
Machine Learning

Probability Basics

Marc Toussaint
University of Stuttgart

Summer 2016

The need for modelling

• Given a real world problem, translating it to a well-defined learning
problem is non-trivial

• The “framework” of plain regression/classification is restricted: input x,
output y.

• Graphical models (probabilstic models with multiple random variables
and dependencies) are a more general framework for modelling
“problems”; regression & classification become a special case;
Reinforcement Learning, decision making, unsupervised learning, but
also language processing, image segmentation, can be represented.

2/48

Thomas Bayes (1702-1761)

“Essay Towards Solv-
ing a Problem in the
Doctrine of Chances”

• Addresses problem of inverse probabilities:
Knowing the conditional probability of B given A, what is the conditional
probability of A given B?

• Example:
40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.) dialect
Given a random German that speaks non-dialect, is he Bavarian?
(15% of Germans are Bavarian)

3/48

Inference

• “Inference” = Given some pieces of information (prior, observed
variabes) what is the implication (the implied information, the posterior)
on a non-observed variable

• Learning as Inference:
– given pieces of information: data, assumed model, prior over β
– non-observed variable: β

4/48

Probability Theory

• Why do we need probabilities?
– Obvious: to express inherent stochasticity of the world (data)

• But beyond this: (also in a “deterministic world”):
– lack of knowledge!
– hidden (latent) variables
– expressing uncertainty
– expressing information (and lack of information)

• Probability Theory: an information calculus

5/48

Probability: Frequentist and Bayesian

• Frequentist probabilities are defined in the limit of an infinite number of
trials
Example: “The probability of a particular coin landing heads up is 0.43”

• Bayesian (subjective) probabilities quantify degrees of belief
Example: “The probability of rain tomorrow is 0.3” – not possible to repeat
“tomorrow”

6/48

Outline

• Basic definitions
– Random variables
– joint, conditional, marginal distribution
– Bayes’ theorem

• Examples for Bayes

• Probability distributions [skipped, only Gauss]
– Binomial; Beta
– Multinomial; Dirichlet
– Conjugate priors
– Gauss; Wichart
– Student-t, Dirak, Particles

• Monte Carlo, MCMC [skipped]
These are generic slides on probabilities I use throughout my lecture.
Only parts are mandatory for the AI course.

7/48

Basic definitions

8/48

Probabilities & Random Variables

• For a random variable X with discrete domain dom(X) = Ω we write:
∀x∈Ω : 0 ≤ P (X=x) ≤ 1∑
x∈Ω P (X=x) = 1

Example: A dice can take values Ω = {1, .., 6}.
X is the random variable of a dice throw.
P (X=1) ∈ [0, 1] is the probability that X takes value 1.

• A bit more formally: a random variable is a map from a measureable space to a
domain (sample space) and thereby introduces a probability measure on the
domain (“assigns a probability to each possible value”)

9/48

Probabilty Distributions

• P (X=1) ∈ R denotes a specific probability
P (X) denotes the probability distribution (function over Ω)

Example: A dice can take values Ω = {1, 2, 3, 4, 5, 6}.
By P (X) we discribe the full distribution over possible values {1, .., 6}. These
are 6 numbers that sum to one, usually stored in a table, e.g.: [1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
]

• In implementations we typically represent distributions over discrete
random variables as tables (arrays) of numbers

• Notation for summing over a RV:
In equation we often need to sum over RVs. We then write∑

X P (X) · · ·
as shorthand for the explicit notation

∑
x∈dom(X) P (X=x) · · ·

10/48

Probabilty Distributions

• P (X=1) ∈ R denotes a specific probability
P (X) denotes the probability distribution (function over Ω)

Example: A dice can take values Ω = {1, 2, 3, 4, 5, 6}.
By P (X) we discribe the full distribution over possible values {1, .., 6}. These
are 6 numbers that sum to one, usually stored in a table, e.g.: [1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
]

• In implementations we typically represent distributions over discrete
random variables as tables (arrays) of numbers

• Notation for summing over a RV:
In equation we often need to sum over RVs. We then write∑

X P (X) · · ·
as shorthand for the explicit notation

∑
x∈dom(X) P (X=x) · · ·

10/48

Joint distributions
Assume we have two random variables X and Y

• Definitions:
Joint: P (X,Y)

Marginal: P (X) =
∑
Y P (X,Y)

