
Machine Learning

Exercise 9

Marc Toussaint

TAs: Janik Hager, Philipp Kratzer

Machine Learning & Robotics lab, U Stuttgart
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(DS BSc students may skip exercise 2, but still please read about Mixture of Gaussians and the explanations below.)

Introduction

There is no lecture on Thursday. To still make progress, please follow this guide to learn some new material yourself.

The subject is k-means clustering and Mixture of Gaussians.

k-means clustering: The method is fully described on slide 06:36 of the lecture. Again, I present the method

as derived from an optimality principle. Most other references described k-means clustering just as a procedure.

Also wikipedia https://en.wikipedia.org/wiki/K-means_clustering gives a more verbose explaination of this

procedure. In my words, this is the procedure:

– We have data D = {xi}ni=1, with xi ∈ Rd. We want to cluster the data in K different clusters. K is chosen ad-hoc.

– Each cluster is represented only by its mean (or center) µk ∈ Rd, for k = 1, ..,K.

– We initially assign each µk to a random data point, µk ← xi with i ∼ U{1, .., n}
– The algorithm also maintains an assignment mapping c : {1, .., n} → {1, ..,K}, which assigns each data point xi to a cluster
k = c(i)

– For given centers µk, we update all assignments using

∀i : c(i)← argmin
c(i)

∑
j

(xj − µc(j))2 = argmin
k

(xi − µk)2 ,

which means we assign xi to the cluster with the nearest center µk.

– For given assignments c(i), we update all centers using

∀k : µk ← argmin
µk

∑
i

(xi − µc(i))2 =
1

|c-1(k)|
∑

i∈c-1(k)

xi ,

that is, we set the centers equal to the mean of the data points assigned to the cluster.

– The last two steps are iterated until the assignment does not vary.

Based on this, solve exercise 1.

Mixture of Gaussians: Mixture of Gaussians (MoG) are very similar to k-means clustering. Its objective (ex-

pected likelihood maximization) is based on a probabilistic data model, which we do not go into detail here. Slide

06:40 only gives the relevant equations. A much more complete derivation of MoG as instance of Expectation Max-

imization is found in https://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/15-MachineLearning/

08-graphicalModels-Learning.pdf. Bishop’s book https://www.microsoft.com/en-us/research/people/cmbishop/

#!prml-book also gives a very good introduction. But we only need the procedural understanding here:

– We have data D = {xi}ni=1, with xi ∈ Rd. We want to cluster the data in K different clusters. K is chosen ad-hoc.

– Each cluster is represented by its mean (or center) µk ∈ Rd and a covariance matrix Σk. This covariance matrix describes
an ellipsoidal shape of each cluster.
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– We initially assign each µk to a random data point, µk ← xi with i ∼ U{1, .., n}, and each covariance matrix to uniform (if
the data is roughly uniform).

– The core difference to k-means: The algorithm also maintains a probabilistic (or soft) assignment mapping qi(k) ∈ [0, 1],
such that

∑K
k=1 qi(k) = 1. The number qi(k) is the probability of assigning data xi to cluster k (or the probability that

data xi originates from cluster k). So, each data index i is mapped to a probability over k, rather than a specific k as in
k-means.

– For given cluster parameters µk, Σk, we update all the probabilistic assignments using

∀i,k : qi(k)← N(xi |µk,Σk) =
1

| 2πΣk | 1/2
e−

1
2

(xi−µk)> Σ-1
k (xi−µk)

∀i,k : qi(k)← 1∑
k′ qi(k

′)
qi(k)

where the second line normalizes the probabilistic assignments to ensure
∑K
k=1 qi(k) = 1.

– For given probabilistic assignments qi(k), we update all cluster parameters using

∀k : µk ←
1∑

i qi(k)

∑
i qi(k) xi

∀k : Σk ←
1∑

i qi(k)

∑
i qi(k) xix

>
i − µkµ>k ,

where µk is the weighed mean of the data assigned to cluster k (weighted with qi(k)), and similarly for Σk.

