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(DS BSc students can skip the exercise 2b and 3.)

1 Getting started with tensorflow (4 Points)

Tensorflow (https://www.tensorflow.org/) is one of the state-of-the-art computation graph libraries mostly used

for implementing neural networks. We recommend using the Python API for this example. Install the tensorflow

library with pip using the command pip install tensorflow --user or follow the instructions on the webpage for

your platform/language.

For the logistic regression, we used the following objective function:

L(β) = −
n∑

i=1

[
yi log pi + (1− yi) log[1− pi]

]
(1)

where p(x) := P (y=1 |x) = σ(x>β) , pi := p(xi) (2)

a) Implement the loss function by using standard tensor commands like tf.math.sigmoid(), tf.tensordot(),

tf.math.reduce_sum(). Define the variables X ∈ R100×3, y ∈ R100 and β ∈ R3 as tf.placeholder. Store the

computation graph and display it in a browser using tensorboard. (2 P)

Hints:

– You can save the computation graph by using the following command:
writer = tf.summary.FileWriter(’logs’, sess.graph)

– You can display it by running tensorboard from the command line: tensorboard --logdir logs

– Then open the given url in a browser.

b) Run a session to compute the loss, gradient and hessian. Feed random values into the input placeholders. Gradient

and Hessian can be calculated by tf.gradients() and tf.hessians(). Compare it to the analytical solution using

the same random values. (2 P)
Code calculating the analytical solutions of the loss, the gradient and the hessian in python:

def numpy_equations(X, beta, y):

p = 1. / (1. + np.exp(-np.dot(X, beta)))

L = -np.sum(y * np.log(p) + ((1. - y) * np.log(1.-p)))

dL = np.dot(X.T, p - y)

W = np.identity(X.shape[0]) * p * (1. - p)

ddL = np.dot(X.T, np.dot(W, X))

return L, dL, ddL

2 Classification with NNs in tensorflow (6 Points)

Now you will directly use tensorflow commands for creating neural networks.

1

https://www.tensorflow.org/
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a) We want to verify our results for classification on the dataset “data2Class.txt” by implementing the NN using

tensorflow. Create two dense layers with ReLU activation function and h1 = h2 = 100. Map to one output neu-

ron (i.e. h3 = 1) without activation function. Display the computation graph as in the previous exercise. Use

tf.losses.hinge_loss() as a loss function and the Adam Optimizer to train the network. Run the training and

plot the final result. (3 P)

Hints:

– There are many tutorials online, also on www.tensorflow.org. HOWEVER, most of them use the keras conventions to first
abstractly declare the model structure, then compile it into actual tensorflow structure (Factory pattern). You can use this,
but to really learn tensorflow we recommend using the direct tensorflow methods to create models instead.

– Here is an example that declares an input variable, two hidden layers, an output layer, a target variable, and a loss variable:

input = tf.placeholder(shape=[None,2], dtype=tf.float32)

target_output = tf.placeholder(’float’)

relu_layer_operation = tf.layers.Dense(100,

activation=tf.nn.leaky_relu,

kernel_initializer=tf.initializers.random_uniform(-.1,.1),

bias_initializer=tf.initializers.random_uniform(-1.,1.))

linear_layer_operation = tf.layers.Dense(1,

activation=None,

kernel_initializer=tf.initializers.random_uniform(-.1,.1),

bias_initializer=tf.initializers.random_uniform(-.01,.01))

hidden1 = relu_layer_operation(input)

hidden2 = relu_layer_operation(hidden1)

model_output = linear_layer_operation(hidden2)

loss = tf.reduce_mean(tf.losses.hinge_loss(logits=model_output, labels=target_output))

– Use any tutorial to realize the training of such a model.

b) Now we want to use a neural network on real images. Download the BelgiumTS1 dataset from: https://btsd.ethz.

ch/shareddata/BelgiumTSC/BelgiumTSC_Training.zip (Training data) and https://btsd.ethz.ch/shareddata/

