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Learning as Inference

e The parameteric view

P(Data|s) P(5)

P(p|Data) = P(Data)

e The function space view

P(Data|f) P(f)

P(f|Data) = P(Data)

e Today:
— Bayesian (Kernel) Ridge Regression <> Gaussian Process (GP)
— Bayesian (Kernel) Logistic Regression <« GP classification
— Bayesian Neural Networks (briefly)
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e Beyond learning about specific Bayesian learning methods:

Understand relations between

loss/error <« neg-log likelihood
regularization < neg-log prior

cost (reg.+loss) <> neg-log posterior
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Gaussian Process = Bayesian (Kernel) Ridge
Regression
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Ridge regression as Bayesian inference

e We have random variables X1.,, Y1.,, 3

e We observe data D = {(z;,y;)}~, and want to compute P(5| D)

e Let’'s assume:
P(X) is arbitrary
P(B) is Gaussian: 8 ~ N(0, %) o ¢~ 2z I°I°
P(Y | X,p)is Gaussian: y = 2" +¢ , €~ N(0,0?)
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Ridge regression as Bayesian inference

e Bayes’ Theorem:

P(ﬁD):P(DJID(ﬁj)D)P(ﬁ)
P%5|I1m,yhn)::rﬂllfmyigilg)fxﬁ)

P(D | B) is a product of independent likelihoods for each observation (z;, ;)
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Ridge regression as Bayesian inference

e Bayes’ Theorem:

P(B|D) = P(DJID(BI)D)P(@
P(B| %10, y1in) = [Lie: Py IZB,xi) P(B)

P(D | p) is a product of independent likelihoods for each observation (z;, y;)

Using the Gaussian expressions:

n
PB|D) = = T[e meisi®’® o~ 2zlsl
Z/

1=1
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Ridge regression as Bayesian inference

e Bayes’ Theorem:

P(B|D) = P(DJID(BI)D)P(@
P(B| %10, y1in) = [Lie: Py IZB,xi) P(B)

P(D | p) is a product of independent likelihoods for each observation (z;, y;)

Using the Gaussian expressions:

n
P(3|D) = % o sz Wi—el8)? - 25182
=1
n

[ > = aT8)? + AIBI2| +10g 2/

i=1

1
—log P(B| D) = 252

—log P(B| D) oc L"%°(B)

1st insight: The neg-log posterior P(3| D) is proportional to the cost
function L1199¢(3)! 6/27



Ridge regression as Bayesian inference

e Letus compute P(5| D) explicitly:

L 17 =Ly (yi—alB)? 2
P(B|D) = A e 507 (Wi=7if) e 57191
=1
= e zﬁ2 Tilyi—z]p)? _7”5”2
Z/
_ 1w XA - X8)+A8T8)
Zl
L -3+ T (XX 4AD8- 267X Ty
Z/

=N(B|8,%)

This is a Gaussian with covariance and mean
S=02 (XX +AD), f=L2XTy=(X"X+ )Xy

o 2nd insight: The mean § is exactly the classical argmin; L% (3).

e 3rd insight: The Bayesian approach not only gives a mean/optimal 3,

but also a variance ¥ of that estimate.  (Cp. slide 02:13!)
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Predicting with an uncertain 3

e Suppose we want to make a prediction at x. We can compute the
predictive distribution over a new observation y* at z*:

P(y"|a*,D) = [, P(y"|z",8) P(8| D) dB
= [N [¢(x*)'B,0%) N(B| 3, %) dB
=N(y" |6(z")'B, 0 + ¢(z") Se(x"))

Note, for f(x) = ¢(z)'8, we have P(f(xz)| D) = N(f(z) | ¢(x)" B, ¢(z)"S¢(x)) without
the o2
e So, y* is Gaussian distributed around the mean prediction ¢(z*)73:
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Wrapup of Bayesian Ridge regression
e 1st insight: The neg-log posterior P(| D) is equal to the cost
function L199¢(3).

This is a very very common relation: optimization costs correspond to neg-log
probabilities; probabilities correspond to exp-neg costs.

e 2nd insight: The mean 3 is exactly the classical argmin,, L99°(;3)

More generally, the most likely parameter argmax, P(3|D) is also the
least-cost parameter argming L(3). In the Gaussian case, most-likely 3 is also
the mean.

