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(DS BSc students may skip coding exercise 3, but should be able to draw on the board what the result would look

like.)

1 Sum of 3 dices (3 Points)

You have 3 dices (potentially fake dices where each one has a different probability table over the 6 values). You’re

given all three probability tables P (D1), P (D2), and P (D3). Write down the equations and an algorithm (in pseudo

code) that computes the conditional probability P (S|D1) of the sum of all three dices conditioned on the value of the

first dice.

2 Product of Gaussians (3 Points)

A Gaussian distribution over x ∈ Rn with mean µ and covariance matrix Σ is defined as

N(x |µ,Σ) =
1

| 2πΣ | 1/2
e−

1
2 (x−µ)> Σ-1 (x−µ)

Multiplying probability distributions is a fundamental operation, and multiplying two Gaussians is needed in many

models. From the definition of a n-dimensional Gaussian, prove the general rule

N(x | a,A) N(x | b, B) ∝ N(x | (A-1 +B-1)-1(A-1a+B-1b), (A-1 +B-1)-1) .

where the proportionality ∝ allows you to drop all terms independent of x.

Note: The so-called canonical form of a Gaussian is defined as N[x | ā, Ā] = N(x | Ā-1ā, Ā-1); in this convention the

product reads much nicher: N[x | ā, Ā] N[x | b̄, B̄] ∝ N[x | ā + b̄, Ā + B̄]. You can first prove this before proving the

above, if you like.

3 Gaussian Processes (5 Points)

Consider a Gaussian Process prior P (f) over functions defined by the mean function µ(x) = 0, the γ-exponential

covariance function

k(x, x′) = exp{−|(x− x′)/l|γ}

and an observation noise σ = 0.1. We assume x ∈ R is 1-dimensional. First consider the standard squared exponential

kernel with γ = 2 and l = 0.2.

a) Assume we have two data points (−0.5, 0.3) and (0.5,−0.1). Display the posterior P (f |D). For this, compute the

mean posterior function f̂(x) and the standard deviation function σ̂(x) (on the 100 grid points) exactly as on slide

08:10, using λ = σ2. Then plot f̂ , f̂ + σ̂ and f̂ − σ̂ to display the posterior mean and standard deviation. (3 P)

b) Now display the posterior P (y∗|x∗, D). This is only a tiny difference from the above (see slide 08:8). The mean is

the same, but the variance of y∗ includes additionally the obseration noise σ2. (1 P)

c) Repeat a) & b) for a kernel with γ = 1. (1 P)
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