
Machine Learning

The Breadth of ML methods

Marc Toussaint
University of Stuttgart

Summer 2019

Local learning & Ensemble learning

• “Simpler is Better”

– We’ve learned about [kernel] ridge — logistic regression
– We’ve learned about high-capacity NN training
– Sometimes one should consider also much simpler methods as baseline

• Content:
– Local learners

– local & lazy learning, kNN, Smoothing Kernel, kd-trees

– Combining weak or randomized learners
– Bootstrap, bagging, and model averaging

– Boosting

– (Boosted) decision trees & stumps, random forests

2/35

Local learning & Ensemble learning

• “Simpler is Better”
– We’ve learned about [kernel] ridge — logistic regression
– We’ve learned about high-capacity NN training
– Sometimes one should consider also much simpler methods as baseline

• Content:
– Local learners

– local & lazy learning, kNN, Smoothing Kernel, kd-trees

– Combining weak or randomized learners
– Bootstrap, bagging, and model averaging

– Boosting

– (Boosted) decision trees & stumps, random forests

2/35

Local & lazy learning

3/35

Local & lazy learning

• Idea of local (or “lazy”) learning:
Do not try to build one global model f(x) from the data. Instead,
whenever we have a query point x∗, we build a specific local model in
the neighborhood of x∗.

• Typical approach:
– Given a query point x∗, find all kNN in the data D = {(xi, yi)}Ni=1

– Fit a local model fx∗ only to these kNNs, perhaps weighted
– Use the local model fx∗ to predict x∗ 7→ ŷ0

• Weighted local least squares:

Llocal(β, x∗) =
∑n
i=1K(x∗, xi)(yi − f(xi))2 + λ||β||2

where K(x∗, x) is called smoothing kernel. The optimum is:

β̂ = (X>WX + λI)-1X>Wy , W = diag(K(x∗, x1:n))

4/35

Local & lazy learning

• Idea of local (or “lazy”) learning:
Do not try to build one global model f(x) from the data. Instead,
whenever we have a query point x∗, we build a specific local model in
the neighborhood of x∗.

• Typical approach:
– Given a query point x∗, find all kNN in the data D = {(xi, yi)}Ni=1

– Fit a local model fx∗ only to these kNNs, perhaps weighted
– Use the local model fx∗ to predict x∗ 7→ ŷ0

• Weighted local least squares:

Llocal(β, x∗) =
∑n
i=1K(x∗, xi)(yi − f(xi))2 + λ||β||2

where K(x∗, x) is called smoothing kernel. The optimum is:

β̂ = (X>WX + λI)-1X>Wy , W = diag(K(x∗, x1:n))

4/35

Local & lazy learning

• Idea of local (or “lazy”) learning:
Do not try to build one global model f(x) from the data. Instead,
whenever we have a query point x∗, we build a specific local model in
the neighborhood of x∗.

• Typical approach:
– Given a query point x∗, find all kNN in the data D = {(xi, yi)}Ni=1

– Fit a local model fx∗ only to these kNNs, perhaps weighted
– Use the local model fx∗ to predict x∗ 7→ ŷ0

• Weighted local least squares:

Llocal(β, x∗) =
∑n
i=1K(x∗, xi)(yi − f(xi))2 + λ||β||2

where K(x∗, x) is called smoothing kernel. The optimum is:

β̂ = (X>WX + λI)-1X>Wy , W = diag(K(x∗, x1:n))

4/35

Regression example

kNN smoothing kernel: K(x∗, xi) =

1 if xi ∈ kNN(x∗)

0 otherwise
Epanechnikov quadratic smoothing kernel:

Kλ(x
∗, x) = D(|x∗ − x|/λ) , D(s) =

 3
4
(1− s2) if s ≤ 1

0 otherwise

(Hastie, Sec 6.3)
5/35

Smoothing Kernels

from Wikipedia

6/35

Which metric to use for NN?

• This is the crutial question? The fundamental question of
generalization.

– Given a query x∗, which data points xi would you consider as being
“related”, so that the label of xi is correlated to the correct label of x∗?