¢ 3rd insight: The Bayesian inference approach not only gives a
mean/optimal 3, but also a variance X of that estimate

This is a core benefit of the Bayesian view: It naturally provides a probability
distribution over predictions (“error bars”), not only a single prediction.
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Kernel Bayesian Ridge Regression

¢ As in the classical case, we can consider arbitrary features ¢(x)
e .. ordirectly use a kernel k(z, z'):

P(f(2)| D) =N({(@) | $(a ) B, ¢(x) Se(x))
¢(x) B = () X (XXT+ 2Dy
k(z)(K + )\I)

¢(x)' So(z) = ¢(x) 0 (X X + )" ¢(x)

T

0_2

7q&(gﬂ)TXT(XXT + ML) X o(x)

»\%»\%

$(a) p(x) —

k(z,z) — %/{(:C)(K + ML) k(2)"

3rd line: As on slide 05:2
2nd to last line: Woodbury identity (A + UBV)! = A1 — A1U(B! + VAlU) VAT
with A = A\I

e In standard conventions A\ = o2, i.e. P(3) = N(3/0,1)

— Regularization: scale the covariance function (or features) 10/27



Gaussian Processes

are equivalent to Kernelized Bayesian Ridge Regression
(see also Welling: “Kernel Ridge Regression” Lecture Notes; Rasmussen & Williams
sections 2.1 & 6.2; Bishop sections 3.3.3 & 6)

e But it is insightful to introduce them again from the “function space
view”: GPs define a probability distribution over functions; they are the
infinite dimensional generalization of Gaussian vectors
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Gaussian Processes — function prior

e The function space view

p(fip) = B0

e A Gaussian Processes prior P(f) defines a probability distribution

over functions:

— A function is an infinite dimensional thing — how could we define a
Gaussian distribution over functions?

— For every finite set {z1, .., zar }, the function values f(z1), .., f(xax) are
Gaussian distributed with mean and covariance
E{f(z:)} = p(zi) (often zero)
cov{f(zi), f(z;)} = k(zi,z;)
Here, k(-,-) is called covariance function
e Second, for Gaussian Processes we typically have a Gaussian data
likelihood P(D|f), namely

P(y|z, f) =N(y| f(z),0?) 1227



Gaussian Processes — function posterior

e The posterior P(f|D) is also a Gaussian Process, with the following
mean of f(x), covariance of f(x) and f(z'): (based on slide 10 (with
A=o02)

E{f(2)| D} = k(2)(K + M)y + p(x)
cov{f(z), f(2') | D} = k(z,a") — r(z")(K + ML) " k(2')"
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Gaussian Processes

-

output, f(x)
L e 4

output, f(x)
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(a), prior (b), posterior

(from Rasmussen & Williams)
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GP: different covariance functions

covariance
output, f(x)

1 2 0
input distance input, X

(from Rasmussen & Williams)

e These are examples from the v-exponential covariance function

k(w,2') = exp{—|(x — 2')/1]"}
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GP: derivative observations

output, y(x)
output, y(x)

-4 -2 0 2 4 -4 -2 -0 2 4
input, x input, x

(from Rasmussen & Williams)
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e Bayesian Kernel Ridge Regression = Gaussian Process
e GPs have become a standard regression method

e If exact GP is not efficient enough, many approximations exist, e.g.
sparse and pseudo-input GPs
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GP classification = Bayesian (Kernel) Logistic
Regression
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Bayesian Logistic Regression (binary case)
e f now defines a discriminative function:
P(X) = arbitrary
P(B) = N(8I0, 5) o exp{ ~AIB1%)
P(Y=1|X,8) = o(5'¢(z))

o Recall

n

plogistie(g) — _ Zlogp(yi | z:) + A|B|I?

i=1

e Again, the parameter posterior is

P(B|D) < P(D|B) P(B) o exp{—L"°9"(3)}
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Bayesian Logistic Regression

o Use Laplace approximation (2nd order Taylor for L) at 3 = argming L(f):
L(8) ~ L(8") + BV + 5T H, B=5-
At B* the gradient V = 0 and L(3*) = const. Therefore
P(BID) o< exp{~ 55T H 7}
= P(B|ID) ~ N(B|5", H™)
e Then the predictive distribution of the discriminative function is also Gaussian!
P(f = [, P( P(3|D) dp
~f5 a:) L0)N(B|B*, H) dp
= N(f(x) | ¢>(x)Tﬂ*, ¢(z) H' ¢(x)) = N(f(x)| ", 5%
e The predictive distribution over the label y € {0 1}:
P(y(2)=1|D) = [,,, o(f(2)) P(f(x)|D) df
~o((1+ s°m/8)2 f7)

which uses a probit approximation of the convolution.
— The variance s> pushes the predictive class probabilities towards 0.5. 20/27



