

Machine Learning

Probabilistic Machine Learning

learning as inference, Bayesian Kernel Ridge regression = Gaussian Processes, Bayesian Kernel Logistic Regression = GP classification, Bayesian Neural Networks

Marc Toussaint
University of Stuttgart
Summer 2019

Learning as Inference

The parameteric view

$$P(\beta|\mathsf{Data}) = \frac{P(\mathsf{Data}|\beta) \ P(\beta)}{P(\mathsf{Data})}$$

• The function space view

$$P(f|\mathsf{Data}) = \frac{P(\mathsf{Data}|f)\;P(f)}{P(\mathsf{Data})}$$

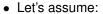
- Today:
 - Bayesian (Kernel) Ridge Regression ↔ Gaussian Process (GP)
 - Bayesian (Kernel) Logistic Regression → GP classification
 - Bayesian Neural Networks (briefly)

Beyond learning about specific Bayesian learning methods:

Understand relations between

Gaussian Process = Bayesian (Kernel) Ridge Regression

- We have random variables $X_{1:n}, Y_{1:n}, \beta$
- $\bullet \;$ We observe data $D = \{(x_i,y_i)\}_{i=1}^n$ and want to compute $P(\beta\,|\,D)$



P(X) is arbitrary

$$P(\beta)$$
 is Gaussian: $\beta \sim \mathcal{N}(0, \frac{\sigma^2}{\lambda}) \propto e^{-\frac{\lambda}{2\sigma^2}\|\beta\|^2}$

$$P(Y\,|\,X,\beta)$$
 is Gaussian: $y=\overset{\smallfrown}{x}{}^{\!\top}\!\beta+\epsilon$, $\ \epsilon\sim \Im(0,\sigma^2)$

· Bayes' Theorem:

$$P(\beta | D) = \frac{P(D | \beta) P(\beta)}{P(D)}$$

$$P(\beta | x_{1:n}, y_{1:n}) = \frac{\prod_{i=1}^{n} P(y_i | \beta, x_i) P(\beta)}{Z}$$

 $P(D \mid \beta)$ is a *product* of independent likelihoods for each observation (x_i, y_i)

· Bayes' Theorem:

$$P(\beta | D) = \frac{P(D | \beta) P(\beta)}{P(D)}$$

$$P(\beta | x_{1:n}, y_{1:n}) = \frac{\prod_{i=1}^{n} P(y_i | \beta, x_i) P(\beta)}{Z}$$

 $P(D | \beta)$ is a *product* of independent likelihoods for each observation (x_i, y_i)

Using the Gaussian expressions:

$$P(\beta \mid D) = \frac{1}{Z'} \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2} (y_i - x_i^{\mathsf{T}} \beta)^2} e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2}$$

Bayes' Theorem:

$$P(\beta | D) = \frac{P(D | \beta) P(\beta)}{P(D)}$$

$$P(\beta | x_{1:n}, y_{1:n}) = \frac{\prod_{i=1}^{n} P(y_i | \beta, x_i) P(\beta)}{Z}$$

 $P(D \mid \beta)$ is a *product* of independent likelihoods for each observation (x_i, y_i)

Using the Gaussian expressions:

$$\begin{split} P(\beta \,|\, D) &= \frac{1}{Z'} \prod_{i=1}^n e^{-\frac{1}{2\sigma^2}(y_i - x_i^\top \beta)^2} \,\, e^{-\frac{\lambda}{2\sigma^2}\|\beta\|^2} \\ -\log P(\beta \,|\, D) &= \frac{1}{2\sigma^2} \Big[\sum_{i=1}^n (y_i - x_i^\top \beta)^2 + \lambda \|\beta\|^2 \Big] + \log Z' \\ &\qquad -\log P(\beta \,|\, D) \propto L^{\mathsf{ridge}}(\beta) \end{split}$$

1st insight: The *neg-log posterior* $P(\beta \mid D)$ is proportional to the cost function $L^{\text{ridge}}(\beta)!$

