Machine Learning

Probability Basics

Marc Toussaint
University of Stuttgart
Summer 2016

The need for modelling

- Given a real world problem, translating it to a well-defined learning problem is non-trivial
- The "framework" of plain regression/classification is restricted: input x, output y.
- Graphical models (probabilstic models with multiple random variables and dependencies) are a more general framework for modelling "problems"; regression \& classification become a special case; Reinforcement Learning, decision making, unsupervised learning, but also language processing, image segmentation, can be represented.

Thomas Bayes (1702-1761)

"Essay Towards Solving a Problem in the Doctrine of Chances"

REX.T.-BAYES

- Addresses problem of inverse probabilities:

Knowing the conditional probability of B given A , what is the conditional probability of A given B?

- Example:
40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.) dialect Given a random German that speaks non-dialect, is he Bavarian? (15% of Germans are Bavarian)

Inference

- "Inference" = Given some pieces of information (prior, observed variabes) what is the implication (the implied information, the posterior) on a non-observed variable
- Learning as Inference:
- given pieces of information: data, assumed model, prior over β
- non-observed variable: β

Probability Theory

- Why do we need probabilities?
- Obvious: to express inherent stochasticity of the world (data)
- But beyond this: (also in a "deterministic world"):
- lack of knowledge!
- hidden (latent) variables
- expressing uncertainty
- expressing information (and lack of information)
- Probability Theory: an information calculus

Probability: Frequentist and Bayesian

- Frequentist probabilities are defined in the limit of an infinite number of trials
Example: "The probability of a particular coin landing heads up is 0.43 "
- Bayesian (subjective) probabilities quantify degrees of belief Example: "The probability of rain tomorrow is 0.3 " - not possible to repeat "tomorrow"

Outline

- Basic definitions
- Random variables
- joint, conditional, marginal distribution
- Bayes' theorem
- Examples for Bayes
- Probability distributions [skipped, only Gauss]
- Binomial; Beta
- Multinomial; Dirichlet
- Conjugate priors
- Gauss; Wichart
- Student-t, Dirak, Particles
- Monte Carlo, MCMC [skipped]

These are generic slides on probabilities I use throughout my lecture. Only parts are mandatory for the AI course.

Basic definitions

Probabilities \& Random Variables

- For a random variable X with discrete domain $\operatorname{dom}(X)=\Omega$ we write:
$\forall_{x \in \Omega}: 0 \leq P(X=x) \leq 1$
$\sum_{x \in \Omega} P(X=x)=1$
Example: A dice can take values $\Omega=\{1, . ., 6\}$.
X is the random variable of a dice throw.
$P(X=1) \in[0,1]$ is the probability that X takes value 1 .
- A bit more formally: a random variable is a map from a measureable space to a domain (sample space) and thereby introduces a probability measure on the domain ("assigns a probability to each possible value")

Probabilty Distributions

- $P(X=1) \in \mathbb{R}$ denotes a specific probability
$P(X)$ denotes the probability distribution (function over Ω)

Probabilty Distributions

- $P(X=1) \in \mathbb{R}$ denotes a specific probability
$P(X)$ denotes the probability distribution (function over Ω)

Example: A dice can take values $\Omega=\{1,2,3,4,5,6\}$.
By $P(X)$ we discribe the full distribution over possible values $\{1, . ., 6\}$. These are 6 numbers that sum to one, usually stored in a table, e.g.: $\left[\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right]$

- In implementations we typically represent distributions over discrete random variables as tables (arrays) of numbers
- Notation for summing over a RV:

In equation we often need to sum over RVs. We then write

$$
\sum_{X} P(X) \cdots
$$

as shorthand for the explicit notation $\sum_{x \in \operatorname{dom}(X)} P(X=x) \cdots$

Joint distributions

Assume we have two random variables X and Y

- Definitions:

Joint: $\quad P(X, Y)$
Marginal: $\quad P(X)=\sum_{Y} P(X, Y)$

Conditional: $\quad P(X \mid Y)=\frac{P(X, Y)}{P(Y)}$
The conditional is normalized: $\quad \forall_{Y}: \sum_{X} P(X \mid Y)=1$

