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Learning as Inference

• The parameteric view

P (β|Data) =
P (Data|β) P (β)

P (Data)

• The function space view

P (f |Data) =
P (Data|f) P (f)

P (Data)

• Today:
– Bayesian (Kernel) Ridge Regression ↔ Gaussian Process (GP)
– Bayesian (Kernel) Logistic Regression ↔ GP classification
– Bayesian Neural Networks (briefly)
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• Beyond learning about specific Bayesian learning methods:

Understand relations between

loss/error ↔ neg-log likelihood

regularization ↔ neg-log prior

cost (reg.+loss) ↔ neg-log posterior
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Gaussian Process = Bayesian (Kernel) Ridge
Regression
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Ridge regression as Bayesian inference

• We have random variables X1:n, Y1:n, β

• We observe data D = {(xi, yi)}ni=1 and want to compute P (β |D)

• Let’s assume:
β

xi

yi
i = 1 : n

P (X) is arbitrary
P (β) is Gaussian: β ∼ N(0, σ

2

λ ) ∝ e−
λ

2σ2
||β||2

P (Y |X,β) is Gaussian: y = x>β + ε , ε ∼ N(0, σ2)
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Ridge regression as Bayesian inference
• Bayes’ Theorem:

P (β |D) =
P (D |β) P (β)

P (D)

P (β |x1:n, y1:n) =

∏n
i=1 P (yi |β, xi) P (β)

Z
P (D |β) is a product of independent likelihoods for each observation (xi, yi)

Using the Gaussian expressions:

P (β |D) =
1

Z ′

n∏
i=1

e−
1

2σ2
(yi−x>iβ)

2

e−
λ

2σ2
||β||2

− logP (β |D) =
1

2σ2

[ n∑
i=1

(yi − x>iβ)2 + λ||β||2
]

+ logZ ′

− logP (β |D) ∝ Lridge(β)

1st insight: The neg-log posterior P (β |D) is proportional to the cost
function Lridge(β)!
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Ridge regression as Bayesian inference

• Let us compute P (β |D) explicitly:

P (β |D) =
1

Z′

n∏
i=1

e
− 1

2σ2
(yi−x>iβ)

2

e
− λ

2σ2
||β||2

=
1

Z′
e
− 1

2σ2

∑
i(yi−x

>
iβ)

2

e
− λ

2σ2
||β||2

=
1

Z′
e
− 1

2σ2
[(y−Xβ)>(y−Xβ)+λβ>β]

=
1

Z′
e
− 1

2
[ 1
σ2
y>y+ 1

σ2
β>(X>X+λI)β− 2

σ2
β>X>y]

= N(β | β̂,Σ)

This is a Gaussian with covariance and mean
Σ = σ2 (X>X + λI)-1 , β̂ = 1

σ2 ΣX>y = (X>X + λI)-1X>y

• 2nd insight: The mean β̂ is exactly the classical argminβ L
ridge(β).

• 3rd insight: The Bayesian approach not only gives a mean/optimal β̂,
but also a variance Σ of that estimate. (Cp. slide 02:13!)
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Predicting with an uncertain β

• Suppose we want to make a prediction at x. We can compute the
predictive distribution over a new observation y∗ at x∗:

P (y∗ |x∗, D) =
∫
β
P (y∗ |x∗, β) P (β |D) dβ

=
∫
β
N(y∗ |φ(x∗)>β, σ2) N(β | β̂,Σ) dβ

= N(y∗ |φ(x∗)>β̂, σ2 + φ(x∗)>Σφ(x∗))

Note, for f(x) = φ(x)>β, we have P (f(x) |D) = N(f(x) |φ(x)>β̂, φ(x)>Σφ(x)) without

the σ2

• So, y∗ is Gaussian distributed around the mean prediction φ(x∗)>β̂:

(from Bishop, p176)
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Wrapup of Bayesian Ridge regression

• 1st insight: The neg-log posterior P (β |D) is equal to the cost
function Lridge(β).

This is a very very common relation: optimization costs correspond to neg-log
probabilities; probabilities correspond to exp-neg costs.