Conditional: P (X|Y) = P (X,Y)
P (Y)

The conditional is normalized: ∀Y :
∑
X P (X|Y) = 1

• X is independent of Y iff: P (X|Y) = P (X)

(table thinking: all columns of P (X|Y) are equal)

11/48

Joint distributions
joint: P (X,Y)

marginal: P (X) =
∑
Y P (X,Y)

conditional: P (X|Y) = P (X,Y)
P (Y)

• Implications of these definitions:
Product rule: P (X,Y) = P (X|Y) P (Y) = P (Y |X) P (X)

Bayes’ Theorem: P (X|Y) = P (Y |X) P (X)
P (Y)

12/48

Bayes’ Theorem

P (X|Y) =
P (Y |X) P (X)

P (Y)

posterior = likelihood · prior
normalization

13/48

Multiple RVs:

• Analogously for n random variables X1:n (stored as a rank n tensor)
Joint: P (X1:n)

Marginal: P (X1) =
∑
X2:n

P (X1:n),
Conditional: P (X1|X2:n) = P (X1:n)

P (X2:n)

• X is conditionally independent of Y given Z iff:
P (X|Y,Z) = P (X|Z)

• Product rule and Bayes’ Theorem:

P (X1:n) =
∏n
i=1 P (Xi|Xi+1:n)

P (X1|X2:n) = P (X2|X1,X3:n) P (X1|X3:n)
P (X2|X3:n)

P (X,Z, Y) = P (X|Y,Z) P (Y |Z) P (Z)

P (X|Y,Z) = P (Y |X,Z) P (X|Z)
P (Y |Z)

P (X,Y |Z) = P (X,Z|Y) P (Y)
P (Z)

14/48

Example 1: Bavarian dialect

• 40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.)
dialect
Given a random German that speaks non-dialect, is he Bavarian?
(15% of Germans are Bavarian)

P (D=1 |B=1) = 0.4

P (D=1 |B=0) = 0.01

P (B=1) = 0.15

If follows

D

B

P (B=1 |D=0) = P (D=0 |B=1) P (B=1)
P (D=0) = .6·.15

.6·.15+0.99·.85 ≈ 0.097

15/48

Example 1: Bavarian dialect

• 40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.)
dialect
Given a random German that speaks non-dialect, is he Bavarian?
(15% of Germans are Bavarian)

P (D=1 |B=1) = 0.4

P (D=1 |B=0) = 0.01

P (B=1) = 0.15

If follows

D

B

P (B=1 |D=0) = P (D=0 |B=1) P (B=1)
P (D=0) = .6·.15

.6·.15+0.99·.85 ≈ 0.097

15/48

Example 2: Coin flipping

HHTHT

HHHHH

H

d1 d2 d3 d4 d5

• What process produces these sequences?

• We compare two hypothesis:
H = 1 : fair coin P (di=H |H=1) = 1

2

H = 2 : always heads coin P (di=H |H=2) = 1

• Bayes’ theorem:
P (H |D) = P (D |H)P (H)

P (D)

16/48

Coin flipping

D = HHTHT

P (D |H=1) = 1/25 P (H=1) = 999
1000

P (D |H=2) = 0 P (H=2) = 1
1000

P (H=1 |D)

P (H=2 |D)
=
P (D |H=1)

P (D |H=2)

P (H=1)

P (H=2)
=

1/32

0

999

1
=∞

17/48

Coin flipping

D = HHHHH

P (D |H=1) = 1/25 P (H=1) = 999
1000

P (D |H=2) = 1 P (H=2) = 1
1000

P (H=1 |D)

P (H=2 |D)
=
P (D |H=1)

P (D |H=2)

P (H=1)

P (H=2)
=

1/32

1

999

1
≈ 30

18/48

Coin flipping

D = HHHHHHHHHH

P (D |H=1) = 1/210 P (H=1) = 999
1000

P (D |H=2) = 1 P (H=2) = 1
1000

P (H=1 |D)

P (H=2 |D)
=
P (D |H=1)

P (D |H=2)

P (H=1)

P (H=2)
=

1/1024

1

999

1
≈ 1

19/48

Learning as Bayesian inference

P (World|Data) =
P (Data|World) P (World)

P (Data)

P (World) describes our prior over all possible worlds. Learning means
to infer about the world we live in based on the data we have!

