

Machine Learning

The Breadth of ML methods

Marc Toussaint University of Stuttgart Summer 2019

Local learning & Ensemble learning

• "Simpler is Better"

Local learning & Ensemble learning

- "Simpler is Better"
 - We've learned about [kernel] ridge logistic regression
 - We've learned about high-capacity NN training
 - Sometimes one should consider also much simpler methods as baseline

Content:

- Local learners
 - local & lazy learning, kNN, Smoothing Kernel, kd-trees
- Combining weak or randomized learners
 - Bootstrap, bagging, and model averaging
 - Boosting
 - (Boosted) decision trees & stumps, random forests

Idea of local (or "lazy") learning:
 Do not try to build one global model f(x) from the data. Instead,
 whenever we have a query point x*, we build a specific local model in the neighborhood of x*.

- Idea of local (or "lazy") learning:
 Do not try to build one global model f(x) from the data. Instead,
 whenever we have a query point x*, we build a specific local model in the neighborhood of x*.
- Typical approach:
 - Given a query point x^* , find all kNN in the data $D = \{(x_i, y_i)\}_{i=1}^N$
 - Fit a local model f_{x^*} only to these kNNs, perhaps weighted
 - Use the local model f_{x^*} to predict $x^* \mapsto \hat{y}_0$

- Idea of local (or "lazy") learning:
 Do not try to build one global model f(x) from the data. Instead,
 whenever we have a query point x*, we build a specific local model in the neighborhood of x*.
- Typical approach:
 - Given a query point x^* , find all kNN in the data $D = \{(x_i, y_i)\}_{i=1}^N$
 - Fit a local model f_{x^*} only to these kNNs, perhaps weighted
 - Use the local model f_{x^*} to predict $x^* \mapsto \hat{y}_0$
- Weighted local least squares:

$$L^{\mathsf{local}}(\beta, x^*) = \sum_{i=1}^n K(x^*, x_i) (y_i - f(x_i))^2 + \lambda \|\beta\|^2$$

where $K(x^*, x)$ is called **smoothing kernel**. The optimum is:

$$\hat{\beta} = (X^{\top}WX + \lambda I)^{-1}X^{\top}Wy$$
, $W = \text{diag}(K(x^*, x_{1:n}))$

Regression example

kNN smoothing kernel:
$$K(x^*, x_i) = \begin{cases} 1 & \text{if } x_i \in \text{kNN}(x^*) \\ 0 & \text{otherwise} \end{cases}$$

Epanechnikov quadratic smoothing kernel:

$$K_{\lambda}(x^*,x) = D(|x^*-x|/\lambda) \;, \quad D(s) = \begin{cases} \frac{3}{4}(1-s^2) & \text{if } s \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

(Hastie, Sec 6.3)

Smoothing Kernels

from Wikipedia

Which metric to use for NN?

- This is the crutial question? The fundamental question of generalization.
 - Given a query x^* , which data points x_i would you consider as being "related", so that the label of x_i is correlated to the correct label of x^* ?

Which metric to use for NN?

- This is the crutial question? The fundamental question of generalization.
 - Given a query x^* , which data points x_i would you consider as being "related", so that the label of x_i is correlated to the correct label of x^* ?
- Possible answers beyond naive Euclidean distance $|x^* x_i|$
 - Some other kernel function $k(x^*, x_i)$
 - First encode x into a "meaningful" latent representation z; then use Euclidean distance there

Which metric to use for NN?

- This is the crutial question? The fundamental question of generalization.
 - Given a query x^* , which data points x_i would you consider as being "related", so that the label of x_i is correlated to the correct label of x^* ?
- Possible answers beyond naive Euclidean distance $|x^* x_i|$
 - Some other kernel function $k(x^*, x_i)$
 - First encode x into a "meaningful" latent representation z; then use Euclidean distance there
 - Take some off-the-shelf pretrained image NN, chop of the head, use this internal representation

kd-trees

• For local & lazy learning it is essential to efficiently retrieve the kNN

Problem: Given data X, a query x^* , identify the kNNs of x^* in X.

Linear time (stepping through all of X) is far too slow.

