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The need for modelling

e Given a real world problem, translating it to a well-defined learning
problem is non-trivial

e The “framework” of plain regression/classification is restricted: input z,
output y.

¢ Graphical models (probabilstic models with multiple random variables
and dependencies) are a more general framework for modelling
“problems”; regression & classification become a special case;
Reinforcement Learning, decision making, unsupervised learning, but
also language processing, image segmentation, can be represented.
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Thomas Bayes (1702-1761)

“Essay Towards Solv-
ing a Problem in the
Doctrine of Chances”

Rev F-BAYES

e Addresses problem of inverse probabilities:
Knowing the conditional probability of B given A, what is the conditional
probability of A given B?

e Example:
40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.) dialect
Given a random German that speaks non-dialect, is he Bavarian?

(15% of Germans are Bavarian)
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Inference

e “Inference” = Given some pieces of information (prior, observed
variabes) what is the implication (the implied information, the posterior)
on a non-observed variable

¢ Learning as Inference:
— given pieces of information: data, assumed model, prior over
— non-observed variable: S
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Probability Theory

e Why do we need probabilities?
— Obvious: to express inherent stochasticity of the world (data)

e But beyond this: (also in a “deterministic world”):
lack of knowledge!

— hidden (latent) variables

expressing uncertainty

expressing information (and lack of information)

e Probability Theory: an information calculus
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Probability: Frequentist and Bayesian

e Frequentist probabilities are defined in the limit of an infinite number of
trials
Example: “The probability of a particular coin landing heads up is 0.43”

e Bayesian (subjective) probabilities quantify degrees of belief
Example: “The probability of rain tomorrow is 0.3” — not possible to repeat
“tomorrow”
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Outline

¢ Basic definitions
— Random variables
— joint, conditional, marginal distribution
— Bayes’ theorem

e Examples for Bayes

e Probability distributions [skipped, only Gauss]
— Binomial; Beta
— Multinomial; Dirichlet
— Conjugate priors
— Gauss; Wichart
— Student-t, Dirak, Particles

e Monte Carlo, MCMC [skipped]

These are generic slides on probabilities | use throughout my lecture.

Only parts are mandatory for the Al course.
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Basic definitions
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Probabilities & Random Variables

e For a random variable X with discrete domain dom(X) = €2 we write:
Veeq: 0S P(X=x)<1
YorcoP(X=2)=1

Example: A dice can take values 2 = {1, ..,6}.
X is the random variable of a dice throw.
P(X =1) € [0, 1] is the probability that X takes value 1.

e A bit more formally: a random variable is a map from a measureable space to a
domain (sample space) and thereby introduces a probability measure on the
domain (“assigns a probability to each possible value”)
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Probabilty Distributions

e P(X=1) € R denotes a specific probability
P(X) denotes the probability distribution (function over )
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Probabilty Distributions

e P(X=1) € R denotes a specific probability
P(X) denotes the probability distribution (function over )

Example: A dice can take values 2 = {1,2,3,4,5,6}.
By P(X) we discribe the full distribution over possible values {1, ..,6}. These

are 6 numbers that sum to one, usually stored in a table, €.9.: [§, %, &, &, 5+ &

¢ In implementations we typically represent distributions over discrete
random variables as tables (arrays) of numbers

¢ Notation for summing over a RV:
In equation we often need to sum over RVs. We then write

2x PX) -

as shorthand for the explicit notation > j,.(x) P(X =) -
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Joint distributions

Assume we have two random variables X and Y

P(X=zY=y)
e Definitions: x Py,
Joint:  P(X,Y)

Marginal: P(X) =), P(X,Y) ’
Conditional: P(X|Y) = p({f))

The conditional is normalized: Vy : >  P(X|Y) =1

e X is independentof Y iff: P(X|Y) = P(X)
(table thinking: all columns of P(X|Y") are equal)
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Joint distributions

joint:  P(X,)Y)
marginal:  P(X) =), P(X,Y)

conditional: P(X|Y) = Pz(j((x)

¢ Implications of these definitions:
Product rule: P(X,Y)=P(X|Y) P(Y)=P(Y|X) P(X)

Bayes’ Theorem: P(X|Y) = w
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Bayes’ Theorem

P(Y|X) P(X)
PXIY) = =5
posterior — Sl

13/48



Multiple RVs:

e Analogously for n random variables X;.,, (stored as a rank n tensor)
Joint.  P(Xi.,)
Marginal:  P(X;) = me P(X1.p),

