Machine Learning

Exercise 5

Marc Toussaint
TAs: Janik Hager, Philipp Kratzer
Machine Learning & Robotics lab, U Stuttgart
Universitatsstrafle 38, 70569 Stuttgart, Germany

May 14, 2019

In these two exercises you’ll program a NN from scratch, use neural random features for classification, and train it
too. Don’t use tensorflow yet, but the same language you used for standard regression & classification. Take slide
04:14 as reference for NN equations.

(DS BSc students may skip 2 b-c, i.e. should at least try to code/draft also the backward pass, but ok if no working
solutions.)

1 Programming your own NN — NN initialization and neural random
features (5 Points)

(Such an approach was (once) also known as Extreme Learning.)

A standard NN structure is described by hg.r,, which describes the dimensionality of the input (hg), the dimensionality
of all hidden layers (hi.r.1), and the dimensionality of the output hy,.

a) Code a routine “forward(z, 8)” that computes fz(z), the forward propagation of the network, for a NN with given
structure hg.;,. Note that for each layer [= 1,.., L we have parameters W; € RP:X"i1 and b, € R™. Use the leaky
ReLu activation function. (2 P)

b) Write a method that initializes all weights such that for each neuron, the z; = 0 hyperplane is located randomly,
with random orientation and random offset (follow slide 04:21). Namely, choose each W, ;. as Gaussian with sdv
1/v/hi1, and choose the biases by ; ~ U(—1,1) uniform. (1 P)

c¢) Consider again the classification data set data2Class.txt, which we also used in the previous exercise. In each
line it has a two-dimensional input and the output y; € {0,1}.

Use your NN to map each input « to features ¢(z) = xr.1, then use these features as input to logistic regression as
done in the previous exercise. (Initialize a separate 5 and optimize by iterating Newton steps.)

First consider just L = 2 (just one hidden layer and z; are the features) and h; = 300. (2 P)

Extra) How does it perform if we initialize all b = 0?7 How would it perform if the input would be rescaled = + 10527
How does the performance vary with h; and with L?

2 Programming your own NN — Backprop & training (5 Points)

We now also train the network using backpropagation and hinge loss. We test again on data2Class.txt. As thisis a
binary classification problem we only need one output neuron fg(z). If fz(z) > 0 we classify 1, otherwise we classify
0.

Reuse the “forward(z, 3)” coded above.
a) Code a routine “backward(dyy1, z, w)”, that performs the backpropagation steps and collects the gradients ddTl;l'

For this, let us use a hinge loss. In the binary case (when you use only one output neuron), it is simplest to redefine
y € {—1,+1}, and define the hinge loss as ¢(f,y) = max(0,1 — fy), which has the loss gradient §;, = —y[1 — yf > 0]
at the output neuron.

Run forward and backward propagation for each z,y in the dataset, and sum up the respective gradients. (2 P)

Machine Learning
Exercise 5, Marc Toussaint—May 14, 2019 2

b) Code a routine which optimizes the parameters using gradient descent:
v, W, W de by < b

- : —a—, —a—

1=1,..,.L 1 1 v, 1 1 b,

with step size « = .01. Run until convergence (should take a few thousand steps). Print out the loss function ¢ at
each 100th iteration, to verify that the parameter optimization is indeed decreasing the loss. (2 P)

¢) Run for h = (2,20,1) and visualize the prediction by plotting o(fs(z)) over a 2-dimensional grid. (1 P)

	Programming your own NN – NN initialization and neural random features (5 Points)
	Programming your own NN – Backprop & training (5 Points)