• Possible answers beyond naive Euclidean distance |x∗ − xi|
– Some other kernel function k(x∗, xi)
– First encode x into a “meaningful” latent representation z; then use

Euclidean distance there
– Take some off-the-shelf pretrained image NN, chop of the head, use this

internal representation

7/35

Which metric to use for NN?

• This is the crutial question? The fundamental question of
generalization.

– Given a query x∗, which data points xi would you consider as being
“related”, so that the label of xi is correlated to the correct label of x∗?

• Possible answers beyond naive Euclidean distance |x∗ − xi|
– Some other kernel function k(x∗, xi)
– First encode x into a “meaningful” latent representation z; then use

Euclidean distance there

– Take some off-the-shelf pretrained image NN, chop of the head, use this
internal representation

7/35

Which metric to use for NN?

• This is the crutial question? The fundamental question of
generalization.

– Given a query x∗, which data points xi would you consider as being
“related”, so that the label of xi is correlated to the correct label of x∗?

• Possible answers beyond naive Euclidean distance |x∗ − xi|
– Some other kernel function k(x∗, xi)
– First encode x into a “meaningful” latent representation z; then use

Euclidean distance there
– Take some off-the-shelf pretrained image NN, chop of the head, use this

internal representation

7/35

kd-trees

• For local & lazy learning it is essential to efficiently retrieve the kNN

Problem: Given data X, a query x∗, identify the kNNs of x∗ in X.

• Linear time (stepping through all of X) is far too slow.

A kd-tree pre-structures the data into a binary tree, allowing O(log n)

retrieval of kNNs.

8/35

kd-trees

(There are “typos” in this figure... Exercise to find them.)

• Every node plays two roles:
– it defines a hyperplane that separates the data along one coordinate
– it hosts a data point, which lives exactly on the hyperplane (defines the
division)

9/35

kd-trees

• Simplest (non-efficient) way to construct a kd-tree:
– hyperplanes divide alternatingly along 1st, 2nd, ... coordinate
– choose random point, use it to define hyperplane, divide data, iterate

• Nearest neighbor search:
– descent to a leave node and take this as initial nearest point
– ascent and check at each branching the possibility that a nearer point exists
on the other side of the hyperplane

• Approximate Nearest Neighbor (libann on Debian..)

10/35

Combining weak and randomized learners

11/35

Combining learners

• The general idea is:
– Given data D, let us learn various models f1, .., fM
– Our prediction is then some combination of these, e.g.

f(x) =

M∑
m=1

αmfm(x)

• “Various models” could be:

Model averaging: Fully different types of models (using different (e.g.
limited) feature sets; neural nets; decision trees; hyperparameters)

Bootstrap: Models of same type, trained on randomized versions of D

Boosting: Models of same type, trained on cleverly designed
modifications/reweightings of D

• How can we choose the αm? (You should know that!) 12/35

Bootstrap & Bagging

• Bootstrap:
– Data set D of size n
– Generate M data sets Dm by resampling D with replacement
– Each Dm is also of size n (some samples doubled or missing)

– Distribution over data sets↔ distribution over β (compare slide 02:13)
– The ensemble {f1, .., fM} is similar to cross-validation
– Mean and variance of {f1, .., fM} can be used for model assessment

• Bagging: (“bootstrap aggregation”)

f(x) =
1

M

M∑
m=1

fm(x)

13/35

• Bagging has similar effect to regularization:

(Hastie, Sec 8.7)

14/35

Bayesian Model Averaging

• If f1, .., fM are very different models
– Equal weighting would not be clever
– More confident models (less variance, less parameters, higher likelihood)

→ higher weight

• Bayesian Averaging

P (y|x) =
M∑
m=1

P (y|x, fm, D) P (fm|D)

The term P (fm|D) is the weighting αm: it is high, when the model is
likely under the data (↔ the data is likely under the model & the model
has “fewer parameters”).

15/35

The basis function view: Models are features!

• Compare model averaging f(x) =
∑M
m=1 αmfm(x) with regression:

f(x) =

k∑
j=1

φj(x) βj = φ(x)>β

• We can think of the M models fm as features φj for linear regression!
– We know how to find optimal parameters α
– But beware overfitting!