Conditional: ~ P(X1|Xa:n) = B3]

e X is conditionally independent of Y given Z iff:
P(X]Y,Z) = P(X|Z)

e Product rule and Bayes’ Theorem:
P(X,2,Y) =P(X|Y,Z) P(Y|Z) P(Z)

P(XIY, 7) = PO1XZ) P(x12)

P(X1m) =[] P(Xs|Xig1:n)

P(X2|X1,X3:0) P(X1|X3:0
P3| Xg) = PO ) PO

P(X,Z|Y) P(Y
P(X,Y|z) = BEZT) M)
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Example 1: Bavarian dialect

e 40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.)
dialect
Given a random German that speaks non-dialect, is he Bavarian?
(15% of Germans are Bavarian)

P(D=1|B=1)=04

P(D=1|B=0) =0.01
P(B=1)=0.15
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Example 1: Bavarian dialect

e 40% Bavarians speak dialect, only 1% of non-Bavarians speak (Bav.)
dialect
Given a random German that speaks non-dialect, is he Bavarian?
(15% of Germans are Bavarian)

P(D=1|B=1) =04 0
P(D=1|B=0) = 0.01

P(B=1) = 0.15 ®

If follows

P(B=1|D=0) = P(Mllc’?gl:)o)P(B:U = S Tis0.09.55 ~ 0.097
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Example 2: Coin flipping

HHTHT

e What process produces these sequences?

HHHHH

e We compare two hypothesis:

e Bayes’ theorem:

P(H|D) = 71’(1?1'3@;’(1{)
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Coin flipping

D = HHTHT
P(D|H=1)=1/2° PH=1)= 3%
P(D|H=2)=0 P(H=2) = 155

P(H=1|D) _P(D|H=1) P(H=1) _1/32 999 _

P(H=2|D) P([D|H=2) P(H=2) 0 1
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Coin flipping

D = HHHHH
P(D|H=1)=1/2° PH=1)= 3%
P(D|H=2)=1 P(H=2) = 155

P(H=1|D) _P(D|H=1) P(H=1) _1/3299 .

P(H=2|D) P([D|H=2) P(H=2) 1 1
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Coin flipping

D = HHHHHHHHHH

P(D|H=1)=1/2%0
P(D|H=2)=1

PH=1)= 3%

1000

P(H=1|D) _P(D|H=1) P(H=1) _1/1024 999

P(H=2|D) P(D|H=2) P(H=2)

1

1
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Learning as Bayesian inference

Data|World) P(World)
P(Data)

P(World) describes our prior over all possible worlds. Learning means
to infer about the world we live in based on the data we have!

P(World|Data) = il
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Learning as Bayesian inference

Data|World) P(World)
P(Data)

P(World) describes our prior over all possible worlds. Learning means
to infer about the world we live in based on the data we have!

P(World|Data) = il

¢ In the context of regression, the “world” is the function f(z)

P(Datalf) P(f)
P(Data)

P(f) describes our prior over possible functions

P(f|Data) =

Regression means to infer the function based on the data we have
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Probability distributions

recommended reference: Bishop.: Pattern Recognition and Machine Learning
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Bernoulli & Binomial

e We have a binary random variable z € {0,1} (i.e. dom(x) = {0,1})
The Bernoulli distribution is parameterized by a single scalar p,

Pla=1lp)=pn, Pla=0p)=1-pu
Bern(z | p) = p* (1 — p)' ™"

e We have a data set of random variables D = {4, ..,z,}, each
x; € {0,1}. If each z; ~ Bern(z; | 1) we have

P(D|p) = Tizy Bern(; [ ) = [Ty p™ (L — p)' ="

argmax log P(D | n) = argmax Z;vl logp+ (1 — ;) log(1 — sz
s i=1

e The Binomial distribution is the distribution over the count m = """, z;

n!
m

Bin(m| n, ) = (Z) (1= ) (”) -

(n —m)! m!
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Beta

How to express uncertainty over a Bernoulli parameter p
e The Beta distribution is over the interval [0, 1], typically the parameter u
of a Bernoulli:
1 —1 b—1
a 1 _
Bl " (1—p)

with mean (u) = ;% and mode p* =

Beta(u|a,b) =

fora,b > 1

a+b 2

e The crucial point is:

