vy

Machine Learning

The Breadth of ML methods

Marc Toussaint
University of Stuttgart
Summer 2019



Local learning & Ensemble learning

e “Simpler is Better”

2/35



Local learning & Ensemble learning

e “Simpler is Better”
— We've learned about [kernel] ridge — logistic regression
— We've learned about high-capacity NN training
— Sometimes one should consider also much simpler methods as baseline

e Content:
— Local learners
— local & lazy learning, kNN, Smoothing Kernel, kd-trees
— Combining weak or randomized learners
— Bootstrap, bagging, and model averaging
— Boosting
— (Boosted) decision trees & stumps, random forests

2/35



Local & lazy learning

3/35



Local & lazy learning

¢ Idea of local (or “lazy”) learning:
Do not try to build one global model f(z) from the data. Instead,
whenever we have a query point x*, we build a specific local model in

the neighborhood of z*.

4/35



Local & lazy learning

¢ Idea of local (or “lazy”) learning:
Do not try to build one global model f(z) from the data. Instead,
whenever we have a query point x*, we build a specific local model in
the neighborhood of z*.

e Typical approach:
— Given a query point z*, find all kNN in the data D = {(z;,v:)}}¥,
— Fit a local model f,- only to these kNNs, perhaps weighted
— Use the local model f,- to predict z* — g

4/35



Local & lazy learning

¢ Idea of local (or “lazy”) learning:
Do not try to build one global model f(z) from the data. Instead,
whenever we have a query point x*, we build a specific local model in
the neighborhood of z*.

e Typical approach:
— Given a query point z*, find all kNN in the data D = {(z;,v:)}}¥,
— Fit a local model f,- only to these kNNs, perhaps weighted
— Use the local model f,- to predict z* — g

e Weighted local least squares:
LB, %) = oLy K (@, 20)(yi — f(:))* + Al

where K (z*, z) is called smoothing kernel. The optimum is:

B=(XWX+A)'XWy, W =diag(K(z" z1.,))
4/35



Regression example

1 if z; € kKNN(z™)
0 otherwise
Epanechnikov quadratic smoothing kernel:

kNN smoothing kernel: K (z*,z;) =

31-s?) ifs<1
Kae,) = D(a” —al/), D= {10 %) Test
0 otherwise

(Hastie, Sec 6.3)
5/35



Smoothing Kernels

T T
—— Uniform
1.0 — Triangle B
— Epanechnikov
= Quartic
— Triweight
08 Gaussian
Cosine
0.6 |
Ny N
0.0 I - .
" 1 ! ! L
-1.0 -0.5 0.0 0.5 1.0

from Wikipedia

6/35



Which metric to use for NN?

e This is the crutial question? The fundamental question of
generalization.

— Given a query z*, which data points x; would you consider as being
“related”, so that the label of z; is correlated to the correct label of z*?

7/35



Which metric to use for NN?

e This is the crutial question? The fundamental question of
generalization.

— Given a query z*, which data points x; would you consider as being
“related”, so that the label of z; is correlated to the correct label of z*?

e Possible answers beyond naive Euclidean distance |z* — z;|
— Some other kernel function k(z*, z;)

— First encode z into a “meaningful” latent representation z; then use
Euclidean distance there

7/35



Which metric to use for NN?

e This is the crutial question? The fundamental question of
generalization.

— Given a query z*, which data points x; would you consider as being
“related”, so that the label of z; is correlated to the correct label of z*?

e Possible answers beyond naive Euclidean distance |z* — z;|
— Some other kernel function k(z*, z;)

— First encode z into a “meaningful” latent representation z; then use
Euclidean distance there

— Take some off-the-shelf pretrained image NN, chop of the head, use this
internal representation

7/35



kd-trees

e For local & lazy learning it is essential to efficiently retrieve the kNN

Problem: Given data X, a query z*, identify the kNNs of z* in X.

e Linear time (stepping through all of X) is far too slow.