A kd-tree pre-structures the data into a binary tree, allowing $O(\log n)$ retrieval of kNNs.

kd-trees

(There are "typos" in this figure... Exercise to find them.)

- Every node plays two roles:
 - it defines a hyperplane that separates the data along *one* coordinate
 - it hosts a data point, which lives exactly on the hyperplane (defines the division)

kd-trees

- Simplest (non-efficient) way to construct a kd-tree:
 - hyperplanes divide alternatingly along 1st, 2nd, ... coordinate
 - choose random point, use it to define hyperplane, divide data, iterate
- · Nearest neighbor search:
 - descent to a leave node and take this as initial nearest point
 - ascent and check at each branching the possibility that a nearer point exists on the other side of the hyperplane
- Approximate Nearest Neighbor (libann on Debian..)

Combining weak and randomized learners

Combining learners

- The general idea is:
 - Given data D, let us learn various models $f_1, ..., f_M$
 - Our prediction is then some combination of these, e.g.

$$f(x) = \sum_{m=1}^{M} \alpha_m f_m(x)$$

• "Various models" could be:

Model averaging: Fully different types of models (using different (e.g. limited) feature sets; neural nets; decision trees; hyperparameters)

 $\textbf{Bootstrap:} \ \ \text{Models of same type, trained on randomized versions of } \\ D$

Boosting: Models of same type, trained on cleverly designed modifications/reweightings of ${\cal D}$

• How can we choose the α_m ? (You should know that!)

Bootstrap & Bagging

Bootstrap:

- Data set D of size n
- Generate M data sets D_m by resampling D with replacement
- Each D_m is also of size n (some samples doubled or missing)
- Distribution over data sets \leftrightarrow distribution over β (compare slide 02:13)
- The ensemble $\{f_1,..,f_M\}$ is similar to cross-validation
- Mean and variance of $\{f_1,..,f_M\}$ can be used for model assessment

• **Bagging:** ("bootstrap aggregation")

$$f(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

• Bagging has similar effect to regularization:

(Hastie, Sec 8.7)

Bayesian Model Averaging

- If $f_1, ..., f_M$ are very different models
 - Equal weighting would not be clever
 - More confident models (less variance, less parameters, higher likelihood)
 - → higher weight
- Bayesian Averaging

$$P(y|x) = \sum_{m=1}^{M} P(y|x, f_m, D) P(f_m|D)$$

The term $P(f_m|D)$ is the weighting α_m : it is high, when the model is likely under the data (\leftrightarrow the data is likely under the model & the model has "fewer parameters").

The basis function view: Models are features!

• Compare model averaging $f(x) = \sum_{m=1}^{M} \alpha_m f_m(x)$ with regression:

$$f(x) = \sum_{j=1}^{k} \phi_j(x) \ \beta_j = \phi(x)^{\mathsf{T}} \beta$$

- We can think of the M models f_m as **features** ϕ_j for linear regression!
 - We know how to find optimal parameters α
 - But beware overfitting!

Boosting

- In Bagging and Model Averaging, the models are trained on the "same data" (unbiased randomized versions of the same data)
- Boosting tries to be cleverer:
 - It adapts the data for each learner
 - It assigns each learner a differently weighted version of the data
- With this, boosing can
 - Combine many "weak" classifiers to produce a powerful "committee"
 - A weak learner only needs to be somewhat better than random

AdaBoost**

(Freund & Schapire, 1997) (classical Algo; use Gradient Boosting instead in practice)

- Binary classification problem with data $D = \{(x_i, y_i)\}_{i=1}^n, y_i \in \{-1, +1\}$
- We know how to train discriminative functions f(x); let

$$G(x) = \operatorname{sign} f(x) \in \{-1, +1\}$$

• We will train a sequence of classificers $G_1,...,G_M$, each on differently weighted data, to yield a classifier

$$G(x) = \operatorname{sign} \sum_{m=1}^{M} \alpha_m G_m(x)$$

AdaBoost**

FINAL CLASSIFIER

(Hastie, Sec 10.1)