— Assume we are in a world with a “Bernoulli source” (e.g., binary bandit),
but don’t know its parameter p

— Assume we have a prior distribution P(11) = Beta(u | a,b)

— Assume we collected some data D = {z1, ..,z }, z; € {0, 1}, with counts
ap = ,z; of [z;=1]and bp = 3. (1 — x;) of [x; =0]
— The posterior is

P D) = PP by o Bin(D | 1) Beta(s|a,b)

P(D)
o pP (1= )P p* 1L — )"t = pt T (1 — )

= Beta(u|a + ap,b+ bp) 23/48
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Beta

The prior is Beta(u | a,b), the posterior is Beta(u|a + ap,b+bp)

e Conclusions:
— The semantics of a and b are counts of [z; =1] and [z; =0], respectively
— The Beta distribution is conjugate to the Bernoulli (explained later)

— With the Beta distribution we can represent beliefs (state of knowledge)
about uncertain p € [0, 1] and know how to update this belief given data
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Beta

from Bishop
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Multinomial

¢ We have an integer random variable = € {1,.., K'}
The probability of a single = can be parameterized by = (u1, .., ux):

Pla=k|p) =

with the constraint Zle ur = 1 (probabilities need to be normalized)

e We have a data set of random variables D = {4, ..,z,}, each
xz; € {1,..,K}. If each z; ~ P(z; | ) we have

n n K x;=k K m
P(D|p) =Tl #ta: = [liz [Tin NL I= [Tpmy ™
where my, = " | [x;=Fk] is the count of [z; =k]. The ML estimator is
1
argmax log P(D|u) = —(mq,..,mg)
n n
e The Multinomial distribution is this distribution over the counts m,

Mult(my, .., mg |0, @) HkK:1 T
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Dirichlet

How to express uncertainty over a Multinomial parameter .
e The Dirichlet distribution is over the K-simplex, that is, over
{11, -, i € [0,1] subject to the constraint 1|y, = 1:
Dir(u|a) o [Trey pg* ™

It is parameterized by a = (a1, .., ak), has mean (u;) = =5
Y hat]

mode p} = Z o 7 fora; > 1.

e The crucial point is:

— Assume we are in a world with a “Multinomial source” (e.g., an integer
bandit), but don’t know its parameter

— Assume we have a prior distribution P (1) = Dir(u | o)
— Assume we collected some data D = {z1, ..,z }, z; € {1, .., K}, with
counts my =Y, [zi=k|
— The posterior is
P(D .
Pu| D) = Z52 PG o Mal(D ) Dir(r | a.)

1 K —14 .
O<Hk LA Hk cpt T = Ty e 27/48




Dirichlet

The prior is Dir(u | «), the posterior is Dir(u| oo + m)

e Conclusions:
— The semantics of « is the counts of [z; =k]
— The Dirichlet distribution is conjugate to the Multinomial

— With the Dirichlet distribution we can represent beliefs (state of
knowledge) about uncertain x of an integer random variable and know
how to update this belief given data
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Dirichlet

lllustrations for o = (0.1,0.1,0.1), « = (1,1,1) and « = (10, 10, 10):

from Bishop
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Motivation for Beta & Dirichlet distributions

e Bandits:

— If we have binary [integer] bandits, the Beta [Dirichlet] distribution is a way
to represent and update beliefs

— The belief space becomes discrete: The parameter « of the prior is
continuous, but the posterior updates live on a discrete “grid” (adding
counts to «)

— We can in principle do belief planning using this

¢ Reinforcement Learning:

— Assume we know that the world is a finite-state MDP, but do not know its
transition probability P(s"|s,a). For each (s,a), P(s’ | s,a) is a distribution
over the integer s’

— Having a separate Dirichlet distribution for each (s, a) is a way to
represent our belief about the world, that is, our belief about P(s’ | s, a)

— We can in principle do belief planning using this — Bayesian
Reinforcement Learning
¢ Dirichlet distributions are also used to model texts (word distributions in
text), images, or mixture distributions in general
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Conjugate priors

e Assume you have data D = {1, .., z,, } with likelihood
P(D|0)

that depends on an uncertain parameter 6
Assume you have a prior P(0)

e The prior P(6) is conjugate to the likelihood P(D | 6) iff the posterior
P(0| D) < P(D|0) P(6)

is in the same distribution class as the prior P(6)

e Having a conjugate prior is very convenient, because then you know
how to update the belief given data
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Conjugate priors

likelihood

conjugate

Binomial Bin(D | p1)
Multinomial Mult(D | p)
Gauss N(z | u, X)