A kd-tree pre-structures the data into a binary tree, allowing O(logn)
retrieval of KNNs.

8/35



kd-trees

i ANEVAN

x=10

I RN VAVAVAWAN

¥l

AR /N

(There are “typos” in this figure... Exercise to find them.)

e Every node plays two roles:
— it defines a hyperplane that separates the data along one coordinate
— it hosts a data point, which lives exactly on the hyperplane (defines the

division)

9/35



kd-trees

¢ Simplest (non-efficient) way to construct a kd-tree:
— hyperplanes divide alternatingly along 1st, 2nd, ... coordinate
— choose random point, use it to define hyperplane, divide data, iterate

e Nearest neighbor search:
— descent to a leave node and take this as initial nearest point
— ascent and check at each branching the possibility that a nearer point exists
on the other side of the hyperplane

e Approximate Nearest Neighbor (libann on Debian..)

10/35



Combining weak and randomized learners

11/35



Combining learners

e The general idea is:
— Given data D, let us learn various models f1, .., fur
— Our prediction is then some combination of these, e.g.

e “Various models” could be:

Model averaging: Fully different types of models (using different (e.g.
limited) feature sets; neural nets; decision trees; hyperparameters)

Bootstrap: Models of same type, trained on randomized versions of D

Boosting: Models of same type, trained on cleverly designed
modifications/reweightings of D

e How can we choose the a,,? (You should know that!) 12/35



Bootstrap & Bagging

e Bootstrap:
— Data set D of size n
— Generate M data sets D,,, by resampling D with replacement
— Each D,, is also of size n (some samples doubled or missing)

— Distribution over data sets <+ distribution over g (compare slide 02:13)
— The ensemble {f1, .., fas} is similar to cross-validation
— Mean and variance of {f1, .., fm} can be used for model assessment

e Bagging: (“bootstrap aggregation”)

13/35



e Bagging has similar effect to regularization:

Consensus
o Probability

Bagged Trees

o

Test Error
030 035
| |

0.25
|

0.20
|

Number of Bootstrap Samples

(Hastie, Sec 8.7)

14/35



Bayesian Model Averaging

e If f1,.., far are very different models
— Equal weighting would not be clever
— More confident models (less variance, less parameters, higher likelihood)
— higher weight

e Bayesian Averaging

y|.T Z P Yj|l’ frrm (f‘m|D)

The term P(f,,|D) is the weighting «.,,: it is high, when the model is
likely under the data («+ the data is likely under the model & the model
has “fewer parameters”).

15/35



The basis function view: Models are features!

e Compare model averaging f(z) = Ef‘,’le m fm () With regression:

k
fl@)=> " ¢;(x) B; = o(2)'B
J=1

e We can think of the M models f,, as features ¢; for linear regression!
— We know how to find optimal parameters «
— But beware overfitting!

16/35



Boosting

¢ In Bagging and Model Averaging, the models are trained on the “same
data” (unbiased randomized versions of the same data)

e Boosting tries to be cleverer:
— It adapts the data for each learner
— It assigns each learner a differently weighted version of the data

o With this, boosing can
— Combine many “weak” classifiers to produce a powerful “committee”
— A weak learner only needs to be somewhat better than random

17/35



AdaBoost**

(Freund & Schapire, 1997)
(classical Algo; use Gradient Boosting instead in practice)

e Binary classification problem with data D = {(z;,v:)}1, vi € {—1,+1}
¢ We know how to train discriminative functions f(z); let

G(z) =sign f(z) €{-1,+1}

e We will train a sequence of classificers G, .., G, each on differently
weighted data, to yield a classifier

M
G(z) = sign Z 0 G ()

m=1

18/35



AdaBoost**

FINAL CLASSIFIER

G(x) = sign [ZM:I ame(f»")}

+
1
i

Weishted Sampler T €5 y: (z)

Weighted Sample JeanaiN e o)

Weighted Sample Jeua e €|

. ._..".

