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Unsupervised learning

e What does that mean? Generally: modelling P(z)
¢ Instances:

— Finding lower-dimensional spaces

— Clustering

— Density estimation
— Fitting a graphical model

e “Supervised Learning as special case”...
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Principle Component Analysis (PCA)

e Assume we have data D = {z;}7,, z; € R9,

Intuitively: “We believe that there is an underlying lower-dimensional
space explaining this data”.

o How can we formalize this?
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PCA: minimizing projection error

e For each z; € R? we postulate a lower-dimensional latent variable
zi € RP

e Optimality:
Find V,, 1 and values z; that minimize 37, |@; — (Vpzi + p)|?
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Optimal v,

n
s Z1m = argminz lz: — Viyzi — a2
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Optimal v,

n
s Z1m = argminz lz: — Viyzi — a2
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e Center the data z; = x; — 1. Then

n
Vp = argminz |2 — VpVJ@‘ ”2
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Optimal v,

n
s Z1m = argminz lz: — Viyzi — a2

HoZ1lim g

1 n

= p=(w) =3 X @, =V (e —p)
e Center the data z; = x; — 1. Then

n
V,, = argmin Z |Z: — VPVJ@- I?
Voo o1

p

e Solution via Singular Value Decomposition
— Let X € R"*? pe the centered data matrix containing all &;
— We compute a sorted Singular Value Decomposition X' X = VDV’
D is diagonal with sorted singular values Ay > Ao > --- > Ny
V = (v1 v --- v4) contains largest eigenvectors v; as columns

Vp = V1:d,1: =W v2 -V
P P ( p) 5/44



Principle Component Analysis (PCA)
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V;r is the matrix that projects to the largest variance directions of XX
zi:VZ;r(a?i—u), Z =XV,
¢ In non-centered case: Compute SVD of variance

1
A= Var{z} = <xxT> —up' = =X"X — pp’
n
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Example: Digits
e The “basis vectors” in V,, are also eigenvectors
Every data point can be expressed in these eigenvectors

TR p+ Vpz
=W+ z1v1 + 2202 + ...

R +a P B
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Example: Eigenfaces

(Viola & Jones)
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Non-linear Autoencoders

e PCA given the “optimal linear autoencode”

e We can relax the encoding (V,,) and decoding (Vj) to be non-linear

mappings, e.g., represented as a neural network
output -

Tdecode
hidden -

Tencode
input

A NN which is trained to reproduce the input: min; |y(z;) — x;|?
The hidden layer (“bottleneck”) needs to find a good
representation/compression.

e Stacking autoencoders:

ROOO00Q0)
w2 Z3
(@lelelelel00) :
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Augmenting NN training with semi-supervised
embedding objectives

e Weston et al. (ICML, 2008)

INPUT

OUTPUT +EmEgHing OUTPUT

(a) Output (b) Tnternal
INPUT
Layer
OUTPUT

(c) Auxiliary

Mnist1h dataset, deep NNs of 2, 6, 8, 10 and 15 layers; each hidden layer 50

hidden units

2 4 6 8 10 15
NN 260 26.1 272 283 342 477
Embed®NN 197 151 151 150 137 118
Embed**'NN 182 126 79 85 63 9.3
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What are good representations?

— Reproducing/autoencoding data, maintaining maximal information
— Disentangling correlations (e.g., ICA)

— those that are most correlated with desired outputs (PLS, NNs)

— those that maintain the clustering

— those that maintain relative distances (MDS)

— those that enable efficient reasoning, decision making & learning in the
real world

— How do we represent our 3D environment, enabeling physical & geometric
reasoning?

— How do we represent things to enable us inventing novel things,
machines, technology, science?
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Independent Component Analysis*

e Assume we have data D = {x;}I_,, z; € R
PCA: P(z;|z) = N(xs | Wz + p,I), P(z:) =N(2:]0,I)
Factor Analysis: P(z;|zi) = N(zi | Wz + 1, X)),  P(z) = N(2]0,1)
ICA: P(zi|2zi) = N(zi | Wzi + p,el),  P(zi) = szl P(zij)

latent sources observed

mixing

e InICA
1) We have (usually) as many latent variables as observed dim(z;) = dim(z;)
2) We require all latent variables to be independent
3) We allow for latent variables to be non-Gaussian

Note: without point (3) ICA would be without sense! 13/44



Partial least squares (PLS)*

e Isitreally a good idea to just pick the p-higest variance components??

Why should that be a good idea?
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PLS*

e Idea: The first dimension to pick should be the one most correlated
with the OUTPUT, not with itself!

Input: data X € R**4, y € R"
Output: predictions § € R™
1: initialize the predicted output: § = (y) 1,
2: initialize the remaining input dimensions: X = X
3 fori=1,.,pdo
4 i-th input ‘basis vector: z; = XXy

T
5. update prediction: § < §+ Z;y where Z; = z{
6:  remove “used” input dimensions: X « X(I — Z;)

7: end for

(Hastie, page 81)
Line 4 identifies a new input “coordinate” via maximal correlation between the remaning
input dimensions and y.
Line 5 updates the prediction to include the project of y onto z;
Line 6 removes the projection of input data X along z;. All z; will be orthogonal.
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PLS for classification*

e Not obvious.

e We'll try to invent one in the exercises :-)
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e back to linear autoencoding, i.e., PCA - but now linear in RKHS
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“Feature PCA” & Kernel PCA

o(21)"
e The feature trick: X = : e Rk

¢(xn)T

e The kernel trick: rewrite all necessary equations such that they only
involve scalar products ¢(z) ¢ (2") = k(z,2'):