1D Gauss N(z | i, A1)
nD Gauss N(z | u, A1)
nD Gauss N(z | p, A1)

Beta Beta(u | a, b)

Dirichlet Dir(p | @)

Gauss N(u| o, A)

Gamma Gam(\ | a,b)

Wishart Wish(A | W, v)
Gauss-Wishart

N(e| o, (BA)™) Wish(A | W, v)
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Distributions over continuous domain

e Let x be a continuous RV. The probability density function (pdf)
p(z) € [0, 00) defines the probability

b
P(aﬁxﬁb):/ p(z) dx € [0,1]

The (cumulative) probability distribution

F(y) =Pz <y)= [’ dxp(z) € [0,1] is the cumulative integral with

lim,, o F(y) =1

(In discrete domain: probability distribution and probability mass function
P(zx) € [0, 1] are used synonymously.)

e Two basic examples:
Gaussian: N(z|p, %) = gt e 270" =7 0mn)
Dirac or § (“point particle”) &(z) =0exceptatz =0, [d(z) de =1

§(z) = 2 H(x) where H(z) = [z > 0] = Heavyside step function oo



Gaussian distribution

e—3(@—n)?/o?

e 1-dim: N(.%'|/j/,0'2) = m

e n-dim Gaussian in normal form:

exp{—s(z — )T S (2 — 1))

Nz | p, %) 3

_ 1
IREIEE
with mean p and covariance matrix 3. In canonical form:

exp{—3a'A"a}

N[z |a, Al = A1

exp{f%xTAerxTa} (1)

with precision matrix A = X! and coefficient « = X', (and mean
u= Ala).

e Gaussian identities: see

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
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Gaussian identities
Symmetry: N(z|a,A) =N(a|z,A) =N(z —a|0, A)
Product:

N(z |a, A) N(z|b,B) = N[z | Ata+ B'b,A* + B'| N(a|b, A+ B)
N[z |a, A] N[z |b, B] = N[z |a + b, A+ Bl N(A*a| B'b, At + B1)

“Propagation”:
J,N(z|a+ Fy, A)N(y|b, B) dy = N(z |a + Fb, A+ FBF")

Transformation:
N(Fz + f|a,A) = 4+ N(z| F'(a— f), F*AFT)

Marginal & conditional:
( zla A C )
N ;
Yy
More Gaussian identities: see

=N(z|a, A)-N(y|b+ CTA* (z-a), B—CTA'0)
b C' B
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
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Gaussian prior and posterior
e Assume we have data D = {1, .., z,}, each z; € R", with likelihood

(D|/1" ):H (xi‘/“’t7z)

argmax P(D|u,X) Zmz

1 n
argrznax P(D|u,X) = - Z(ﬂbz — ) (i —p)"
i=1

e Assume we are initially uncertain about p (but know X). We can
express this uncertainty using again a Gaussian N[u | a, A]. Given data
we have

P(u| D) oc P(D |, X) P(u) = IT; N2 |, X) Nlp| a, A]
=L Nlp |3, S Nl a, A] o N[p | 571 35, @i, n¥ + A

Note: in the limit A — 0 (uninformative prior) this becomes
P(u| D) =N(p| - Z i, *E

which is consistent with the Maximum leellhood estimator 36/48



Motivation for Gaussian distributions

Gaussian Bandits

Control theory, Stochastic Optimal Control

State estimation, sensor processing, Gaussian filtering (Kalman
filtering)

e Machine Learning
o etc
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Particle Approximation of a Distribution

e We approximate a distribution p(x) over a continuous domain R"

e A particle distribution ¢(z) is a weighed set § = {(z,w®)} Y, of N
particles
— each particle has a “location” 2* € R™ and a weight w’ € R
— weights are normalized, 3=, w' = 1

N . .
q(zx) := E w* §(x — x*)
i=1

where §(z — z°) is the J-distribution.
¢ Given weighted particles, we can estimate for any (smooth) f:

(@), = / f@p@)de ~ SN wf(a)

See An Introduction to MCMC for Machine Learning
www.cs.ubc.ca/~nando/papers/mlintro.pdf
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Particle Approximation of a Distribution