Kernelized Bayesian Logistic Regression

e As with Kernel Logistic Regression, the MAP discriminative function f*
can be found iterating the Newton method <« iterating GP estimation
on a re-weighted data set.

e The rest is as above.
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Kernel Bayesian Logistic Regression

is equivalent to Gaussian Process Classification

¢ GP classification became a standard classification method, if the
prediction needs to be a meaningful probability that takes the model
uncertainty into account.
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Bayesian Neural Networks
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Bayesian Neural Networks

e Simple ways to get uncertainty estimates:
— Train ensembles of networks (e.g. bootstrap ensembles)

— Treat the output layer fully probabilistic (treat the trained NN body as
feature vector ¢(z), and apply Bayesian Ridge/Logistic Regression on top
of that)

e Ways to treat NNs inherently Bayesian:
— Infinite single-layer NN — GP (classical work in 80/90ies)
— Putting priors over weights (“Bayesian NNs”, Neil, MacKay, 90ies)
— Dropout (much more recent, see papers below)

e Read
Gal & Ghahramani: Dropout as a bayesian approximation: Representing model
uncertainty in deep learning (ICML16)

Damianou & Lawrence: Deep gaussian processes (AlS 2013)
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Dropout in NNs as Deep GPs

e Deep GPs are essentially a a chaining of Gaussian Processes
— The mapping from each layer to the next is a GP
— Each GP could have a different prior (kernel)

e Dropout in NNs
— Dropout leads to randomized prediction

— One can estimate the mean prediction from T" dropout samples (MC
estimate)

— Or one can estimate the mean prediction by averaging the weights of the
network (“standard dropout”)

— Equally one can MC estimate the variance from samples

— Gal & Ghahramani show, that a Dropout NN is a Deep GP (with very
special kernel), and the “correct” predictive variance is this MC estimate

plus % (kernel length scale I, regularization A, dropout prob p, and n
data points)
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No Free Lunch

e Averaged over all problem instances, any algorithm performs equally.
(E.g. equal to random.)
— “there is no one model that works best for every problem”

Igel & Toussaint: On Classes of Functions for which No Free Lunch Results Hold
(Information Processing Letters 2003)

e Rigorous formulations formalize this “average over all problem
instances”. E.g. by assuming a uniform prior over problems

— In black-box optimization, a uniform distribution over underlying objective
functions f(x)

— In machine learning, a uniform distribution over the hiddern true function
f(z)
... and NLF always considers non-repeating queries.

e But what does uniform distribution over functions mean?
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No Free Lunch

e Averaged over all problem instances, any algorithm performs equally.
(E.g. equal to random.)
— “there is no one model that works best for every problem”

Igel & Toussaint: On Classes of Functions for which No Free Lunch Results Hold
(Information Processing Letters 2003)

e Rigorous formulations formalize this “average over all problem
instances”. E.g. by assuming a uniform prior over problems

— In black-box optimization, a uniform distribution over underlying objective
functions f(x)

— In machine learning, a uniform distribution over the hiddern true function
f(z)
... and NLF always considers non-repeating queries.

e But what does uniform distribution over functions mean?

e NLF is trivial: when any previous query yields NO information at all about the
results of future queries, anything is exactly as good as random guessing 26/27



Conclusions

Probabilistic inference is a very powerful concept!

— Inferring about the world given data

— Learning, decision making, reasoning can view viewed as forms of
(probabilistic) inference

We introduced Bayes’ Theorem as the fundamental form of
probabilistic inference

Marrying Bayes with (Kernel) Ridge (Logisic) regression yields
— Gaussian Processes
— Gaussian Process classification

We can estimate uncertainty also for NNs
— Dropout

— Probabilistic weights and variational approximations; Deep GPs

No Free Lunch for ML! 27/27