- X is independent of Y iff: $P(X \mid Y)=P(X)$ (table thinking: all columns of $P(X \mid Y)$ are equal)

Joint distributions

joint: $\quad P(X, Y)$
marginal: $\quad P(X)=\sum_{Y} P(X, Y)$
conditional: $\quad P(X \mid Y)=\frac{P(X, Y)}{P(Y)}$

- Implications of these definitions:

Product rule: $\quad P(X, Y)=P(X \mid Y) P(Y)=P(Y \mid X) P(X)$
Bayes' Theorem: $\quad P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}$

Bayes' Theorem

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

posterior $=\frac{\text { likelinood } \cdot \text { prior }}{\text { normalization }}$

Multiple RVs:

- Analogously for n random variables $X_{1: n}$ (stored as a rank n tensor) Joint: $\quad P\left(X_{1: n}\right)$ Marginal: $\quad P\left(X_{1}\right)=\sum_{X_{2: n}} P\left(X_{1: n}\right)$,
Conditional: $\quad P\left(X_{1} \mid X_{2: n}\right)=\frac{P\left(X_{1: n}\right)}{P\left(X_{2: n}\right)}$
- X is conditionally independent of Y given Z iff:

$$
P(X \mid Y, Z)=P(X \mid Z)
$$

- Product rule and Bayes' Theorem:

$$
P\left(X_{1: n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i+1: n}\right)
$$

$$
P\left(X_{1} \mid X_{2: n}\right)=\frac{P\left(X_{2} \mid X_{1}, X_{3: n}\right) P\left(X_{1} \mid X_{3: n}\right)}{P\left(X_{2} \mid X_{3: n}\right)}
$$

$$
\begin{aligned}
& P(X, Z, Y)=P(X \mid Y, Z) P(Y \mid Z) P(Z) \\
& P(X \mid Y, Z)=\frac{P(Y \mid X, Z) P(X \mid Z)}{P(Y \mid Z)} \\
& P(X, Y \mid Z)=\frac{P(X, Z \mid Y) P(Y)}{P(Z)}
\end{aligned}
$$

Example 1: Bavarian dialect

- 40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.) dialect
Given a random German that speaks non-dialect, is he Bavarian? (15% of Germans are Bavarian)

$$
\begin{aligned}
& P(D=1 \mid B=1)=0.4 \\
& P(D=1 \mid B=0)=0.01 \\
& P(B=1)=0.15
\end{aligned}
$$

Example 1: Bavarian dialect

- 40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.) dialect
Given a random German that speaks non-dialect, is he Bavarian? (15% of Germans are Bavarian)

$$
\begin{align*}
& P(D=1 \mid B=1)=0.4 \tag{B}\\
& P(D=1 \mid B=0)=0.01 \\
& P(B=1)=0.15
\end{align*}
$$

If follows

$$
P(B=1 \mid D=0)=\frac{P(D=0 \mid B=1) P(B=1)}{P(D=0)}=\frac{.6 \cdot 15}{.6 \cdot 15+0.99 \cdot 85} \approx 0.097
$$

Example 2: Coin flipping

HHTHT

HHHHH

- What process produces these sequences?
- We compare two hypothesis:
$H=1$: fair coin $P\left(d_{i}=\mathrm{H} \mid H=1\right)=\frac{1}{2}$
$H=2$: always heads coin $P\left(d_{i}=\mathrm{H} \mid H=2\right)=1$
- Bayes' theorem:

$$
P(H \mid D)=\frac{P(D \mid H) P(H)}{P(D)}
$$

Coin flipping

$D=$ ннтнт

$$
\begin{array}{ll}
P(D \mid H=1)=1 / 2^{5} & P(H=1)=\frac{999}{1900} \\
P(D \mid H=2)=0 & P(H=2)=\frac{1}{1000}
\end{array}
$$

$$
\frac{P(H=1 \mid D)}{P(H=2 \mid D)}=\frac{P(D \mid H=1)}{P(D \mid H=2)} \frac{P(H=1)}{P(H=2)}=\frac{1 / 32}{0} \frac{999}{1}=\infty
$$