• Let us compute $P(\beta \mid D)$ explicitly:

$$\begin{split} P(\beta \,|\, D) &= \frac{1}{Z'} \,\, \prod_{i=1}^n e^{-\frac{1}{2\sigma^2} \,\, (y_i - x_i^\top \beta)^2} \,\, e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2} \\ &= \frac{1}{Z'} \,\, e^{-\frac{1}{2\sigma^2} \,\, \sum_i (y_i - x_i^\top \beta)^2} \,\, e^{-\frac{\lambda}{2\sigma^2} \|\beta\|^2} \\ &= \frac{1}{Z'} \,\, e^{-\frac{1}{2\sigma^2} [(y - X\beta)^\top (y - X\beta) + \lambda \beta^\top \beta]} \\ &= \frac{1}{Z'} \,\, e^{-\frac{1}{2} [\frac{1}{\sigma^2} y^\top y + \frac{1}{\sigma^2} \beta^\top (X^\top X + \lambda \mathbf{I})\beta - \frac{2}{\sigma^2} \beta^\top X^\top y]} \\ &= \mathcal{N}(\beta \,|\, \hat{\beta}, \Sigma) \end{split}$$

This is a Gaussian with covariance and mean

$$\boldsymbol{\Sigma} = \sigma^2 \; (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \lambda \mathbf{I})^{\!-\!1} \; , \quad \hat{\boldsymbol{\beta}} = \tfrac{1}{\sigma^2} \; \boldsymbol{\Sigma} \boldsymbol{X}^{\!\top} \boldsymbol{y} = (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \lambda \mathbf{I})^{\!-\!1} \boldsymbol{X}^{\!\top} \boldsymbol{y}$$

- 2nd insight: The mean $\hat{\beta}$ is exactly the classical $\operatorname{argmin}_{\beta} L^{\mathsf{ridge}}(\beta)$.
- 3rd insight: The Bayesian approach not only gives a mean/optimal $\hat{\beta}$, but also a variance Σ of that estimate. (Cp. slide 02:13!)

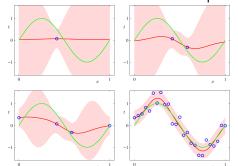
Predicting with an uncertain β

 Suppose we want to make a prediction at x. We can compute the predictive distribution over a new observation y* at x*:

$$P(y^* \mid x^*, D) = \int_{\beta} P(y^* \mid x^*, \beta) P(\beta \mid D) d\beta$$
$$= \int_{\beta} \mathcal{N}(y^* \mid \phi(x^*)^{\mathsf{T}} \beta, \sigma^2) \mathcal{N}(\beta \mid \hat{\beta}, \Sigma) d\beta$$
$$= \mathcal{N}(y^* \mid \phi(x^*)^{\mathsf{T}} \hat{\beta}, \sigma^2 + \phi(x^*)^{\mathsf{T}} \Sigma \phi(x^*))$$

Note, for $f(x) = \phi(x)^{\mathsf{T}}\beta$, we have $P(f(x) \mid D) = \mathcal{N}(f(x) \mid \phi(x)^{\mathsf{T}}\hat{\beta}, \ \phi(x)^{\mathsf{T}}\Sigma\phi(x))$ without the σ^2

• So, y^* is Gaussian distributed around the mean prediction $\phi(x^*)^{\mathsf{T}}\hat{\beta}$:



Wrapup of Bayesian Ridge regression

• 1st insight: The neg-log posterior $P(\beta \mid D)$ is equal to the cost function $L^{\text{ridge}}(\beta)$.

This is a very very common relation: optimization costs correspond to neg-log probabilities; probabilities correspond to exp-neg costs.

- 2nd insight: The mean $\hat{\beta}$ is exactly the classical $\operatorname{argmin}_{\beta} L^{\operatorname{ridge}}(\beta)$ More generally, the most likely parameter $\operatorname{argmax}_{\beta} P(\beta|D)$ is also the least-cost parameter $\operatorname{argmin}_{\beta} L(\beta)$. In the Gaussian case, most-likely β is also the mean.
- **3rd insight:** The Bayesian inference approach not only gives a mean/optimal $\hat{\beta}$, but also a variance Σ of that estimate

This is a core benefit of the Bayesian view: It naturally provides a probability distribution over predictions ("error bars"), not only a single prediction.