AdaBoost**

```
Input: data D = \{(x_i, y_i)\}_{i=1}^n
Output: family of M classifiers G_m and weights \alpha_m

1: initialize \forall_i: w_i = 1/n

2: for m = 1, ..., M do

3: Fit classifier G_m to the training data weighted by w_i

4: \operatorname{err}_m = \frac{\sum_{i=1}^n w_i \ [y_i \neq G_m(x_i)]}{\sum_{i=1}^n w_i}

5: \alpha_m = \log[\frac{1-\operatorname{err}_m}{\operatorname{err}_m}]

6: \forall_i: w_i \leftarrow w_i \exp\{\alpha_m \ [y_i \neq G_m(x_i)]\}

7: end for
```

(Hastie, sec 10.1)

Weights unchanged for correctly classified points Multiply weights with $\frac{1-\text{err}_m}{\text{err}_m}>1$ for mis-classified data points

• Real AdaBoost: A variant exists that combines probabilistic classifiers $\sigma(f(x)) \in [0,1]$ instead of discrete $G(x) \in \{-1,+1\}$

The basis function view

• In AdaBoost, each model G_m depends on the data weights w_m We could write this as

$$f(x) = \sum_{m=1}^{M} \alpha_m f_m(x, w_m)$$

The "features" $f_m(x,w_m)$ now have additional parameters w_m We'd like to optimize

$$\min_{\alpha, w_1, \dots, w_M} L(f)$$

w.r.t. α and all the feature parameters w_m .

- In general this is hard. But assuming $\alpha_{\hat{m}}$ and $w_{\hat{m}}$ fixed, optimizing for α_m and w_m is efficient.
- AdaBoost does exactly this, choosing w_m so that the "feature" f_m will best reduce the loss (cf. PLS) (Literally, AdaBoost uses exponential loss or neg-log-likelihood; Hastie sec 10.4 & 10.5) $_{1/35}$

Gradient Boosting

- AdaBoost generates a series of basis functions by using different data weightings w_m depending on so-far classification errors
- ullet We can also generate a series of basis functions f_m by fitting them to the gradient of the so-far loss

Gradient Boosting

Assume we want to miminize some loss function

$$\min_{f} L(f) = \sum_{i=1}^{n} L(y_i, f(x_i))$$

We can solve this using gradient descent

$$f^* = f_0 + \alpha_1 \underbrace{\frac{\partial L(f_0)}{\partial f}}_{\approx f_1} + \alpha_2 \underbrace{\frac{\partial L(f_0 + \alpha_1 f_1)}{\partial f}}_{\approx f_2} + \alpha_3 \underbrace{\frac{\partial L(f_0 + \alpha_1 f_1 + \alpha_2 f_2)}{\partial f}}_{\approx f_3} + \cdots$$

- Each f_m approximates the so-far loss gradient
- We use linear regression to choose α_m (instead of line search)
- More intuitively: $\frac{\partial L(f)}{\partial f}$ "points into the direction of the error/redisual of f". It shows how f could be improved.
 - Gradient boosting uses the next lerner $f_k \approx \frac{\partial L(f_{\text{so far}})}{\partial f}$ to approximate how f can be improved.
 - Optimizing α 's does the improvement.

Gradient Boosting

```
Input: function class \mathcal{F} (e.g., of discriminative functions), data D=\{(x_i,y_i)\}_{i=1}^n, an arbitrary loss function L(y,\hat{y}) Output: function \hat{f} to minimize \sum_{i=1}^n L(y_i,f(x_i)) 1: Initialize a constant \hat{f}=f_0=\mathop{\rm argmin}_{f\in\mathcal{F}}\sum_{i=1}^n L(y_i,f(x_i)) 2: for m=1:M do 3: For each data point i=1:n compute r_{im}=-\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\big|_{f=\hat{f}} 4: Fit a regression f_m\in\mathcal{F} to the targets r_{im}, minimizing squared error 5: Find optimal coefficients (e.g., via feature logistic regression) \alpha=\mathop{\rm argmin}_{\alpha}\sum_{i}L(y_i,\sum_{j=0}^m\alpha_mf_m(x_i)) (often: fix \alpha_{0:m-1} and only optimize over \alpha_m) 6: Update \hat{f}=\sum_{j=0}^m\alpha_mf_m 7: end for
```

• If $\mathcal F$ is the set of regression/decision trees, then step 5 usually re-optimizes the terminal constants of all leave nodes of the regression tree f_m . (Step 4 only determines the terminal regions.)