• 2nd insight: The mean β̂ is exactly the classical argminβ L
ridge(β)

More generally, the most likely parameter argmaxβ P (β|D) is also the
least-cost parameter argminβ L(β). In the Gaussian case, most-likely β is also
the mean.

• 3rd insight: The Bayesian inference approach not only gives a
mean/optimal β̂, but also a variance Σ of that estimate

This is a core benefit of the Bayesian view: It naturally provides a probability
distribution over predictions (“error bars”), not only a single prediction.
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Kernel Bayesian Ridge Regression

• As in the classical case, we can consider arbitrary features φ(x)

• .. or directly use a kernel k(x, x′):

P (f(x) |D) = N(f(x) |φ(x)>β̂, φ(x)>Σφ(x))

φ(x)>β̂ = φ(x)>X>(XX>+ λI)-1y

= κ(x)(K + λI)-1y

φ(x)>Σφ(x) = φ(x)>σ2 (X>X + λI)-1φ(x)

=
σ2

λ
φ(x)>φ(x)− σ2

λ
φ(x)>X>(XX>+ λIk)-1Xφ(x)

=
σ2

λ
k(x, x)− σ2

λ
κ(x)(K + λIn)-1κ(x)>

3rd line: As on slide 05:2
2nd to last line: Woodbury identity (A+ UBV )-1 = A-1 −A-1U(B-1 + V A-1U)-1V A-1

with A = λI

• In standard conventions λ = σ2, i.e. P (β) = N(β|0, 1)

– Regularization: scale the covariance function (or features)
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Gaussian Processes

are equivalent to Kernelized Bayesian Ridge Regression
(see also Welling: “Kernel Ridge Regression” Lecture Notes; Rasmussen & Williams
sections 2.1 & 6.2; Bishop sections 3.3.3 & 6)

• But it is insightful to introduce them again from the “function space
view”: GPs define a probability distribution over functions; they are the
infinite dimensional generalization of Gaussian vectors
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Gaussian Processes – function prior

• The function space view

P (f |D) =
P (D|f) P (f)

P (D)

• A Gaussian Processes prior P (f) defines a probability distribution
over functions:

– A function is an infinite dimensional thing – how could we define a
Gaussian distribution over functions?

– For every finite set {x1, .., xM}, the function values f(x1), .., f(xM ) are
Gaussian distributed with mean and covariance

E{f(xi)} = µ(xi) (often zero)
cov{f(xi), f(xj)} = k(xi, xj)

Here, k(·, ·) is called covariance function

• Second, for Gaussian Processes we typically have a Gaussian data
likelihood P (D|f), namely

P (y |x, f) = N(y | f(x), σ2)
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Gaussian Processes – function posterior

• The posterior P (f |D) is also a Gaussian Process, with the following
mean of f(x), covariance of f(x) and f(x′): (based on slide 10 (with
λ = σ2))

E{f(x) |D} = κ(x)(K + λI)-1y + µ(x)

cov{f(x), f(x′) |D} = k(x, x′)− κ(x′)(K + λIn)-1κ(x′)>
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Gaussian Processes

(from Rasmussen & Williams)
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GP: different covariance functions

(from Rasmussen & Williams)

• These are examples from the γ-exponential covariance function

k(x, x′) = exp{−|(x− x′)/l|γ}
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GP: derivative observations

(from Rasmussen & Williams)
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• Bayesian Kernel Ridge Regression = Gaussian Process

• GPs have become a standard regression method

• If exact GP is not efficient enough, many approximations exist, e.g.
sparse and pseudo-input GPs
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GP classification = Bayesian (Kernel) Logistic
Regression
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Bayesian Logistic Regression (binary case)

• f now defines a discriminative function:

P (X) = arbitrary

P (β) = N(β|0, 2

λ
) ∝ exp{−λ||β||2}

P (Y =1 |X,β) = σ(β>φ(x))

• Recall

Llogistic(β) = −
n∑
i=1

log p(yi |xi) + λ||β||2

• Again, the parameter posterior is

P (β|D) ∝ P (D |β) P (β) ∝ exp{−Llogistic(β)}
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Bayesian Logistic Regression
• Use Laplace approximation (2nd order Taylor for L) at β∗ = argminβ L(β):

L(β) ≈ L(β∗) + β̄>∇+
1

2
β̄>Hβ̄ , β̄ = β − β∗

At β∗ the gradient ∇ = 0 and L(β∗) = const. Therefore

P̃ (β|D) ∝ exp{−1

2
β̄>Hβ̄}

⇒ P (β|D) ≈ N(β|β∗, H-1)

• Then the predictive distribution of the discriminative function is also Gaussian!