Kernel Bayesian Ridge Regression

- As in the classical case, we can consider arbitrary features $\phi(x)$
- .. or directly use a kernel k(x, x'):

$$P(f(x) | D) = \mathcal{N}(f(x) | \phi(x)^{\mathsf{T}} \hat{\beta}, \ \phi(x)^{\mathsf{T}} \Sigma \phi(x))$$

$$\phi(x)^{\mathsf{T}} \hat{\beta} = \phi(x)^{\mathsf{T}} X^{\mathsf{T}} (X X^{\mathsf{T}} + \lambda \mathbf{I})^{-1} y$$

$$= \kappa(x) (K + \lambda \mathbf{I})^{-1} y$$

$$\phi(x)^{\mathsf{T}} \Sigma \phi(x) = \phi(x)^{\mathsf{T}} \sigma^{2} (X^{\mathsf{T}} X + \lambda \mathbf{I})^{-1} \phi(x)$$

$$= \frac{\sigma^{2}}{\lambda} \phi(x)^{\mathsf{T}} \phi(x) - \frac{\sigma^{2}}{\lambda} \phi(x)^{\mathsf{T}} X^{\mathsf{T}} (X X^{\mathsf{T}} + \lambda \mathbf{I}_{k})^{-1} X \phi(x)$$

$$= \frac{\sigma^{2}}{\lambda} k(x, x) - \frac{\sigma^{2}}{\lambda} \kappa(x) (K + \lambda \mathbf{I}_{n})^{-1} \kappa(x)^{\mathsf{T}}$$

3rd line: As on slide 05:2

2nd to last line: Woodbury identity $(A+UBV)^{-1}=A^{-1}-A^{-1}U(B^{-1}+VA^{-1}U)^{-1}VA^{-1}$ with $A=\lambda {\bf I}$

- In standard conventions $\lambda = \sigma^2$, i.e. $P(\beta) = \mathcal{N}(\beta|0,1)$
 - Regularization: scale the covariance function (or features)

Gaussian Processes

are equivalent to Kernelized Bayesian Ridge Regression

(see also Welling: "Kernel Ridge Regression" Lecture Notes; Rasmussen & Williams sections 2.1 & 6.2; Bishop sections 3.3.3 & 6)

 But it is insightful to introduce them again from the "function space view": GPs define a probability distribution over functions; they are the infinite dimensional generalization of Gaussian vectors

Gaussian Processes – function prior

The function space view

$$P(f|D) = \frac{P(D|f) P(f)}{P(D)}$$

- A Gaussian Processes **prior** P(f) defines a probability distribution over functions:
 - A function is an infinite dimensional thing how could we define a Gaussian distribution over functions?
 - For every finite set $\{x_1,...,x_M\}$, the function values $f(x_1),...,f(x_M)$ are Gaussian distributed with mean and covariance

$$\mathsf{E}\{f(x_i)\} = \mu(x_i) \qquad \text{(often zero)}$$

$$\mathsf{cov}\{f(x_i), f(x_j)\} = k(x_i, x_j)$$

Here, $k(\cdot, \cdot)$ is called **covariance function**

• Second, for Gaussian Processes we typically have a Gaussian data likelihood P(D|f), namely

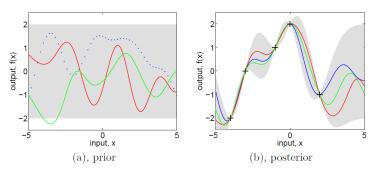
$$P(y \mid x, f) = \mathcal{N}(y \mid f(x), \sigma^2)$$

Gaussian Processes – function posterior

• The **posterior** P(f|D) is also a Gaussian Process, with the following mean of f(x), covariance of f(x) and f(x'): (based on slide 10 (with $\lambda = \sigma^2$))