Coin flipping

$D=$ ннннн

$$
\begin{array}{ll}
P(D \mid H=1)=1 / 2^{5} & P(H=1)=\frac{999}{1000} \\
P(D \mid H=2)=1 & P(H=2)=\frac{1}{1000}
\end{array}
$$

$$
\frac{P(H=1 \mid D)}{P(H=2 \mid D)}=\frac{P(D \mid H=1)}{P(D \mid H=2)} \frac{P(H=1)}{P(H=2)}=\frac{1 / 32}{1} \frac{999}{1} \approx 30
$$

Coin flipping

$D=$ нннннннннн

$$
\begin{array}{rl}
P(D \mid H=1)=1 / 2^{10} & P(H=1)=\frac{999}{1000} \\
P(D \mid H=2)=1 & P(H=2)=\frac{1}{1000} \\
& \frac{P(H=1 \mid D)}{P(H=2 \mid D)}=\frac{P(D \mid H=1)}{P(D \mid H=2)} \frac{P(H=1)}{P(H=2)}=\frac{1 / 1024}{1} \frac{999}{1} \approx 1
\end{array}
$$

Learning as Bayesian inference

$$
P(\text { World } \mid \text { Data })=\frac{P(\text { Data } \mid \text { World }) P(\text { World })}{P(\text { Data })}
$$

P (World) describes our prior over all possible worlds. Learning means to infer about the world we live in based on the data we have!

Learning as Bayesian inference

$$
P(\text { World } \mid \text { Data })=\frac{P(\text { Data } \mid \text { World }) P(\text { World })}{P(\text { Data })}
$$

P (World) describes our prior over all possible worlds. Learning means
to infer about the world we live in based on the data we have!

- In the context of regression, the "world" is the function $f(x)$

$$
P(f \mid \text { Data })=\frac{P(\text { Data } \mid f) P(f)}{P(\text { Data })}
$$

$P(f)$ describes our prior over possible functions
Regression means to infer the function based on the data we have

Probability distributions

recommended reference: Bishop.: Pattern Recognition and Machine Learning

Bernoulli \& Binomial

- We have a binary random variable $x \in\{0,1\}$ (i.e. $\operatorname{dom}(x)=\{0,1\})$ The Bernoulli distribution is parameterized by a single scalar μ,

$$
\begin{aligned}
P(x=1 \mid \mu) & =\mu, \quad P(x=0 \mid \mu)=1-\mu \\
\operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x}
\end{aligned}
$$

- We have a data set of random variables $D=\left\{x_{1}, . ., x_{n}\right\}$, each $x_{i} \in\{0,1\}$. If each $x_{i} \sim \operatorname{Bern}\left(x_{i} \mid \mu\right)$ we have

$$
P(D \mid \mu)=\prod_{i=1}^{n} \operatorname{Bern}\left(x_{i} \mid \mu\right)=\prod_{i=1}^{n} \mu^{x_{i}}(1-\mu)^{1-x_{i}}
$$

$\underset{\mu}{\operatorname{argmax}} \log P(D \mid \mu)=\underset{\mu}{\operatorname{argmax}} \sum_{i=1}^{n} x_{i} \log \mu+\left(1-x_{i}\right) \log (1-\mu)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

- The Binomial distribution is the distribution over the count $m=\sum_{i=1}^{n} x_{i}$

$$
\operatorname{Bin}(m \mid n, \mu)=\binom{n}{m} \mu^{m}(1-\mu)^{n-m}, \quad\binom{n}{m}=\frac{n!}{(n-m)!m!}
$$

Beta

How to express uncertainty over a Bernoulli parameter μ

- The Beta distribution is over the interval [0,1], typically the parameter μ of a Bernoulli:

$$
\operatorname{Beta}(\mu \mid a, b)=\frac{1}{B(a, b)} \mu^{a-1}(1-\mu)^{b-1}
$$

with mean $\langle\mu\rangle=\frac{a}{a+b}$ and mode $\mu^{*}=\frac{a-1}{a+b-2}$ for $a, b>1$