P (f(x) |D) =
∫
β
P (f(x) |β) P (β |D) dβ

≈
∫
β
N(f(x) |φ(x)>β, 0) N(β |β∗, H-1) dβ

= N(f(x) |φ(x)>β∗, φ(x)>H-1φ(x)) =: N(f(x) | f∗, s2)

• The predictive distribution over the label y ∈ {0, 1}:

P (y(x)=1 |D) =
∫
f(x)

σ(f(x)) P (f(x)|D) df

≈ σ((1 + s2π/8)-
1
2 f∗)

which uses a probit approximation of the convolution.
→ The variance s2 pushes the predictive class probabilities towards 0.5. 20/27



Kernelized Bayesian Logistic Regression

• As with Kernel Logistic Regression, the MAP discriminative function f∗

can be found iterating the Newton method↔ iterating GP estimation
on a re-weighted data set.

• The rest is as above.
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Kernel Bayesian Logistic Regression

is equivalent to Gaussian Process Classification

• GP classification became a standard classification method, if the
prediction needs to be a meaningful probability that takes the model
uncertainty into account.

22/27



Bayesian Neural Networks
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Bayesian Neural Networks

• Simple ways to get uncertainty estimates:
– Train ensembles of networks (e.g. bootstrap ensembles)
– Treat the output layer fully probabilistic (treat the trained NN body as

feature vector φ(x), and apply Bayesian Ridge/Logistic Regression on top
of that)

• Ways to treat NNs inherently Bayesian:
– Infinite single-layer NN→ GP (classical work in 80/90ies)
– Putting priors over weights (“Bayesian NNs”, Neil, MacKay, 90ies)
– Dropout (much more recent, see papers below)

• Read
Gal & Ghahramani: Dropout as a bayesian approximation: Representing model
uncertainty in deep learning (ICML’16)

Damianou & Lawrence: Deep gaussian processes (AIS 2013)
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Dropout in NNs as Deep GPs

• Deep GPs are essentially a a chaining of Gaussian Processes
– The mapping from each layer to the next is a GP
– Each GP could have a different prior (kernel)

• Dropout in NNs
– Dropout leads to randomized prediction
– One can estimate the mean prediction from T dropout samples (MC

estimate)
– Or one can estimate the mean prediction by averaging the weights of the

network (“standard dropout”)
– Equally one can MC estimate the variance from samples
– Gal & Ghahramani show, that a Dropout NN is a Deep GP (with very

special kernel), and the “correct” predictive variance is this MC estimate
plus pl2

2nλ
(kernel length scale l, regularization λ, dropout prob p, and n

data points)
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No Free Lunch
• Averaged over all problem instances, any algorithm performs equally.

(E.g. equal to random.)
– “there is no one model that works best for every problem”

Igel & Toussaint: On Classes of Functions for which No Free Lunch Results Hold
(Information Processing Letters 2003)

• Rigorous formulations formalize this “average over all problem
instances”. E.g. by assuming a uniform prior over problems

– In black-box optimization, a uniform distribution over underlying objective
functions f(x)

– In machine learning, a uniform distribution over the hiddern true function
f(x)

... and NLF always considers non-repeating queries.

• But what does uniform distribution over functions mean?

• NLF is trivial: when any previous query yields NO information at all about the
results of future queries, anything is exactly as good as random guessing
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Conclusions
• Probabilistic inference is a very powerful concept!

– Inferring about the world given data
– Learning, decision making, reasoning can view viewed as forms of
(probabilistic) inference

• We introduced Bayes’ Theorem as the fundamental form of
probabilistic inference

• Marrying Bayes with (Kernel) Ridge (Logisic) regression yields
– Gaussian Processes
– Gaussian Process classification

• We can estimate uncertainty also for NNs
– Dropout
– Probabilistic weights and variational approximations; Deep GPs

• No Free Lunch for ML! 27/27