– In this description, I skipped another parameter, πk, which is less important and we can discuss in class.

Based on this, solve exercise 2.

Exercise 3 is extra, meaning, it’s a great exercise, but beyond the default work scope.

1 Clustering the Yale face database (6 Points)

On the webpage find and download the Yale face database http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/data/yalefaces_cropBackground.tgz.

The file contains gif images of 136 faces.

We’ll cluster the faces using k-means in K = 4 clusters.

a) Compute a k-means clustering starting with random initializations of the centers. Repeat k-means clustering 10

times. For each run, report on the clustering error min
∑

i(xi−µc(i))
2 and pick the best clustering. Display the center

faces µk and perhaps some samples for each cluster. (3 P)

b) Repeat the above for various K and plot the clustering error over K. (1 P)

c) Repeat the above on the first 20 principal components of the data. Discussion in the tutorial: Is PCA the best way

to reduce dimensionality as a precursor to k-means clustering? What would be the ‘ideal’ way to reduce dimensionality

as precursor to k-means clustering? (2 P)

2 Mixture of Gaussians (4 Points)

Download the data set mixture.txt from the course webpage, containing n = 300 2-dimensional points. Load it in a

data matrix X ∈ Rn×2.

a) Implement the EM-algorithm for a Gaussian Mixture on this data set. Choose K = 3. Initialize by choosing the

three means µk to be different randomly selected data points xi (i random in {1, .., n}) and the covariances Σk = I (a

more robust choice would be the covariance of the whole data). Iterate EM starting with the first E-step (computing

probabilistic assignments) based on these initializations. Repeat with random restarts—how often does it converge to

the optimum? (3 P)

b) Do exactly the same, but this time initialize the posterior qi(k) randomly (i.e., assign each point to a random

cluster: for each point xi select k′ = rand(1 : K) and set qi(k) = [k = k′]); then start EM with the first M-step. Is

this better or worse than the previous way of initialization? (1 P)

3 Extra: Graph cut objective function & spectral clustering

One of the central messages of the whole course is: To solve (learning) problems, first formulate an objective function

that defines the problem, then derive algorithms to find/approximate the optimal solution. That should also hold for

clustering.

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/data/yalefaces_cropBackground.tgz
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k-means finds centers µk and assignments c : i 7→ k to minimize min
∑

i(xi − µc(i))
2.

An alternative class of objective functions for clustering are graph cuts. Consider n data points with similarities wij ,

forming a weighted graph. We denote by W = (wij) the symmetric weight matrix, and D = diag(d1, .., dn), with

di =
∑

j wij , the degree matrix. For simplicitly we consider only 2-cuts, that is, cutting the graph in two disjoint

clusters, C1 ∪ C2 = {1, .., n}, C1 ∩ C2 = ∅. The normalized cut objective is

RatioCut(C1, C2) =
(

1/|C1|+ 1/|C2|
) ∑

i∈C1,j∈C2

wij

a) Let fi =

{
+
√
|C2|/|C1| for i ∈ C1

−
√
|C1|/|C2| for i ∈ C2

be a kind of indicator function of the clustering. Prove that

f>(D −W )f = n RatioCut(C1, C2)

b) Further prove that
∑

i fi = 0 and
∑

i f
2
i = n.

Note (to be discussed in the tutorial in more detail): Spectral clustering addresses

min f>(D −W )f s.t.
∑
i

fi = 0 , ||f ||2 = 1

by computing eigenvectors f of the graph Laplacian D −W with smallest eigenvalues. This is a relaxation of the

above problem that minimizes over continuous functions f ∈ Rn instead of discrete clusters C1, C2. The resulting eigen

functions are “approximate indicator functions of clusters”. The algorithms uses k-means clustering in this coordinate

system to explicitly decide on the clustering of data points.
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