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1 PCA derived (6 Points)

For data D = {xi}ni=1, xi ∈ Rd, we introduced PCA as a method that finds lower-dimensional representations zi ∈ Rp

of each data point such that xi ≈ V zi + µ. PCA chooses V, µ and zi to minimize the reproduction error

n∑
i=1

||xi − (V zi + µ)||2 .

We derive the solution here step by step.

a) Find the optimal latent representation zi of a data point xi as a function of V and µ. (1P)

b) Find an optimal offset µ. (1P)

(Hint: there is a whole subspace of solutions to this problem. Verify that your solution is consistent with (i.e.

contains) µ = 1
n

∑
i xi).

c) Find optimal projection vectors {vi}pi=1, which make up the projection matrix

V =

 | |
v1 . . . vp
| |

 (1)

(2P)

Guide:

– Given a projection V , any vector can be split in orthogonal components which belong to the projected subspace and
its complement (which we call W ). x = V V>x+WW>x.

– For simplicity, let us work with the centered datapoints x̃i = xi − µ.

– The optimal projection V is the one which minimizes the discarded components WW>x̃i.

V̂ = argmin
V

n∑
i=1

||WW>x̃i||2 =

n∑
i=1

||x̃i − V V>x̃i||2 (2)

– Don’t try to solve computing gradients and setting them to zero. Instead, use the fact that V V> =
∑p

i=1 viv
>
i , and

the singular value decomposition of
∑n

i=1 x̃ix̃
>
i = X̃>X̃ = EDET .

d) In the above, is the orthonormality of V an essential assumption? (1P)

e) Prove that you can compute the V also from the SVD of X (instead of X>X). (1P)
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2 PCA and reconstruction on the Yale face database (5 Points)

On the webpage find and download the Yale face database http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/data/yalefaces.tgz. (Optionally

use yalefaces_cropBackground.tgz, which is slightly cleaned version of the same dataset). The file contains gif

images of 165 faces.

a) Write a routine to load all images into a big data matrix X ∈ R165×77760, where each row contains a gray image.

In Octave, images can easily be read using I=imread("subject01.gif"); and imagesc(I);. You can loop over
files using files=dir("."); and files(:).name. Python tips:

import matplotlib.pyplot as plt

import scipy as sp

plt.imshow(plt.imread(file_name))

b) Compute the mean face µ = 1
n

∑
i xi and center the whole data matrix, X̃ = X − 1nµ

>.

c) Compute the singular value decomposition X̃ = UDV> for the centered data matrix.

In Octave/Matlab, use [U, S, V] = svd(X, "econ"), where the "econ" ensures you don’t run out of memory.

In python, use

import scipy.sparse.linalg as sla

u, s, vt = sla.svds(X, k=num_eigenvalues)

d) Find the p-dimensional representations Z = X̃Vp, where Vp ∈ R77760×p contains only the first p columns of

V (Depending on which language / library you use, verify that the eigenvectors are returned in eigenvalue-

descending order, otherwise you’ll have to find the correct eigenvectors manually). Assume p = 60. The rows of

Z represent each face as a p-dimensional vector, instead of a 77760-dimensional image.

e) Reconstruct all faces by computing X ′ = 1nµ
>+ ZV>p and display them; Do they look ok? Report the recon-

struction error
∑n

i=1 ||xi − x′i||2.

Repeat for various PCA-dimensions p = 5, 10, 15, 20 . . ..

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/data/yalefaces.tgz
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