Histogram of a particle representation:
0.15 0.15
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Motivation for particle distributions

e Numeric representation of “difficult” distributions
— Very general and versatile
— But often needs many samples

¢ Distributions over games (action sequences), sample based planning,
MCTS
e State estimation, particle filters

e efc
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Utilities & Decision Theory

Given a space of events () (e.g., outcomes of a trial, a game, etc) the
utility is a function
U: Q—>R

The utility represents preferences as a single scalar — which is not
always obvious (cf. multi-objective optimization)

Decision Theory making decisions (that determine p(z)) that maximize
expected utility

E(U}, = [ UG pla)

Concave utility functions imply risk aversion (and convex, risk-taking)
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Entropy

e The neg-log (—log p(z)) of a distribution reflects something like “error”:
— neg-log of a Guassian «+» squared error
— neg-log likelihood < prediction error

e The (—logp(x)) is the “optimal” coding length you should assign to a
symbol x. This will minimize the expected length of an encoding

H(p) = / p(a)[ log p()]

e The entropy H(p) = E,,){—logp(z)} of a distribution p is a measure
of uncertainty, or lack-of-information, we have about =
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Kullback-Leibler divergence

e Assume you use a “wrong” distribution ¢(z) to decide on the coding
length of symbols drawn from p(x). The expected length of a encoding

is

x

e The difference

/ p()[~log q()] > H(p)

Dipla) = [ sla)os 2 > 0

q(x
is called Kullback-Leibler divergence

Proof of inequality, using the Jenson inequality:

/;(:v)log 710/ (:1:
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Monte Carlo methods

e Generally, a Monte Carlo method is a method to generate a set of
(potentially weighted) samples that approximate a distribution p(z).
In the unweighted case, the samples should be i.i.d. z; ~ p(z)

In the general (also weighted) case, we want particles that allow to
estimate expectations of anything that depends on z, e.g. f(z):

N
Jim (1), = Jim 3 ') = | H@ @) dz = (e,
In this view, Monte Carlo methods approximate an integral.
e Motivation: p(z) itself is too complicated to express analytically or
compute (f(z)), directly

e Example: What is the probability that a solitair would come out successful?
(Original story by Stan Ulam.) Instead of trying to analytically compute this,
generate many random solitairs and count.

o Naming: The method developed in the 40ies, where computers became faster.
Fermi, Ulam and von Neumann initiated the idea. von Neumann called it
“Monte Carlo” as a code name. 44/48



Rejection Sampling

e How can we generate i.i.d. samples z; ~ p(x)?

e Assumptions:

— We can sample = ~ ¢(z) from a simpler distribution ¢(x) (e.g., uniform),
called proposal distribution

— We can numerically evaluate p(x) for a specific = (even if we don’'t have an
analytic expression of p(z))

— There exists M such that Vv, : p(z) < Mq(z) (which implies ¢ has larger or
equal support as p)

e Rejection Sampling:
— Sample a candiate = ~ g(x)

— With probability 321 accept « and add to S; otherwise reject
— Repeat until |§| =n

e This generates an unweighted sample set 8 to approximate p(x)

45/48



Importance sampling

e Assumptions:
— We can sample = ~ ¢(z) from a simpler distribution ¢(x) (e.g., uniform)

— We can numerically evaluate p(x) for a specific = (even if we don’t have an
analytic expression of p(z))

e Importance Sampling:
— Sample a candiate =z ~ g(x)
— Add the weighted sample (z, X4) to §
— Repeat n times
e This generates an weighted sample set S to approximate p(x)
The weights w; = ”Ezg are called importance weights

e Crucial for efficiency: a good choice of the proposal ¢(x)
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Applications

e MCTS can be viewed as estimating a distribution over games (action
sequences) conditional to win

¢ Inference in graphical models (models involving many depending
random variables)
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Some more continuous distributions*

Gaussian N(z|a,A) = Wﬁ?ﬁTﬁfe_i(‘ a7 A7 (z—a
Dirac or § 5(z) = L H(x)

Student’s t pla;v) o [1 4 Z] 5"
(=Gaussian for v — oo, otherwise

heavy tails)

Exponential p(z;\) = [z > 0] Ae
(distribution over single event time)

Laplace p(x; pu,b) = ﬁe"z_“”b
(“double exponential”)

Chi-squared p(x; k) o [z > 0] xF/2~1e—w/2
Gamma p(x;k,0) o [x > 0] xF—te—/?
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