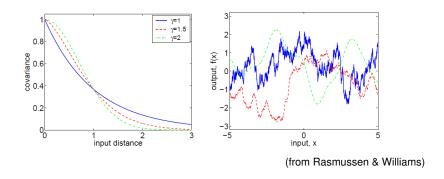
$$\begin{split} \mathsf{E}\{f(x)\,|\,D\} &= \kappa(x)(K+\lambda\mathbf{I})^{\text{-}1}y \;+\; \mu(x)\\ \mathsf{cov}\{f(x),f(x')\,|\,D\} &= k(x,x') - \kappa(x')(K+\lambda\mathbf{I}_n)^{\text{-}1}\kappa(x')^{\top} \end{split}$$

Gaussian Processes



(from Rasmussen & Williams)

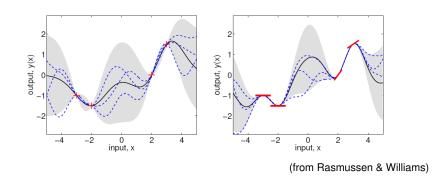
GP: different covariance functions



ullet These are examples from the γ -exponential covariance function

$$k(x, x') = \exp\{-|(x - x')/l|^{\gamma}\}\$$

GP: derivative observations



- Bayesian Kernel Ridge Regression = Gaussian Process
- GPs have become a standard regression method
- If exact GP is not efficient enough, many approximations exist, e.g. sparse and pseudo-input GPs

GP classification = Bayesian (Kernel) Logistic Regression

Bayesian Logistic Regression (binary case)

• f now defines a discriminative function:

$$\begin{split} P(X) &= \text{arbitrary} \\ P(\beta) &= \mathcal{N}(\beta|0,\frac{2}{\lambda}) \propto \exp\{-\lambda\|\beta\|^2\} \\ P(Y = 1\,|\,X,\beta) &= \sigma(\beta^{\mathsf{T}}\phi(x)) \end{split}$$

Recall

$$L^{\text{logistic}}(\beta) = -\sum_{i=1}^{n} \log p(y_i \mid x_i) + \lambda \|\beta\|^2$$

Again, the parameter posterior is

$$P(\beta|D) \propto P(D \mid \beta) \; P(\beta) \propto \exp\{-L^{\text{logistic}}(\beta)\}$$

Bayesian Logistic Regression

• Use Laplace approximation (2nd order Taylor for L) at $\beta^* = \operatorname{argmin}_{\beta} L(\beta)$:

$$L(\beta) \approx L(\beta^*) + \bar{\beta}^{\mathsf{T}} \nabla + \frac{1}{2} \bar{\beta}^{\mathsf{T}} H \bar{\beta} , \quad \bar{\beta} = \beta - \beta^*$$

At β^* the gradient $\nabla = 0$ and $L(\beta^*) = \text{const.}$ Therefore

$$\tilde{P}(\beta|D) \propto \exp\{-\frac{1}{2}\bar{\beta}^{\mathsf{T}}H\bar{\beta}\}\$$

 $\Rightarrow P(\beta|D) \approx \mathcal{N}(\beta|\beta^*, H^{-1})$

• Then the predictive distribution of the discriminative function is also Gaussian!

$$\begin{split} P(f(x) \mid D) &= \int_{\beta} P(f(x) \mid \beta) \ P(\beta \mid D) \ d\beta \\ &\approx \int_{\beta} \mathcal{N}(f(x) \mid \phi(x)^{\top} \beta, 0) \ \mathcal{N}(\beta \mid \beta^*, H^{\text{-}1}) \ d\beta \\ &= \mathcal{N}(f(x) \mid \phi(x)^{\top} \beta^*, \phi(x)^{\top} H^{\text{-}1} \phi(x)) \ =: \ \mathcal{N}(f(x) \mid f^*, s^2) \end{split}$$

The predictive distribution over the label y ∈ {0, 1}:

$$P(y(x) = 1 \mid D) = \int_{f(x)} \sigma(f(x)) P(f(x) \mid D) df$$

$$\approx \sigma((1 + s^2 \pi/8)^{-\frac{1}{2}} f^*)$$

which uses a probit approximation of the convolution.