• In the context of regression, the “world” is the function f(x)

P (f |Data) =
P (Data|f) P (f)

P (Data)

P (f) describes our prior over possible functions

Regression means to infer the function based on the data we have

20/48

Learning as Bayesian inference

P (World|Data) =
P (Data|World) P (World)

P (Data)

P (World) describes our prior over all possible worlds. Learning means
to infer about the world we live in based on the data we have!

• In the context of regression, the “world” is the function f(x)

P (f |Data) =
P (Data|f) P (f)

P (Data)

P (f) describes our prior over possible functions

Regression means to infer the function based on the data we have

20/48

Probability distributions
recommended reference: Bishop.: Pattern Recognition and Machine Learning

21/48

Bernoulli & Binomial

• We have a binary random variable x ∈ {0, 1} (i.e. dom(x) = {0, 1})
The Bernoulli distribution is parameterized by a single scalar µ,

P (x=1 |µ) = µ , P (x=0 |µ) = 1− µ
Bern(x |µ) = µx(1− µ)1−x

• We have a data set of random variables D = {x1, .., xn}, each
xi ∈ {0, 1}. If each xi ∼ Bern(xi |µ) we have

P (D |µ) =
∏n
i=1 Bern(xi |µ) =

∏n
i=1 µ

xi(1− µ)1−xi

argmax
µ

logP (D |µ) = argmax
µ

n∑
i=1

xi logµ+ (1− xi) log(1− µ) =
1

n

n∑
i=1

xi

• The Binomial distribution is the distribution over the count m =
∑n
i=1 xi

Bin(m |n, µ) =

n
m

 µm(1− µ)n−m ,

n
m

 =
n!

(n−m)! m!

22/48

Beta
How to express uncertainty over a Bernoulli parameter µ

• The Beta distribution is over the interval [0, 1], typically the parameter µ
of a Bernoulli:

Beta(µ | a, b) =
1

B(a, b)
µa−1(1− µ)b−1

with mean 〈µ〉 = a
a+b and mode µ∗ = a−1

a+b−2 for a, b > 1

• The crucial point is:
– Assume we are in a world with a “Bernoulli source” (e.g., binary bandit),

but don’t know its parameter µ
– Assume we have a prior distribution P (µ) = Beta(µ | a, b)
– Assume we collected some data D = {x1, .., xn}, xi ∈ {0, 1}, with counts
aD =

∑
i xi of [xi=1] and bD =

∑
i(1− xi) of [xi=0]

– The posterior is

P (µ |D) =
P (D |µ)

P (D)
P (µ) ∝ Bin(D |µ) Beta(µ | a, b)

∝ µaD (1− µ)bD µa−1(1− µ)b−1 = µa−1+aD (1− µ)b−1+bD

= Beta(µ | a+ aD, b+ bD) 23/48

Beta

The prior is Beta(µ | a, b), the posterior is Beta(µ | a+ aD, b+ bD)

• Conclusions:
– The semantics of a and b are counts of [xi=1] and [xi=0], respectively
– The Beta distribution is conjugate to the Bernoulli (explained later)
– With the Beta distribution we can represent beliefs (state of knowledge)

about uncertain µ ∈ [0, 1] and know how to update this belief given data

24/48

Beta

from Bishop

25/48

Multinomial
• We have an integer random variable x ∈ {1, ..,K}

The probability of a single x can be parameterized by µ = (µ1, .., µK):

P (x=k |µ) = µk

with the constraint
∑K
k=1 µk = 1 (probabilities need to be normalized)

• We have a data set of random variables D = {x1, .., xn}, each
xi ∈ {1, ..,K}. If each xi ∼ P (xi |µ) we have

P (D |µ) =
∏n
i=1 µxi =

∏n
i=1

∏K
k=1 µ

[xi=k]
k =

∏K
k=1 µ

mk
k

where mk =
∑n
i=1[xi=k] is the count of [xi=k]. The ML estimator is

argmax
µ

logP (D |µ) =
1

n
(m1, ..,mK)

• The Multinomial distribution is this distribution over the counts mk

Mult(m1, ..,mK |n, µ) ∝
∏K
k=1 µ

mk
k

26/48

Dirichlet
How to express uncertainty over a Multinomial parameter µ

• The Dirichlet distribution is over the K-simplex, that is, over
µ1, .., µK ∈ [0, 1] subject to the constraint

∑K
k=1 µk = 1:

Dir(µ |α) ∝
∏K
k=1 µ

αk−1
k

It is parameterized by α = (α1, .., αK), has mean 〈µi〉 = αi∑
jαj

and

mode µ∗i = αi−1∑
jαj−K

for ai > 1.