- The crucial point is:
- Assume we are in a world with a "Bernoulli source" (e.g., binary bandit), but don't know its parameter μ
- Assume we have a prior distribution $P(\mu)=\operatorname{Beta}(\mu \mid a, b)$
- Assume we collected some data $D=\left\{x_{1}, . ., x_{n}\right\}, x_{i} \in\{0,1\}$, with counts $a_{D}=\sum_{i} x_{i}$ of $\left[x_{i}=1\right]$ and $b_{D}=\sum_{i}\left(1-x_{i}\right)$ of $\left[x_{i}=0\right]$
- The posterior is

$$
\begin{aligned}
P(\mu \mid D) & =\frac{P(D \mid \mu)}{P(D)} P(\mu) \propto \operatorname{Bin}(D \mid \mu) \operatorname{Beta}(\mu \mid a, b) \\
& \propto \mu^{a_{D}}(1-\mu)^{b_{D}} \mu^{a-1}(1-\mu)^{b-1}=\mu^{a-1+a_{D}}(1-\mu)^{b-1+b_{D}} \\
& =\operatorname{Beta}\left(\mu \mid a+a_{D}, b+b_{D}\right)
\end{aligned}
$$

Beta

The prior is $\operatorname{Beta}(\mu \mid a, b)$, the posterior is $\operatorname{Beta}\left(\mu \mid a+a_{D}, b+b_{D}\right)$

- Conclusions:
- The semantics of a and b are counts of $\left[x_{i}=1\right]$ and $\left[x_{i}=0\right]$, respectively
- The Beta distribution is conjugate to the Bernoulli (explained later)
- With the Beta distribution we can represent beliefs (state of knowledge) about uncertain $\mu \in[0,1]$ and know how to update this belief given data

Beta

Multinomial

- We have an integer random variable $x \in\{1, . ., K\}$

The probability of a single x can be parameterized by $\mu=\left(\mu_{1}, . ., \mu_{K}\right)$:

$$
P(x=k \mid \mu)=\mu_{k}
$$

with the constraint $\sum_{k=1}^{K} \mu_{k}=1$ (probabilities need to be normalized)

- We have a data set of random variables $D=\left\{x_{1}, . ., x_{n}\right\}$, each $x_{i} \in\{1, . ., K\}$. If each $x_{i} \sim P\left(x_{i} \mid \mu\right)$ we have

$$
P(D \mid \mu)=\prod_{i=1}^{n} \mu_{x_{i}}=\prod_{i=1}^{n} \prod_{k=1}^{K} \mu_{k}^{\left[x_{i}=k\right]}=\prod_{k=1}^{K} \mu_{k}^{m_{k}}
$$

where $m_{k}=\sum_{i=1}^{n}\left[x_{i}=k\right]$ is the count of $\left[x_{i}=k\right]$. The ML estimator is

$$
\underset{\mu}{\operatorname{argmax}} \log P(D \mid \mu)=\frac{1}{n}\left(m_{1}, . ., m_{K}\right)
$$

- The Multinomial distribution is this distribution over the counts m_{k}

$$
\operatorname{Mult}\left(m_{1}, . ., m_{K} \mid n, \mu\right) \propto \prod_{k=1}^{K} \mu_{k}^{m_{k}}
$$

Dirichlet

How to express uncertainty over a Multinomial parameter μ

- The Dirichlet distribution is over the K-simplex, that is, over $\mu_{1}, . ., \mu_{K} \in[0,1]$ subject to the constraint $\sum_{k=1}^{K} \mu_{k}=1$:

$$
\operatorname{Dir}(\mu \mid \alpha) \propto \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1}
$$

It is parameterized by $\alpha=\left(\alpha_{1}, . ., \alpha_{K}\right)$, has mean $\left\langle\mu_{i}\right\rangle=\frac{\alpha_{i}}{\sum_{j} \alpha_{j}}$ and mode $\mu_{i}^{*}=\frac{\alpha_{i}-1}{\sum_{j} \alpha_{j}-K}$ for $a_{i}>1$.