Training Sample ReeNeNE)

(Hastie, Sec 10.1)

19/35



AdaBoost**

Input: data D = {(x;,v:)}]-;

Output: family of M classifiers G, and weights a,
1: initialize V; : w; = 1/n
2. form =1,.., M do

3: Fit classifier G, to the training data weighted by w;
Ty wi [Yi#AGm(z4)]

4: err, = T w,

5: am = log[il;'f::f”]

6: Vi w; < w; exp{am [yi #Z Gm(zi)]}
7: end for

(Hastie, sec 10.1)

Weights unchanged for correctly classified points
Multiply weights with 1;% > 1 for mis-classified data points

e Real AdaBoost: A variant exists that combines probabilistic classifiers
o(f(x)) € [0,1] instead of discrete G(z) € {—1,+1}

20/35



The basis function view

¢ In AdaBoost, each model G,,, depends on the data weights w,,
We could write this as

M
F@) =" amfm(z,wp)

The “features” f,,(x, w,,) now have additional parameters w,,
We'd like to optimize
min  L(f)

@, W1, WA

w.r.t. o and all the feature parameters w,,.

¢ In general this is hard.
But assuming «.,; and wy, fixed, optimizing for a.,, and w,, is efficient.

e AdaBoost does exactly this, choosing w,, so that the “feature” f,,, will
best reduce the loss (cf. PLS)
(Literally, AdaBoost uses exponential loss or neg-log-likelihood; Hastie sec 10.4 & 10.521/35



Gradient Boosting

e AdaBoost generates a series of basis functions by using different data
weightings w,,, depending on so-far classification errors

e We can also generate a series of basis functions f,, by fitting them to
the gradient of the so-far loss

22/35



Gradient Boosting

o Assume we want to miminize some loss function
mlnL ZL Yi, f(x3))

We can solve this using gradient descent

IL(fo) OL(fo + a1 f1) OL(fo + a1 fi + aafa)

7= fotan o +ag o +as 37 4
——
~f1 =~ f2 ~fs3

— Each f,,, aproximates the so-far loss gradient
— We use linear regression to choose «,,, (instead of line search)

e More intuitively: ag—gf) “points into the direction of the error/redisual of
f”. It shows how f could be improved.
Gradient boosting uses the next lerner fj ~ %}‘”‘“) to approximate
how f can be improved.

Optimizing o’s does the improvement. 23/35



Gradient Boosting

Input: function class F (e.g., of discriminative functions), data D =
{(xs,y:)}_, an arbitrary loss function L(y, 3)
Output: function f to minimize S Lys, f=))
1: Initialize a constant f = fo = argmin e 321 L(ys, f(:))
2: form=1: M do
3 For each data point : = 1 : n compute r;,, = —Wb#
4: Fit a regression f,,, € F to the targets r;,,, minimizing squared error
5: Find optimal coefficients (e.g., via feature logistic regression)
o = argmin, 3=, L(y, Z;n:() om fm (%))
(often: fix cg.m-1 @nd only optimize over ay,)
6:  Update f = 37" cam fm
7: end for

e If Fis the set of regression/decision trees, then step 5 usually re-optimizes the
terminal constants of all leave nodes of the regression tree f,,,. (Step 4 only
determines the terminal regions.)

24/35



Gradient boosting is the preferred method

e Hastie’s book quite “likes” gradient boosting
— Can be applied to any loss function
— No matter if regression or classification
— Very good performance
— Simpler, more general, better than AdaBoost

25/35



Classical examples for boosting

26/35



Decision Trees

e Decision trees are particularly used in Bagging and Boosting contexts

e Decision trees are “linear in features”, but the features are the terminal
regions of a tree, which are constructed depending on the data

e We’'ll learn about
— Boosted decision trees & stumps
— Random Forests

27/35



Decision Trees

o We describe CART (classification and regression tree)
e Decision trees are linear in features:

k
f@)=> ¢ v € Ry
j=1
where R; are disjoint rectangular regions and c; the constant

prediction in a region
e The regions are defined by a binary decision tree

Fa f X <to Xy <ty

to Ry




Growing the decision tree

e The constants are the region averages c; = %@;ﬁl]

e Each split z, > t is defined by a choice of input dimension a € {1, ..