• The crucial point is:
– Assume we are in a world with a “Multinomial source” (e.g., an integer

bandit), but don’t know its parameter µ
– Assume we have a prior distribution P (µ) = Dir(µ |α)

– Assume we collected some data D = {x1, .., xn}, xi ∈ {1, ..,K}, with
counts mk =

∑
i[xi=k]

– The posterior is

P (µ |D) =
P (D |µ)

P (D)
P (µ) ∝ Mult(D |µ) Dir(µ | a, b)

∝
∏K
k=1 µ

mk
k

∏K
k=1 µ

αk−1
k =

∏K
k=1 µ

αk−1+mk
k

= Dir(µ |α+m)
27/48

Dirichlet

The prior is Dir(µ |α), the posterior is Dir(µ |α+m)

• Conclusions:
– The semantics of α is the counts of [xi=k]

– The Dirichlet distribution is conjugate to the Multinomial
– With the Dirichlet distribution we can represent beliefs (state of

knowledge) about uncertain µ of an integer random variable and know
how to update this belief given data

28/48

Dirichlet
Illustrations for α = (0.1, 0.1, 0.1), α = (1, 1, 1) and α = (10, 10, 10):

from Bishop

29/48

Motivation for Beta & Dirichlet distributions

• Bandits:
– If we have binary [integer] bandits, the Beta [Dirichlet] distribution is a way

to represent and update beliefs
– The belief space becomes discrete: The parameter α of the prior is

continuous, but the posterior updates live on a discrete “grid” (adding
counts to α)

– We can in principle do belief planning using this

• Reinforcement Learning:
– Assume we know that the world is a finite-state MDP, but do not know its

transition probability P (s′ | s, a). For each (s, a), P (s′ | s, a) is a distribution
over the integer s′

– Having a separate Dirichlet distribution for each (s, a) is a way to
represent our belief about the world, that is, our belief about P (s′ | s, a)

– We can in principle do belief planning using this→ Bayesian
Reinforcement Learning

• Dirichlet distributions are also used to model texts (word distributions in
text), images, or mixture distributions in general

30/48

Conjugate priors

• Assume you have data D = {x1, .., xn} with likelihood

P (D | θ)

that depends on an uncertain parameter θ
Assume you have a prior P (θ)

• The prior P (θ) is conjugate to the likelihood P (D | θ) iff the posterior

P (θ |D) ∝ P (D | θ) P (θ)

is in the same distribution class as the prior P (θ)

• Having a conjugate prior is very convenient, because then you know
how to update the belief given data

31/48

Conjugate priors

likelihood conjugate

Binomial Bin(D |µ) Beta Beta(µ | a, b)
Multinomial Mult(D |µ) Dirichlet Dir(µ |α)

Gauss N(x |µ,Σ) Gauss N(µ |µ0, A)

1D Gauss N(x |µ, λ-1) Gamma Gam(λ | a, b)
nD Gauss N(x |µ,Λ-1) Wishart Wish(Λ |W, ν)

nD Gauss N(x |µ,Λ-1) Gauss-Wishart
N(µ |µ0, (βΛ)-1) Wish(Λ |W, ν)

32/48

Distributions over continuous domain

• Let x be a continuous RV. The probability density function (pdf)
p(x) ∈ [0,∞) defines the probability

P (a ≤ x ≤ b) =

∫ b

a

p(x) dx ∈ [0, 1]

The (cumulative) probability distribution
F (y) = P (x ≤ y) =

∫ y
−∞ dx p(x) ∈ [0, 1] is the cumulative integral with

limy→∞ F (y) = 1

(In discrete domain: probability distribution and probability mass function
P (x) ∈ [0, 1] are used synonymously.)