Gradient boosting is the preferred method

- · Hastie's book quite "likes" gradient boosting
 - Can be applied to any loss function
 - No matter if regression or classification
 - Very good performance
 - Simpler, more general, better than AdaBoost

Classical examples for boosting

Decision Trees

- Decision trees are particularly used in Bagging and Boosting contexts
- Decision trees are "linear in features", but the features are the terminal regions of a tree, which are constructed depending on the data
- We'll learn about
 - Boosted decision trees & stumps
 - Random Forests

Decision Trees

- We describe CART (classification and regression tree)
- Decision trees are linear in features:

$$f(x) = \sum_{j=1}^{k} c_j \ [x \in R_j]$$

where R_j are disjoint rectangular regions and c_j the constant prediction in a region

• The regions are defined by a binary decision tree

Growing the decision tree

- The constants are the region averages $c_j = \frac{\sum_i y_i \; [x_i \in R_j]}{\sum_i [x_i \in R_j]}$
- Each split $x_a > t$ is defined by a choice of input dimension $a \in \{1,..,d\}$ and a threshold t
- Given a yet unsplit region R_i , we split it by choosing

$$\min_{a,t} \left[\min_{c_1} \sum_{i: x_i \in R_j \land x_a \le t} (y_i - c_1)^2 + \min_{c_2} \sum_{i: x_i \in R_j \land x_a > t} (y_i - c_2)^2 \right]$$

- Finding the threshold t is really quick (slide along)
- We do this for every input dimension a

Deciding on the depth (if not pre-fixed)

- We first grow a very large tree (e.g. until at most 5 data points live in each region)
- Then we rank all nodes using "weakest link pruning": Iteratively remove the node that least increases

$$\sum_{i=1}^{n} (y_i - f(x_i))^2$$

Use cross-validation to choose the eventual level of pruning

This is equivalent to choosing a regularization parameter λ for $L(T) = \sum_{i=1}^n (y_i - f(x_i))^2 \ + \ \lambda |T|$ where the regularization |T| is the tree size

Example:

CART on the Spam data set

(details: Hastie, p 320)

	Predicted	
True	email	spam
email	57.3%	4.0%
spam	5.3%	33.4%

Test error rate: 8.7%

Boosting trees & stumps

- A decision stump is a decision tree with fixed depth 1 (just one split)
- Gradient boosting of decision trees (of fixed depth J) and stumps is very effective

Test error rates on Spam data set:

full decision tree	8.7%
boosted decision stumps	4.7%
boosted decision trees with ${\cal J}=5$	4.5%

Random Forests: Bootstrapping & randomized splits

- Recall that Bagging averages models $f_1,...,f_M$ where each f_m was trained on a bootstrap resample D_m of the data DThis randomizes the models and avoids over-generalization
- Random Forests do Bagging, but additionally randomize the trees:
 - When growing a new split, choose the input dimension a only from a random subset m features
 - m is often very small; even m=1 or m=3
- Random Forests are the prime example for "creating many randomized weak learners from the same data D"

Random Forests vs. gradient boosted trees

(Hastie, Fig 15.1)

Appendix: Centering & Whitening

 Some prefer to center (shift to zero mean) the data before applying methods:

$$x \leftarrow x - \langle x \rangle$$
, $y \leftarrow y - \langle y \rangle$

this spares augmenting the bias feature 1 to the data.

 More interesting: The loss and the best choice of λ depends on the scaling of the data. If we always scale the data in the same range, we may have better priors about choice of λ and interpretation of the loss

$$x \leftarrow \frac{1}{\sqrt{\mathsf{Var}\{x\}}} \ x \ , \quad y \leftarrow \frac{1}{\sqrt{\mathsf{Var}\{y\}}} \ y$$

 Whitening: Transform the data to remove all correlations and variances.

Let
$$A = \text{Var}\{x\} = \frac{1}{n}X^{\top}X - \mu\mu^{\top}$$
 with Cholesky decomposition $A = MM^{\top}$.

$$x \leftarrow M^{-1}x$$
, with $Var\{M^{-1}x\} = \mathbf{I}_d$