and a threshold ¢

¢ Given a yet unsplit region R;, we split it by choosing

min {min Z (yi —c1)? + H;;H Z (yi — 02)2}

a,t (S
2 ERj AT <t X ERj AT >t

— Finding the threshold ¢ is really quick (slide along)
— We do this for every input dimension a

yd}

29/35



Deciding on the depth (if not pre-fixed)

e We first grow a very large tree (e.g. until at most 5 data points live in
each region)

e Then we rank all nodes using “weakest link pruning”:
Iteratively remove the node that least increases

n

S (i — f(:)?

i=1

e Use cross-validation to choose the eventual level of pruning

This is equivalent to choosing a regularization parameter X for
L(T) = >0y (vi — f(=4))? + AT
where the regularization |T'| is the tree size

30/35



Example:

CART on the Spam data set
(details: Hastie, p 320)

K

1.l

is

T X\l’

s = e S — =

Predicted

True email  spam
email | 57.3%  4.0%
spam 5.3% 33.4%

Test error rate: 8.7%

ch8<0.0855

remove< .06

chE> .w:::.

5
np 0.4¢ :%

h]) >0.405

CAPAVES ju-

CAPAVE:2.907

remove>0.06

spam)
BOI0E o
chl<0.101 george<0.15

ch!>0.191 george=0.15

lil o
30788 G720 &g EL AT
george<0.008 CAPAVE <2905 1800.<0.58

/ george>0.005 / CAPAVE>2.7505 199930.58

;m% E= %ﬂg
hp( 0.08 [rmw:‘],l 85

?7!42 16764

CA[‘\[A\ >10.5

(57118

bumu 58>0.145

receive>0.125 adux0.045
'
T. (48T
our< 1.2
our>1.2

7o 31/35

T



Boosting trees & stumps

e A decision stump is a decision tree with fixed depth 1 (just one split)

e Gradient boosting of decision trees (of fixed depth J) and stumps is
very effective

Test error rates on Spam data set:

full decision tree 8.7%
boosted decision stumps 4.7%
boosted decision trees with J =5 4.5%

32/35



Random Forests: Bootstrapping & randomized splits

e Recall that Bagging averages models fi, .., far where each f,,, was
trained on a bootstrap resample D,,, of the data D
This randomizes the models and avoids over-generalization

e Random Forests do Bagging, but additionally randomize the trees:

— When growing a new split, choose the input dimension a only from a
random subset m features

— m is often very small; even m =1orm =3

e Random Forests are the prime example for “creating many randomized
weak learners from the same data D”

33/35



Random Forests vs. gradient boosted trees

Spam Data

Bagging
Random Forest
—— Gradient Boosting (5 Node)

0.065 0.070

Test Emor
0.050 0.055 0.060
|

””””””””” | ‘I"JJ&‘J’ . I:“rrrﬁ'fr‘ i‘ﬂ FF'T N lﬂvql’l In -.%‘“#HUJ'I Tl!"IlL -

0.040 0.045

T T T T T T
0 500 1000 1500 2000 2500

Number of Trees

(Hastie, Fig 15.1)

34/35



Appendix: Centering & Whitening

e Some prefer to center (shift to zero mean) the data before applying
methods:
Tx— (), yey—(y)
this spares augmenting the bias feature 1 to the data.

e More interesting: The loss and the best choice of A depends on the
scaling of the data. If we always scale the data in the same range, we
may have better priors about choice of A and interpretation of the loss

1

- V/Var{z}

T,

1
= v/ Var{y} Y

e Whitening: Transform the data to remove all correlations and
variances.
Let A = Var{z} = 1 XTX — puu" with Cholesky decomposition A = MM,

x < M1z, with Var{M'z} =1,
35/35