• Two basic examples:
Gaussian: N(x |µ,Σ) = 1

| 2πΣ | 1/2 e
− 1

2 (x−µ)> Σ-1 (x−µ)

Dirac or δ (“point particle”) δ(x) = 0 except at x = 0,
∫
δ(x) dx = 1

δ(x) = ∂
∂xH(x) where H(x) = [x ≥ 0] = Heavyside step function

33/48

Gaussian distribution

• 1-dim: N(x |µ, σ2) = 1
| 2πσ2 | 1/2 e

− 1
2 (x−µ)2/σ2

N (x|µ, σ2)

x

2σ

µ

• n-dim Gaussian in normal form:

N(x |µ,Σ) =
1

| 2πΣ | 1/2
exp{−1

2
(x− µ)>Σ-1 (x− µ)}

with mean µ and covariance matrix Σ. In canonical form:

N[x | a,A] =
exp{− 1

2a
>A-1a}

| 2πA-1 | 1/2
exp{−1

2
x>A x+ x>a} (1)

with precision matrix A = Σ-1 and coefficient a = Σ-1µ (and mean
µ = A-1a).

• Gaussian identities: see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

34/48

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

Gaussian identities
Symmetry: N(x | a,A) = N(a |x,A) = N(x− a | 0, A)

Product:
N(x | a,A) N(x | b,B) = N[x |A-1a+B-1b, A-1 +B-1] N(a | b, A+B)

N[x | a,A] N[x | b,B] = N[x | a+ b, A+B] N(A-1a |B-1b, A-1 +B-1)

“Propagation”:∫
y
N(x | a+ Fy,A) N(y | b,B) dy = N(x | a+ Fb,A+ FBF>)

Transformation:
N(Fx+ f | a,A) = 1

|F | N(x | F -1(a− f), F -1AF ->)

Marginal & conditional:

N

(
x

y

∣∣∣∣ a
b
,
A C

C> B

)
= N(x | a,A) ·N(y | b+ C>A-1(x - a), B − C>A-1C)

More Gaussian identities: see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

35/48

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

Gaussian prior and posterior
• Assume we have data D = {x1, .., xn}, each xi ∈ Rn, with likelihood

P (D |µ,Σ) =
∏
iN(xi |µ,Σ)

argmax
µ

P (D |µ,Σ) =
1

n

n∑
i=1

xi

argmax
Σ

P (D |µ,Σ) =
1

n

n∑
i=1

(xi − µ)(xi − µ)>

• Assume we are initially uncertain about µ (but know Σ). We can
express this uncertainty using again a Gaussian N[µ | a,A]. Given data
we have

P (µ |D) ∝ P (D |µ,Σ) P (µ) =
∏
iN(xi |µ,Σ) N[µ | a,A]

=
∏
iN[µ |Σ-1xi,Σ

-1] N[µ | a,A] ∝ N[µ |Σ-1
∑
i xi, nΣ-1 +A]

Note: in the limit A→ 0 (uninformative prior) this becomes

P (µ |D) = N(µ | 1

n

∑
i

xi,
1

n
Σ)

which is consistent with the Maximum Likelihood estimator 36/48

Motivation for Gaussian distributions

• Gaussian Bandits

• Control theory, Stochastic Optimal Control

• State estimation, sensor processing, Gaussian filtering (Kalman
filtering)

• Machine Learning

• etc

37/48

Particle Approximation of a Distribution

• We approximate a distribution p(x) over a continuous domain Rn

• A particle distribution q(x) is a weighed set S = {(xi, wi)}Ni=1 of N
particles

– each particle has a “location” xi ∈ Rn and a weight wi ∈ R
– weights are normalized,

∑
i w

i = 1

q(x) :=

N∑
i=1

wi δ(x− xi)

where δ(x− xi) is the δ-distribution.

• Given weighted particles, we can estimate for any (smooth) f :

〈f(x)〉p =

∫
x

f(x)p(x)dx ≈
∑N
i=1 w

if(xi)

See An Introduction to MCMC for Machine Learning
www.cs.ubc.ca/~nando/papers/mlintro.pdf

38/48

www.cs.ubc.ca/~nando/papers/mlintro.pdf

Particle Approximation of a Distribution
Histogram of a particle representation:

39/48

Motivation for particle distributions

• Numeric representation of “difficult” distributions
– Very general and versatile
– But often needs many samples

• Distributions over games (action sequences), sample based planning,
MCTS

• State estimation, particle filters

• etc

40/48

Utilities & Decision Theory

• Given a space of events Ω (e.g., outcomes of a trial, a game, etc) the
utility is a function

U : Ω→ R

• The utility represents preferences as a single scalar – which is not
always obvious (cf. multi-objective optimization)

• Decision Theory making decisions (that determine p(x)) that maximize
expected utility