16/35

Boosting

• In Bagging and Model Averaging, the models are trained on the “same
data” (unbiased randomized versions of the same data)

• Boosting tries to be cleverer:
– It adapts the data for each learner
– It assigns each learner a differently weighted version of the data

• With this, boosing can
– Combine many “weak” classifiers to produce a powerful “committee”
– A weak learner only needs to be somewhat better than random

17/35

AdaBoost**

(Freund & Schapire, 1997)
(classical Algo; use Gradient Boosting instead in practice)

• Binary classification problem with data D = {(xi, yi)}ni=1, yi ∈ {−1,+1}
• We know how to train discriminative functions f(x); let

G(x) = sign f(x) ∈ {−1,+1}

• We will train a sequence of classificers G1, .., GM , each on differently
weighted data, to yield a classifier

G(x) = sign

M∑
m=1

αmGm(x)

18/35

AdaBoost**

(Hastie, Sec 10.1)

19/35

AdaBoost**

Input: data D = {(xi, yi)}ni=1

Output: family of M classifiers Gm and weights αm
1: initialize ∀i : wi = 1/n

2: for m = 1, ..,M do
3: Fit classifier Gm to the training data weighted by wi
4: errm =

∑n
i=1 wi [yi 6=Gm(xi)]∑n

i=1 wi

5: αm = log[1−errm
errm

]

6: ∀i : wi ← wi exp{αm [yi 6= Gm(xi)]}
7: end for

(Hastie, sec 10.1)

Weights unchanged for correctly classified points
Multiply weights with 1−errm

errm
> 1 for mis-classified data points

• Real AdaBoost: A variant exists that combines probabilistic classifiers
σ(f(x)) ∈ [0, 1] instead of discrete G(x) ∈ {−1,+1}

20/35

The basis function view

• In AdaBoost, each model Gm depends on the data weights wm
We could write this as

f(x) =

M∑
m=1

αmfm(x,wm)

The “features” fm(x,wm) now have additional parameters wm
We’d like to optimize

min
α,w1,..,wM

L(f)

w.r.t. α and all the feature parameters wm.

• In general this is hard.
But assuming αm̂ and wm̂ fixed, optimizing for αm and wm is efficient.

• AdaBoost does exactly this, choosing wm so that the “feature” fm will
best reduce the loss (cf. PLS)
(Literally, AdaBoost uses exponential loss or neg-log-likelihood; Hastie sec 10.4 & 10.5)21/35

Gradient Boosting

• AdaBoost generates a series of basis functions by using different data
weightings wm depending on so-far classification errors

• We can also generate a series of basis functions fm by fitting them to
the gradient of the so-far loss

22/35

Gradient Boosting

• Assume we want to miminize some loss function

min
f
L(f) =

n∑
i=1

L(yi, f(xi))

We can solve this using gradient descent

f∗ = f0+α1
∂L(f0)

∂f︸ ︷︷ ︸
≈f1

+α2
∂L(f0 + α1f1)

∂f︸ ︷︷ ︸
≈f2

+α3
∂L(f0 + α1f1 + α2f2)

∂f︸ ︷︷ ︸
≈f3

+ · · ·

– Each fm aproximates the so-far loss gradient
– We use linear regression to choose αm (instead of line search)

• More intuitively: ∂L(f)
∂f “points into the direction of the error/redisual of

f ”. It shows how f could be improved.
Gradient boosting uses the next lerner fk ≈ ∂L(fso far)

∂f to approximate
how f can be improved.
Optimizing α’s does the improvement.