- The crucial point is:
- Assume we are in a world with a "Multinomial source" (e.g., an integer bandit), but don't know its parameter μ
- Assume we have a prior distribution $P(\mu)=\operatorname{Dir}(\mu \mid \alpha)$
- Assume we collected some data $D=\left\{x_{1}, . ., x_{n}\right\}, x_{i} \in\{1, . ., K\}$, with counts $m_{k}=\sum_{i}\left[x_{i}=k\right]$
- The posterior is

$$
\begin{aligned}
P(\mu \mid D) & =\frac{P(D \mid \mu)}{P(D)} P(\mu) \propto \operatorname{Mult}(D \mid \mu) \operatorname{Dir}(\mu \mid a, b) \\
& \propto \prod_{k=1}^{K} \mu_{k}^{m_{k}} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1}=\prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1+m_{k}}
\end{aligned}
$$

Dirichlet

The prior is $\operatorname{Dir}(\mu \mid \alpha)$, the posterior is $\operatorname{Dir}(\mu \mid \alpha+m)$

- Conclusions:
- The semantics of α is the counts of $\left[x_{i}=k\right]$
- The Dirichlet distribution is conjugate to the Multinomial
- With the Dirichlet distribution we can represent beliefs (state of knowledge) about uncertain μ of an integer random variable and know how to update this belief given data

Dirichlet

Illustrations for $\alpha=(0.1,0.1,0.1), \alpha=(1,1,1)$ and $\alpha=(10,10,10)$:

from Bishop

Motivation for Beta \& Dirichlet distributions

- Bandits:
- If we have binary [integer] bandits, the Beta [Dirichlet] distribution is a way to represent and update beliefs
- The belief space becomes discrete: The parameter α of the prior is continuous, but the posterior updates live on a discrete "grid" (adding counts to α)
- We can in principle do belief planning using this
- Reinforcement Learning:
- Assume we know that the world is a finite-state MDP, but do not know its transition probability $P\left(s^{\prime} \mid s, a\right)$. For each $(s, a), P\left(s^{\prime} \mid s, a\right)$ is a distribution over the integer s^{\prime}
- Having a separate Dirichlet distribution for each (s, a) is a way to represent our belief about the world, that is, our belief about $P\left(s^{\prime} \mid s, a\right)$
- We can in principle do belief planning using this \rightarrow Bayesian Reinforcement Learning
- Dirichlet distributions are also used to model texts (word distributions in text), images, or mixture distributions in general

Conjugate priors

- Assume you have data $D=\left\{x_{1}, . ., x_{n}\right\}$ with likelihood

$$
P(D \mid \theta)
$$

that depends on an uncertain parameter θ
Assume you have a prior $P(\theta)$

- The prior $P(\theta)$ is conjugate to the likelihood $P(D \mid \theta)$ iff the posterior

$$
P(\theta \mid D) \propto P(D \mid \theta) P(\theta)
$$

is in the same distribution class as the prior $P(\theta)$

- Having a conjugate prior is very convenient, because then you know how to update the belief given data

Conjugate priors

likelihood	conjugate
Binomial $\operatorname{Bin}(D \mid \mu)$	Beta $\operatorname{Beta}(\mu \mid a, b)$
Multinomial $\operatorname{Mult}(D \mid \mu)$	Dirichlet $\operatorname{Dir}(\mu \mid \alpha)$
Gauss $\mathcal{N}(x \mid \mu, \Sigma)$	Gauss $\mathcal{N}\left(\mu \mid \mu_{0}, A\right)$
1 D Gauss $\mathcal{N}\left(x \mid \mu, \lambda^{-1}\right)$	Gamma $\operatorname{Gam}(\lambda \mid a, b)$
n D Gauss $\mathcal{N}\left(x \mid \mu, \Lambda^{-1}\right)$	Wishart Wish $(\Lambda \mid W, \nu)$
n D Gauss $\mathcal{N}\left(x \mid \mu, \Lambda^{-1}\right)$	$\operatorname{Gauss-Wishart}$
	$\mathcal{N}\left(\mu \mid \mu_{0},(\beta \Lambda)^{-1}\right) \operatorname{Wish}(\Lambda \mid W, \nu)$