 \rightarrow The variance s^2 pushes the predictive class probabilities towards 0.5.

Kernelized Bayesian Logistic Regression

- As with Kernel Logistic Regression, the MAP discriminative function f*
 can be found iterating the Newton method ↔ iterating GP estimation
 on a re-weighted data set.
- The rest is as above.

Kernel Bayesian Logistic Regression

is equivalent to Gaussian Process Classification

 GP classification became a standard classification method, if the prediction needs to be a meaningful probability that takes the *model* uncertainty into account.

Bayesian Neural Networks

Bayesian Neural Networks

- Simple ways to get uncertainty estimates:
 - Train ensembles of networks (e.g. bootstrap ensembles)
 - Treat the output layer fully probabilistic (treat the trained NN body as feature vector $\phi(x)$, and apply Bayesian Ridge/Logistic Regression on top of that)
- Ways to treat NNs inherently Bayesian:
 - Infinite single-layer NN → GP (classical work in 80/90ies)
 - Putting priors over weights ("Bayesian NNs", Neil, MacKay, 90ies)
 - Dropout (much more recent, see papers below)

Read

Gal & Ghahramani: *Dropout as a bayesian approximation: Representing model uncertainty in deep learning* (ICML'16)

Damianou & Lawrence: Deep gaussian processes (AIS 2013)

Dropout in NNs as Deep GPs

- Deep GPs are essentially a a chaining of Gaussian Processes
 - The mapping from each layer to the next is a GP
 - Each GP could have a different prior (kernel)

Dropout in NNs

- Dropout leads to randomized prediction
- One can estimate the mean prediction from T dropout samples (MC estimate)
- Or one can estimate the mean prediction by averaging the weights of the network ("standard dropout")
- Equally one can MC estimate the variance from samples
- Gal & Ghahramani show, that a Dropout NN is a Deep GP (with very special kernel), and the "correct" predictive variance is this MC estimate plus $\frac{pl^2}{2n\lambda}$ (kernel length scale l, regularization λ , dropout prob p, and n data points)

No Free Lunch

- Averaged over all problem instances, any algorithm performs equally.
 (E.g. equal to random.)
 - "there is no one model that works best for every problem"
 Igel & Toussaint: On Classes of Functions for which No Free Lunch Results Hold
 (Information Processing Letters 2003)
- Rigorous formulations formalize this "average over all problem instances". E.g. by assuming a uniform prior over problems
 - In black-box optimization, a uniform distribution over underlying objective functions f(x)
 - In machine learning, a uniform distribution over the hiddern true function f(x)
 - ... and NLF always considers non-repeating queries.
- But what does uniform distribution over functions mean?

No Free Lunch

- Averaged over all problem instances, any algorithm performs equally.
 (E.g. equal to random.)
 - "there is no one model that works best for every problem"
 Igel & Toussaint: On Classes of Functions for which No Free Lunch Results Hold
 (Information Processing Letters 2003)
- Rigorous formulations formalize this "average over all problem instances". E.g. by assuming a uniform prior over problems
 - In black-box optimization, a uniform distribution over underlying objective functions $f(\boldsymbol{x})$
 - In machine learning, a uniform distribution over the hiddern true function f(x)
 - ... and NLF always considers non-repeating queries.
- But what does uniform distribution over functions mean?
- NLF is trivial: when any previous query yields NO information at all about the results of future queries, anything is exactly as good as random guessing $_{26/27}$

Conclusions

- Probabilistic inference is a very powerful concept!
 - Inferring about the world given data
 - Learning, decision making, reasoning can view viewed as forms of (probabilistic) inference
- We introduced Bayes' Theorem as the fundamental form of probabilistic inference
- Marrying Bayes with (Kernel) Ridge (Logisic) regression yields
 - Gaussian Processes
 - Gaussian Process classification
- We can estimate uncertainty also for NNs
 - Dropout
 - Probabilistic weights and variational approximations; Deep GPs
- No Free Lunch for ML!