23/35

Gradient Boosting

Input: function class F (e.g., of discriminative functions), data D =

{(xi, yi)}ni=1, an arbitrary loss function L(y, ŷ)
Output: function f̂ to minimize

∑n
i=1 L(yi, f(xi))

1: Initialize a constant f̂ = f0 = argminf∈F
∑n
i=1 L(yi, f(xi))

2: for m = 1 :M do
3: For each data point i = 1 : n compute rim = − ∂L(yi,f(xi))

∂f(xi)

∣∣
f=f̂

4: Fit a regression fm ∈ F to the targets rim, minimizing squared error
5: Find optimal coefficients (e.g., via feature logistic regression)

α = argminα
∑
i L(yi,

∑m
j=0 αmfm(xi))

(often: fix α0:m-1 and only optimize over αm)
6: Update f̂ =

∑m
j=0 αmfm

7: end for

• If F is the set of regression/decision trees, then step 5 usually re-optimizes the
terminal constants of all leave nodes of the regression tree fm. (Step 4 only
determines the terminal regions.)

24/35

Gradient boosting is the preferred method

• Hastie’s book quite “likes” gradient boosting
– Can be applied to any loss function
– No matter if regression or classification
– Very good performance
– Simpler, more general, better than AdaBoost

25/35

Classical examples for boosting

26/35

Decision Trees

• Decision trees are particularly used in Bagging and Boosting contexts

• Decision trees are “linear in features”, but the features are the terminal
regions of a tree, which are constructed depending on the data

• We’ll learn about
– Boosted decision trees & stumps
– Random Forests

27/35

Decision Trees

• We describe CART (classification and regression tree)

• Decision trees are linear in features:

f(x) =

k∑
j=1

cj [x ∈ Rj]

where Rj are disjoint rectangular regions and cj the constant
prediction in a region

• The regions are defined by a binary decision tree

28/35

Growing the decision tree

• The constants are the region averages cj =
∑

i yi [xi∈Rj]∑
i[xi∈Rj]

• Each split xa > t is defined by a choice of input dimension a ∈ {1, .., d}
and a threshold t

• Given a yet unsplit region Rj , we split it by choosing

min
a,t

[
min
c1

∑
i:xi∈Rj∧xa≤t

(yi − c1)2 +min
c2

∑
i:xi∈Rj∧xa>t

(yi − c2)2
]

– Finding the threshold t is really quick (slide along)
– We do this for every input dimension a

29/35

Deciding on the depth (if not pre-fixed)

• We first grow a very large tree (e.g. until at most 5 data points live in
each region)

• Then we rank all nodes using “weakest link pruning”:
Iteratively remove the node that least increases

n∑
i=1

(yi − f(xi))2

• Use cross-validation to choose the eventual level of pruning

This is equivalent to choosing a regularization parameter λ for
L(T) =

∑n
i=1(yi − f(xi))2 + λ|T |

where the regularization |T | is the tree size

30/35

Example:
CART on the Spam data set
(details: Hastie, p 320)

Test error rate: 8.7%

31/35

Boosting trees & stumps

• A decision stump is a decision tree with fixed depth 1 (just one split)

• Gradient boosting of decision trees (of fixed depth J) and stumps is
very effective

Test error rates on Spam data set:

full decision tree 8.7%

boosted decision stumps 4.7%

boosted decision trees with J = 5 4.5%

32/35

Random Forests: Bootstrapping & randomized splits

• Recall that Bagging averages models f1, .., fM where each fm was
trained on a bootstrap resample Dm of the data D
This randomizes the models and avoids over-generalization

• Random Forests do Bagging, but additionally randomize the trees:
– When growing a new split, choose the input dimension a only from a

random subset m features
– m is often very small; even m = 1 or m = 3

• Random Forests are the prime example for “creating many randomized
weak learners from the same data D”

33/35

Random Forests vs. gradient boosted trees

(Hastie, Fig 15.1)

34/35

Appendix: Centering & Whitening

• Some prefer to center (shift to zero mean) the data before applying
methods:

x← x− 〈x〉 , y ← y − 〈y〉

this spares augmenting the bias feature 1 to the data.

• More interesting: The loss and the best choice of λ depends on the
scaling of the data. If we always scale the data in the same range, we
may have better priors about choice of λ and interpretation of the loss

x← 1√
Var{x}

x , y ← 1√
Var{y}

y

• Whitening: Transform the data to remove all correlations and
variances.
Let A = Var{x} = 1

n
X>X − µµ>with Cholesky decomposition A =MM>.

x←M -1x , with Var{M -1x} = Id
35/35