E{U}p =

∫
x

U(x) p(x)

• Concave utility functions imply risk aversion (and convex, risk-taking)

41/48

Entropy

• The neg-log (− log p(x)) of a distribution reflects something like “error”:
– neg-log of a Guassian↔ squared error
– neg-log likelihood↔ prediction error

• The (− log p(x)) is the “optimal” coding length you should assign to a
symbol x. This will minimize the expected length of an encoding

H(p) =

∫
x

p(x)[− log p(x)]

• The entropy H(p) = Ep(x){− log p(x)} of a distribution p is a measure
of uncertainty, or lack-of-information, we have about x

42/48

Kullback-Leibler divergence

• Assume you use a “wrong” distribution q(x) to decide on the coding
length of symbols drawn from p(x). The expected length of a encoding
is ∫

x

p(x)[− log q(x)] ≥ H(p)

• The difference
D
(
p
∣∣∣∣ q) =

∫
x

p(x) log
p(x)

q(x)
≥ 0

is called Kullback-Leibler divergence

Proof of inequality, using the Jenson inequality:

−
∫
x
p(x) log

q(x)

p(x)
≥ − log

∫
x
p(x)

q(x)

p(x)
= 0

43/48

Monte Carlo methods
• Generally, a Monte Carlo method is a method to generate a set of

(potentially weighted) samples that approximate a distribution p(x).
In the unweighted case, the samples should be i.i.d. xi ∼ p(x)

In the general (also weighted) case, we want particles that allow to
estimate expectations of anything that depends on x, e.g. f(x):

lim
N→∞

〈f(x)〉q = lim
N→∞

N∑
i=1

wif(xi) =

∫
x

f(x) p(x) dx = 〈f(x)〉p

In this view, Monte Carlo methods approximate an integral.
• Motivation: p(x) itself is too complicated to express analytically or

compute 〈f(x)〉p directly

• Example: What is the probability that a solitair would come out successful?
(Original story by Stan Ulam.) Instead of trying to analytically compute this,
generate many random solitairs and count.

• Naming: The method developed in the 40ies, where computers became faster.
Fermi, Ulam and von Neumann initiated the idea. von Neumann called it
“Monte Carlo” as a code name. 44/48

Rejection Sampling

• How can we generate i.i.d. samples xi ∼ p(x)?

• Assumptions:
– We can sample x ∼ q(x) from a simpler distribution q(x) (e.g., uniform),

called proposal distribution
– We can numerically evaluate p(x) for a specific x (even if we don’t have an

analytic expression of p(x))
– There exists M such that ∀x : p(x) ≤Mq(x) (which implies q has larger or

equal support as p)

• Rejection Sampling:
– Sample a candiate x ∼ q(x)

– With probability p(x)
Mq(x)

accept x and add to S; otherwise reject

– Repeat until |S| = n

• This generates an unweighted sample set S to approximate p(x)

45/48

Importance sampling

• Assumptions:
– We can sample x ∼ q(x) from a simpler distribution q(x) (e.g., uniform)
– We can numerically evaluate p(x) for a specific x (even if we don’t have an

analytic expression of p(x))

• Importance Sampling:
– Sample a candiate x ∼ q(x)

– Add the weighted sample (x, p(x)
q(x)

) to S

– Repeat n times

• This generates an weighted sample set S to approximate p(x)

The weights wi = p(xi)
q(xi)

are called importance weights

• Crucial for efficiency: a good choice of the proposal q(x)

46/48

Applications

• MCTS can be viewed as estimating a distribution over games (action
sequences) conditional to win

• Inference in graphical models (models involving many depending
random variables)

47/48

Some more continuous distributions*
Gaussian N(x | a,A) = 1

| 2πA | 1/2 e
− 1

2 (x−a)> A-1 (x−a)

Dirac or δ δ(x) = ∂
∂xH(x)

Student’s t
(=Gaussian for ν → ∞, otherwise
heavy tails)

p(x; ν) ∝ [1 + x2

ν]−
ν+1
2

Exponential
(distribution over single event time)

p(x;λ) = [x ≥ 0] λe−λx

Laplace
(“double exponential”)

p(x;µ, b) = 1
2be
− | x−µ | /b

Chi-squared p(x; k) ∝ [x ≥ 0] xk/2−1e−x/2

Gamma p(x; k, θ) ∝ [x ≥ 0] xk−1e−x/θ

48/48