Distributions over continuous domain

- Let x be a continuous RV. The probability density function (pdf) $p(x) \in[0, \infty)$ defines the probability

$$
P(a \leq x \leq b)=\int_{a}^{b} p(x) d x \in[0,1]
$$

The (cumulative) probability distribution $F(y)=P(x \leq y)=\int_{-\infty}^{y} d x p(x) \in[0,1]$ is the cumulative integral with $\lim _{y \rightarrow \infty} F(y)=1$
(In discrete domain: probability distribution and probability mass function $P(x) \in[0,1]$ are used synonymously.)

- Two basic examples:

Gaussian: $\quad \mathcal{N}(x \mid \mu, \Sigma)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)}$ Dirac or δ ("point particle") $\delta(x)=0$ except at $x=0, \int \delta(x) d x=1$ $\delta(x)=\frac{\partial}{\partial x} H(x)$ where $H(x)=[x \geq 0]=$ Heavyside step function

Gaussian distribution

- 1-dim: $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left|2 \pi \sigma^{2}\right|^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}$

- n-dim Gaussian in normal form:

$$
\mathcal{N}(x \mid \mu, \Sigma)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}
$$

with mean μ and covariance matrix Σ. In canonical form:

$$
\begin{equation*}
\mathcal{N}[x \mid a, A]=\frac{\exp \left\{-\frac{1}{2} a^{\top} A^{-1} a\right\}}{\left|2 \pi A^{-1}\right|^{1 / 2}} \exp \left\{-\frac{1}{2} x^{\top} A x+x^{\top} a\right\} \tag{1}
\end{equation*}
$$

with precision matrix $A=\Sigma^{-1}$ and coefficient $a=\Sigma^{-1} \mu$ (and mean $\left.\mu=A^{-1} a\right)$.

- Gaussian identities: see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

Gaussian identities

Symmetry: $\quad \mathcal{N}(x \mid a, A)=\mathcal{N}(a \mid x, A)=\mathcal{N}(x-a \mid 0, A)$

Product:
$\mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B)=\mathcal{N}\left[x \mid A^{-1} a+B^{-1} b, A^{-1}+B^{-1}\right] \mathcal{N}(a \mid b, A+B)$
$\mathcal{N}[x \mid a, A] \mathcal{N}[x \mid b, B]=\mathcal{N}[x \mid a+b, A+B] \mathcal{N}\left(A^{-1} a \mid B^{-1} b, A^{-1}+B^{-1}\right)$
"Propagation":
$\int_{y} \mathcal{N}(x \mid a+F y, A) \mathcal{N}(y \mid b, B) d y=\mathcal{N}\left(x \mid a+F b, A+F B F^{\top}\right)$
Transformation:
$\mathcal{N}(F x+f \mid a, A)=\frac{1}{|F|} \mathcal{N}\left(x \mid F^{-1}(a-f), F^{-1} A F^{-\top}\right)$
Marginal \& conditional:
$\mathcal{N}\left(\begin{array}{c|ccc}x & a & A & C \\ y & b & C^{\top} & B\end{array}\right)=\mathcal{N}(x \mid a, A) \cdot \mathcal{N}\left(y \mid b+C^{\top} A^{-1}(x-a), B-C^{\top} A^{-1} C\right)$
More Gaussian identities: see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

Gaussian prior and posterior

- Assume we have data $D=\left\{x_{1}, . ., x_{n}\right\}$, each $x_{i} \in \mathbb{R}^{n}$, with likelihood

$$
\begin{aligned}
P(D \mid \mu, \Sigma) & =\prod_{i} \mathcal{N}\left(x_{i} \mid \mu, \Sigma\right) \\
\underset{\mu}{\operatorname{argmax}} P(D \mid \mu, \Sigma) & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\underset{\Sigma}{\operatorname{argmax}} P(D \mid \mu, \Sigma) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{\top}
\end{aligned}
$$