BelgiumTSC/BelgiumTSC_Testing.zip (Test data). The dataset consists of traffic signs according to 62 different

classes. Create a neural network architecture and train it on the training dataset. You can use any architecture you

want but at least use one convolutional layer. Report the classification error on the test set. (3 P)
Hints: Use tf.layers.Conv2D to create convolutional layers, and tf.contrib.layers.flatten to reshape an image
layer into a vector layer (as input to a dense layer). The following code can be used to load data, rescale it and display
images:

import os

import skimage

from skimage import transform

from skimage.color import rgb2gray

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

def load_data(data_directory):

directories = [d for d in os.listdir(data_directory)

if os.path.isdir(os.path.join(data_directory, d))]

labels = []

images = []

for d in directories:

label_directory = os.path.join(data_directory, d)

file_names = [os.path.join(label_directory, f)

for f in os.listdir(label_directory)

if f.endswith(".ppm")]

for f in file_names:

images.append(skimage.data.imread(f))

labels.append(int(d))

return np.array(images), np.array(labels)

def plot_data(signs, labels):

for i in range(len(signs)):

plt.subplot(4, len(signs)/4 + 1, i+1)

plt.axis(’off’)

plt.title("Label {0}".format(labels[i]))

1Belgium traffic sign dataset; Radu Timofte*, Markus Mathias*, Rodrigo Benenson, and Luc Van Gool, Traffic Sign Recognition - How

far are we from the solution?, International Joint Conference on Neural Networks (IJCNN 2013), August 2013, Dallas, USA

https://btsd.ethz.ch/shareddata/BelgiumTSC/BelgiumTSC_Training.zip
https://btsd.ethz.ch/shareddata/BelgiumTSC/BelgiumTSC_Training.zip
https://btsd.ethz.ch/shareddata/BelgiumTSC/BelgiumTSC_Testing.zip
https://btsd.ethz.ch/shareddata/BelgiumTSC/BelgiumTSC_Testing.zip
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plt.imshow(signs[i])

plt.subplots_adjust(wspace=0.5)

plt.show()

images, labels = load_data("./Training")

# display 30 random images

randind = np.random.randint(0, len(images), 30)

plot_data(images[randind], labels[randind])

images = rgb2gray(np.array([transform.resize(image, (50, 50)) for image in images])) # convert to 50x50

3 Bonus: Stochastic Gradient Descent (3 Points)

(Bonus means: The extra 3 points will count to your total, but not to the required points (from which you eventually

need 50%).)

We test SDG on a squared function f(x) = 1
2x
>Hx. A Newton method would need access to the exact Hessian H

and directly step to the optimum x∗ = 0. But SDG only has access to an estimate of the gradient. Ensuring proper

convergence is much more difficult for SGD.

Let x ∈ Rd for d = 1000. Generate a sparse random matrix J ∈ Rn×d, for n = 105 as follows: In each row, fill in 10

random numbers drawn from N(0, σ2) at random places. Each row either has σ = 1 or σ = 100, chosen randomly. We

now define H = J>J . Note that H =
∑n

i=1 J
>
i Ji is a sum of rank-1 matrices.

a) Given this setup, simulate a stochastic gradient descent. (2P)

1. Initialize x = 1d.

2. Choose K = 32 random integers ik ∈ {1, .., n}, where k = 1, ..,K. These indicate which data points we see in

this iteration.

3. Compute the stochastic gradient estimate

g =
1

K

K∑
k=1

J>ik(Jikx)

where Jik is the ikth row of J .

4. For logging: Compute the full error ` = 1
2nx
>Hx and the stochastic mini batch error ̂̀= 1

2K

∑K
k=1(Jikx)2, and

write them to a log file for later plotting.

5. Update x based on g using plain gradient descent with fixed step size, and iterate from (ii).

b) Plot the learning curves, i.e., the full and the stochastic error. How well do they match? In what sense does

optimization converge? Discuss the stationary distribution of the optimum. (1P)

c) Extra: Test variants: exponential cooling of the learning rate, Nesterov momentum, and ADAM.
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