Phi
$$

\rightarrow To design motion

- think of all kinds of features you want to penalize,
- zero calibrate them (subtract the target),
- scale them (multiply with some \sqrt{C}),
- stack them into a big feature vector,
- call an efficient SOS optimization method.

Hard constraints: beyond just penalizing

- We can not only solve SOS problems, but also

$$
\min _{q} \sum_{k \in S} \phi_{k}(q)^{\top} \phi_{k}(q) \quad \text { s.t. } \quad \underset{k \in I}{\forall} \phi_{k}(q) \leq 0, \underset{k \in E}{\forall} \phi_{k}(q)=0
$$

where

- some features $\phi_{k}, k \in S$, are SOS
- some features $\phi_{k}, k \in I$, impose inequalities
- some features $\phi_{k}, k \in E$, impose equalities
\rightarrow To design motion
- define features as above
- but also specify the type of each feature: if sos, eq, or ineq

Generalizing this to dynamics

- In Operational Space Control we solve for acceleration/torques of the robot. But we discretize time anyway. So we can also just optimize the next configuration:
- Let q_{0} be the current configuration, q_{-1} be the previous configuration, we want to solve for the next configuration q_{1} subject to costs that depend on the acceleration $\left(q_{1}+q_{-1}-2 q_{0}\right) / \tau^{2}$
- Optimizing for q_{1} falls exactly into the same category of optimization problems \rightarrow we can now do hard-constrained operational space control. One of the hard constraints can be about the dynamics constraints

k-order Features

- In IK we had to define a feature $\Phi_{2}=\sqrt{W}\left(q_{1}-q_{0}\right)$ to penalize motion/velocity - this is a feature over 2 configurations $\left(q_{0}, q_{1}\right)$
- In Operational Space Control we have to define a feature that depends on the acceleration $\left(q_{1}+q_{-1}-2 q_{0}\right) / \tau^{2}-$ this is a feature over 3 configurations (q_{-1}, q_{0}, q_{1})
- In general we can have k-order features, which depend on $k-1$ consecutive configurations and typically compute - in some feature space - finite difference velocities, accelerations, jerks, etc.
\rightarrow To design motion
- define features
- specify the type of each feature (sos, eq, or ineq)
- but also specify the k-order of each feature (i.e., if the feature is meant to be a finite difference velocity over 2 configurations, or the finite difference acceleration over 3 configurations)

Finally, Path Optimization

- All the above generalizes to not only solve for the next configuration q_{1}, but also a whole sequence of future configurations $q_{1}, . ., q_{T}$.

$$
\begin{equation*}
\min _{x_{1}, . ., x_{n}} \sum_{k \in S} \phi_{k}\left(x_{\pi_{k}}\right)^{\top} \phi_{k}\left(x_{\pi_{k}}\right) \quad \text { s.t. } \quad \underset{k \in I}{\forall} \phi_{k}\left(x_{\pi_{k}}\right) \leq 0, \quad \underset{k \in E}{\forall} \phi_{k}\left(x_{\pi_{k}}\right)=0 \tag{1}
\end{equation*}
$$

- Each feature computes something for (at most $k-1$) consecutive configurations π_{k}
- Each feature ϕ_{k} penalizes some aspect of the path locally in time
\rightarrow To design motion
- define features
- specify their type (sos, ineq, eq)
- specify their order (velocity?, acceleration?)
- specify at which time $t \in\{1, . ., T\}$ in the path they apply

Predefined features in KOMO

- Symbols for pre-defined features
position, positionDiff, positionRel, quaternion, quaternionDiff, quaternionRel, pose, poseDiff, poseRel, [avoid these] vectorX, vectorXDiff, vectorXRel, vectorY, vectorYDiff, vectorYRel, vectorZ, vectorZDiff, vectorZRel, scalarProductXX, scalarProductXY, scalarProductXZ, scalarProductYX, scalarProductYY, scalarProductYZ, scalarProductZZ, gazeAt, angularVel,
accumulatedCollisions, jointLimits, distance, oppose, qltself,
aboveBox, insideBox, standingAbove, physics, contactConstraints, energy, transAccelerations, transVelocities, qQuaternionNorms,
- Full objective specification

```
addObjective(times, featureSymbol, frameNames, objectiveType, scale, target, order)
```

