

Machine Learning

Recap

Philipp Kratzer & Janik Hager

Marc Toussaint University of Stuttgart Summer 2019

What is Machine Learning?

 Pedro Domingos: A Few Useful Things to Know about Machine Learning

learning = representation + evaluation + optimization

- "Representation": Choice of model, choice of hypothesis space
- "Evaluation": Choice of objective function, optimality principle
- "Optimization": The algorithm to compute/approximate the best model

Regression: Ridge Regression

• Representation: choice of features

$$f(x) = \phi(x)^{\mathsf{T}} \beta$$

Objective: squared error + Ridge/Lasso regularization

$$L^{\mathsf{ridge}}(\beta) = \sum_{i=1}^{n} (y_i - \phi(x_i)^{\mathsf{T}} \beta)^2 + \lambda \|\beta\|_I^2$$

Solver: analytical (or quadratic program for Lasso)

$$\hat{\beta}^{\mathrm{ridge}} = (X^{\top}X + \lambda I)^{\text{-}1}X^{\top}y$$

Classification: Logistic Regression

• Representation: choice of features

$$f(x) = \phi(x, y)^{\mathsf{T}} \beta$$

• Objective: neg-log-likelihood

$$L^{\text{logistic}}(\beta) = -\sum_{i=1}^{n} \log p(y_i \mid x_i) + \lambda \|\beta\|^2$$

$$p(y|x) \propto e^{f(x,y)}$$

• Solver: numerical (Newton algorithm)

$$\beta \leftarrow \beta - (X^{\top}WX + 2\lambda I)^{-1} (X^{\top}(p - y) + 2\lambda I\beta)$$

Neural Networks

• Representation: multi-layer, sequential mapping

$$f(x) = W_2 \sigma(W_1 \sigma(W_0 x + b_0) + b_1) + b_2$$

Objective: e.g. a squared loss for regression

$$L(f) = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

• Solver: Propagating the error backwards, while compute the gradients $\frac{dL(f)}{dW_l}$ for each layer. Weight update can be done using e.g. stochastic gradient descent $(\beta=(W_{1:L},b_{1:L}))$

$$\beta \leftarrow \beta - \eta \nabla_{\beta} L(\beta, \hat{D})$$

Neural Networks

- activation functions: ReLU, leaky ReLU, sigmoid, ...
- regularization: dropout, data augmentation, early stopping, ...
- special NNs: Convolutional NNs (images), LSTM (time series), ...

Kernelization

• Representation: Kernel Ridge Regression

$$\begin{split} f^{\mathsf{rigde}}(x) &= \kappa(x)^\top (K + \lambda I)^{\text{-}1} y \\ \mathsf{with} \ \ K_{ij} &= k(x_i, x_j) \\ \kappa_i(x) &= k(x, x_i) \end{split}$$

 Kernel: Every choice of features implies a kernel and the other way round.

$$k(x_i, x_j) = \phi(x_i)^{\mathsf{T}} \phi(x_j)$$

Unsupervised Learning: PCA

 $V_p^{ op}$ is the matrix that projects to the largest variance directions of $\tilde{X}^{ op}\tilde{X}$

• Representation:

$$x \approx V_p z + \mu$$

Objective:

$$\sum_{i=1}^{n} \|x_i - (V_p z_i + \mu)\|^2$$

• Solver: Eigenvector decomposition of $\tilde{X}^{\top}\tilde{X}$

Unsupervised Learning: Clustering

k-means:

- Representation: K centers μ_k and a data assignment $c: i \mapsto k$
- · Objective:

$$\min_{c,\mu} \sum_{i} (x_i - \mu_{c(i)})^2$$

- Solver:
 - Pick K data points randomly to initialize the centers μ_k
 - Iterate adapting the assignments c(i) and the centers μ_k

Gaussian Mixture Models:

Approximate the "true" distribution, from which the data $\{x_i\}_{i=1}^N$ is generated, using a mixture of multivariate Gaussians (solved via EM-Algorithm).

Local Learning & Combining Models

- Local Learning: Build local model using kNN of query x^*
- Model Averaging: Fully different types of models (using different (e.g. limited) feature sets; neural nets; decision trees; hyperparameters)
- Bootstrap: Models of same type, trained on randomized versions of
- Boosting: Models of same type, trained on cleverly designed modifications/reweightings of D
- How to choose weights for combining models:
 naive averaging, Bayesian Model Averaging, Function view, ...

Bayesian Models

Placing distributions on parameters, model classes, ...

• Representation: e.g. Kernel Bayesian Logistic Regression

$$P(X), P(\beta), P(Y|X,\beta)$$

• Objective & Solver: compute inference

$$P(\beta \mid x_{1:n}, y_{1:n}) = \frac{\prod_{i=1}^{n} P(y_i \mid \beta, x_i) \ P(\beta)}{Z}$$

- Insights:
 - The *neg-log posterior* $P(\beta \mid D)$ is proportional to the cost function $L^{\text{ridge}}(\beta)$.
 - The mean $\hat{\beta}$ is exactly the classical $\operatorname{argmin}_{\beta} L^{\mathsf{ridge}}(\beta)$.
 - The Bayesian inference approach not only gives a mean/optimal $\hat{\beta}$, but also a variance Σ of that estimate.

Summary

- Machine Learning is a large field with many real-world applications
- Includes many components from computer science and statistics
- Further points covered in the lecture: tree-based models, conditional random fields, ...

Summary

- Machine Learning is a large field with many real-world applications
- Includes many components from computer science and statistics
- Further points covered in the lecture: tree-based models, conditional random fields, ...

All models are wrong, but some are useful.

George Box, 1919 - 2013