
Machine Learning

Exercise 5

Marc Toussaint

TAs: Janik Hager, Philipp Kratzer

Machine Learning & Robotics lab, U Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

May 14, 2019

In these two exercises you’ll program a NN from scratch, use neural random features for classification, and train it

too. Don’t use tensorflow yet, but the same language you used for standard regression & classification. Take slide

04:14 as reference for NN equations.

(DS BSc students may skip 2 b-c, i.e. should at least try to code/draft also the backward pass, but ok if no working

solutions.)

1 Programming your own NN – NN initialization and neural random

features (5 Points)

(Such an approach was (once) also known as Extreme Learning.)

A standard NN structure is described by h0:L, which describes the dimensionality of the input (h0), the dimensionality

of all hidden layers (h1:L-1), and the dimensionality of the output hL.

a) Code a routine “forward(x, β)” that computes fβ(x), the forward propagation of the network, for a NN with given

structure h0:L. Note that for each layer l = 1, .., L we have parameters Wl ∈ RhL×hL-1 and bl ∈ Rhl . Use the leaky

ReLu activation function. (2 P)

b) Write a method that initializes all weights such that for each neuron, the zi = 0 hyperplane is located randomly,

with random orientation and random offset (follow slide 04:21). Namely, choose each Wl,i· as Gaussian with sdv

1/
√
hl-1, and choose the biases bl,i ∼ U(−1, 1) uniform. (1 P)

c) Consider again the classification data set data2Class.txt, which we also used in the previous exercise. In each

line it has a two-dimensional input and the output yi ∈ {0, 1}.
Use your NN to map each input x to features φ(x) = xL-1, then use these features as input to logistic regression as

done in the previous exercise. (Initialize a separate β and optimize by iterating Newton steps.)

First consider just L = 2 (just one hidden layer and xL-1 are the features) and h1 = 300. (2 P)

Extra) How does it perform if we initialize all bl = 0? How would it perform if the input would be rescaled x← 105x?

How does the performance vary with h1 and with L?

2 Programming your own NN – Backprop & training (5 Points)

We now also train the network using backpropagation and hinge loss. We test again on data2Class.txt. As this is a

binary classification problem we only need one output neuron fβ(x). If fβ(x) > 0 we classify 1, otherwise we classify

0.

Reuse the “forward(x, β)” coded above.

a) Code a routine “backward(δL+1, x, w)”, that performs the backpropagation steps and collects the gradients d`
dwl

.

For this, let us use a hinge loss. In the binary case (when you use only one output neuron), it is simplest to redefine

y ∈ {−1,+1}, and define the hinge loss as `(f, y) = max(0, 1− fy), which has the loss gradient δL = −y[1− yf > 0]

at the output neuron.

Run forward and backward propagation for each x, y in the dataset, and sum up the respective gradients. (2 P)

1



Machine Learning
Exercise 5, Marc Toussaint—May 14, 2019 2

b) Code a routine which optimizes the parameters using gradient descent:

∀l=1,..,L : Wl ←Wl − α
d`

dWl
, bl ← bl − α

d`

dbl

with step size α = .01. Run until convergence (should take a few thousand steps). Print out the loss function ` at

each 100th iteration, to verify that the parameter optimization is indeed decreasing the loss. (2 P)

c) Run for h = (2, 20, 1) and visualize the prediction by plotting σ(fβ(x)) over a 2-dimensional grid. (1 P)


	Programming your own NN – NN initialization and neural random features (5 Points)
	Programming your own NN – Backprop & training (5 Points)