- Assume we are initially uncertain about μ (but know Σ). We can express this uncertainty using again a Gaussian $\mathcal{N}[\mu \mid a, A]$. Given data we have

$$
\begin{aligned}
P(\mu \mid D) & \propto P(D \mid \mu, \Sigma) P(\mu)=\prod_{i} \mathcal{N}\left(x_{i} \mid \mu, \Sigma\right) \mathcal{N}[\mu \mid a, A] \\
& =\prod_{i} \mathcal{N}\left[\mu \mid \Sigma^{-1} x_{i}, \Sigma^{-1}\right] \mathcal{N}[\mu \mid a, A] \propto \mathcal{N}\left[\mu \mid \Sigma^{-1} \sum_{i} x_{i}, n \Sigma^{-1}+A\right]
\end{aligned}
$$

Note: in the limit $A \rightarrow 0$ (uninformative prior) this becomes

$$
P(\mu \mid D)=\mathcal{N}\left(\mu \left\lvert\, \frac{1}{n} \sum_{i} x_{i}\right., \frac{1}{n} \Sigma\right)
$$

which is consistent with the Maximum Likelihood estimator

Motivation for Gaussian distributions

- Gaussian Bandits
- Control theory, Stochastic Optimal Control
- State estimation, sensor processing, Gaussian filtering (Kalman filtering)
- Machine Learning
- etc

Particle Approximation of a Distribution

- We approximate a distribution $p(x)$ over a continuous domain \mathbb{R}^{n}
- A particle distribution $q(x)$ is a weighed set $\mathcal{S}=\left\{\left(x^{i}, w^{i}\right)\right\}_{i=1}^{N}$ of N particles
- each particle has a "location" $x^{i} \in \mathbb{R}^{n}$ and a weight $w^{i} \in \mathbb{R}$
- weights are normalized, $\sum_{i} w^{i}=1$

$$
q(x):=\sum_{i=1}^{N} w^{i} \delta\left(x-x^{i}\right)
$$

where $\delta\left(x-x^{i}\right)$ is the δ-distribution.

- Given weighted particles, we can estimate for any (smooth) f :

$$
\langle f(x)\rangle_{p}=\int_{x} f(x) p(x) d x \approx \sum_{i=1}^{N} w^{i} f\left(x^{i}\right)
$$

See An Introduction to MCMC for Machine Learning
www.cs.ubc.ca/~nando/papers/mlintro.pdf

Particle Approximation of a Distribution

Histogram of a particle representation:

Motivation for particle distributions

- Numeric representation of "difficult" distributions
- Very general and versatile
- But often needs many samples
- Distributions over games (action sequences), sample based planning, MCTS
- State estimation, particle filters
- etc

Utilities \& Decision Theory

- Given a space of events Ω (e.g., outcomes of a trial, a game, etc) the utility is a function

$$
U: \Omega \rightarrow \mathbb{R}
$$

- The utility represents preferences as a single scalar - which is not always obvious (cf. multi-objective optimization)
- Decision Theory making decisions (that determine $p(x)$) that maximize expected utility

$$
\mathrm{E}\{U\}_{p}=\int_{x} U(x) p(x)
$$

- Concave utility functions imply risk aversion (and convex, risk-taking)

Entropy

- The neg-log $(-\log p(x))$ of a distribution reflects something like "error":
- neg-log of a Guassian \leftrightarrow squared error
- neg-log likelihood \leftrightarrow prediction error
- The $(-\log p(x))$ is the "optimal" coding length you should assign to a symbol x. This will minimize the expected length of an encoding

$$
H(p)=\int_{x} p(x)[-\log p(x)]
$$

- The entropy $H(p)=\mathrm{E}_{p(x)}\{-\log p(x)\}$ of a distribution p is a measure of uncertainty, or lack-of-information, we have about x

Kullback-Leibler divergence

- Assume you use a "wrong" distribution $q(x)$ to decide on the coding length of symbols drawn from $p(x)$. The expected length of a encoding is

$$
\int_{x} p(x)[-\log q(x)] \geq H(p)
$$

- The difference

$$
D(p \| q)=\int_{x} p(x) \log \frac{p(x)}{q(x)} \geq 0
$$

is called Kullback-Leibler divergence

Proof of inequality, using the Jenson inequality:

$$
-\int_{x} p(x) \log \frac{q(x)}{p(x)} \geq-\log \int_{x} p(x) \frac{q(x)}{p(x)}=0
$$

Monte Carlo methods

- Generally, a Monte Carlo method is a method to generate a set of (potentially weighted) samples that approximate a distribution $p(x)$. In the unweighted case, the samples should be i.i.d. $x_{i} \sim p(x)$ In the general (also weighted) case, we want particles that allow to estimate expectations of anything that depends on x, e.g. $f(x)$:

$$
\lim _{N \rightarrow \infty}\langle f(x)\rangle_{q}=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} w^{i} f\left(x^{i}\right)=\int_{x} f(x) p(x) d x=\langle f(x)\rangle_{p}
$$

In this view, Monte Carlo methods approximate an integral.

- Motivation: $p(x)$ itself is too complicated to express analytically or compute $\langle f(x)\rangle_{p}$ directly
- Example: What is the probability that a solitair would come out successful? (Original story by Stan Ulam.) Instead of trying to analytically compute this, generate many random solitairs and count.
- Naming: The method developed in the 40ies, where computers became faster. Fermi, Ulam and von Neumann initiated the idea. von Neumann called it "Monte Carlo" as a code name.

Rejection Sampling

- How can we generate i.i.d. samples $x_{i} \sim p(x)$?
- Assumptions:
- We can sample $x \sim q(x)$ from a simpler distribution $q(x)$ (e.g., uniform), called proposal distribution
- We can numerically evaluate $p(x)$ for a specific x (even if we don't have an analytic expression of $p(x)$)
- There exists M such that $\forall_{x}: p(x) \leq M q(x)$ (which implies q has larger or equal support as p)
- Rejection Sampling:
- Sample a candiate $x \sim q(x)$
- With probability $\frac{p(x)}{M q(x)}$ accept x and add to \mathcal{S}; otherwise reject
- Repeat until $|\mathcal{S}|=n$
- This generates an unweighted sample set \mathcal{S} to approximate $p(x)$

Importance sampling

- Assumptions:
- We can sample $x \sim q(x)$ from a simpler distribution $q(x)$ (e.g., uniform)
- We can numerically evaluate $p(x)$ for a specific x (even if we don't have an analytic expression of $p(x)$)
- Importance Sampling:
- Sample a candiate $x \sim q(x)$
- Add the weighted sample $\left(x, \frac{p(x)}{q(x)}\right)$ to \mathcal{S}
- Repeat n times
- This generates an weighted sample set \mathcal{S} to approximate $p(x)$ The weights $w_{i}=\frac{p\left(x_{i}\right)}{q\left(x_{i}\right)}$ are called importance weights
- Crucial for efficiency: a good choice of the proposal $q(x)$

Applications

- MCTS can be viewed as estimating a distribution over games (action sequences) conditional to win
- Inference in graphical models (models involving many depending random variables)

Some more continuous distributions*

Gaussian
Dirac or δ
Student's t
(=Gaussian for $\nu \rightarrow \infty$, otherwise heavy tails)

Exponential (distribution over single event time)
Laplace
("double exponential")
Chi-squared
Gamma
$\mathcal{N}(x \mid a, A)=\frac{1}{|2 \pi A|^{1 / 2}} e^{-\frac{1}{2}(x-a)^{\top} A^{-1}(x-a}$ $\delta(x)=\frac{\partial}{\partial x} H(x)$
$p(x ; \nu) \propto\left[1+\frac{x^{2}}{\nu}\right]^{-\frac{\nu+1}{2}}$
$p(x ; \lambda)=[x \geq 0] \lambda e^{-\lambda x}$
$p(x ; \mu, b)=\frac{1}{2 b} e^{-|x-\mu| / b}$
$p(x ; k) \propto[x \geq 0] x^{k / 2-1} e^{-x / 2}$
$p(x ; k, \theta) \propto[x \geq 0] x^{k-1} e^{-x / \theta}$