We want to compute eigenvectors of XTX = 3. ¢(z;)é(z;)". We can rewrite this as

-
X X’l}j :)\’Uj
XXTXUJ' =AXv; , wvj 7200195(332)
K gt ¢
o Koaj
Kaj = A

Where K = XX with entries K;; = ¢(z;) é(z;).
— We compute SVD of the kernel matrix K — gives eigenvectors o; € R™.
Projection: z+— 2z = VpT(;&(:v) =3, a1p,i0(zi) d(x) = Ar(z)
(with matrix A € RP*™, A;; = «aj; and vector k(x) € R"™, k;(x) = k(x;, x))
Since we cannot center the features ¢(x) we actually need “the double centered kernel

matrix” K = (I— 2117 K (I — 1117), where K;; = ¢(z;) ¢(z;) is uncentered. /
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Kernel PCA

red points: data
green shading: eigenvector o; represented as functions >, a;ik(z;, )

Eigenvalue=21.72 Eigenvalue=21.65 Eigenvalue=4.11 Eigenvalue=3.93

Eigenvalue=3.66 Eigenvalue=3.09 Eigenvalue=2.60 Eigenvalue=2.53

Kernel PCA “coordinates” allow us to discriminate clusters!
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Kernel PCA

e Kernel PCA uncovers quite surprising structure:

While PCA “merely” picks high-variance dimensions
Kernel PCA picks high variance features—where features correspond
to basis functions (RKHS elements) over z

e Kernel PCA may map data z; to latent coordinates z; where clustering
is much easier

o All of the following can be represented as kernel PCA:
— Local Linear Embedding
— Metric Multidimensional Scaling
— Laplacian Eigenmaps (Spectral Clustering)
see “Dimensionality Reduction: A Short Tutorial” by Ali Ghodsi
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Kernel PCA clustering

e Using a kernel function k(z, z') = e~ l==2"I*/e;
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Gaussian mixtures or k-means will easily cluster this
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Spectral Clustering*

Spectral Clustering is very similar to kernel PCA:

¢ Instead of the kernel matrix K with entries k;; = k(z;, z;) we construct
a weighted adjacency matrix, e.g.,

0 if 2; are not a kNN of z;
Wi —
v e—lwi—z;l?/e otherwise

w;; is the weight of the edge between data point «; and x;.

¢ Instead of computing maximal eigenvectors of K, compute minimal
eigenvectors of
L=1-W, W =diag(¥,w;)'W
(Zj w;; is called degree of node i, W is the normalized weighted
adjacency matrix)
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Given L = UDV'", we pick the p smallest eigenvectors Vo =Vimip
(perhaps exclude the trivial smallest eigenvector)

The latent coordinates for z; are z; = V1.

Spectral Clustering provides a method to compute latent
low-dimensional coordinates z; = V; ;.,, for each high-dimensional
x; € R input.

This is then followed by a standard clustering, e.g., Gaussian Mixture

or k-means
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e Spectral Clustering is similar to kernel PCA:
— The kernel matrix K usually represents similarity
The weighted adjacency matrix W represents proximity & similarity
— High Eigenvectors of K are similarto low EVof L=1-W

¢ Original interpretation of Spectral Clustering:
— L =1— W (weighted graph Laplacian) describes a diffusion process:
The diffusion rate ;; is high if < and j are close and similar
— Eigenvectors of L correspond to stationary solutions

e The Graph Laplacian L: For some vector f € R™, note the following identities:

(Lf)i = Q_wij)fi = p_wisfi = > wis(fi = ;)

J J J
FTLF =371 wig(fi — £5) = > wii (2 — fifs)

i 7 %)

1 2 1 2 1 2
=D wii(Gf2+ I = fifi) = 5 D wis(fi = £)
%] )

where the second-to-last = holds if w;; = w;; is symmetric.
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Metric Multidimensional Scaling

e Assume we have data D = {z;}7,, z; € R9,
As before we want to indentify latent lower-dimensional
representations z; € R for this data.

e A simple idea: Minimize the stress
Sc(z1m) = Zi;,ﬁj(d%j — 2 — 21%)?

We want distances in high-dimensional space to be equal to distances
in low-dimensional space.
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Metric Multidimensional Scaling = (kernel) PCA
¢ Note the relation:
d}; = v — aj* = i — 2 + |2; — 2[* — 2(2i — 7)"(2; — )

This translates a distance into a (centered) scalar product
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Metric Multidimensional Scaling = (kernel) PCA
¢ Note the relation:
&y = i — i) = |2 — 2|* + |2; — 2|* = 2(2; — 2)"(z; — 7)

This translates a distance into a (centered) scalar product

¢ If may we define
K=(I-111"Da-111"), D =-d%/2
then K;; = (z; — z)"(z; — ) is the normal covariance matrix and MDS
is equivalent to kernel PCA
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Non-metric Multidimensional Scaling

e We can do this for any data (also non-vectorial or not € R¢) as long as
we have a data set of comparative dissimilarities d;;

S(z1:) = Z(d?j —lzi — Zj|2)2

i#]

e Minimize S(z1.,) W.rt. z1., without any further constraints!
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Example for Non-Metric MDS: ISOMAP

e Construct kNN graph and label edges with Euclidean distance
— Between any two z; and z;, compute “geodescic” distance d;;
(shortest path along the graph)
— Then apply MDS

by Tenenbaum et al
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The zoo of dimensionality reduction methods

e PCA family:
— kernel PCA, non-neg. Matrix Factorization, Factor Analysis

¢ All of the following can be represented as kernel PCA:
— Local Linear Embedding
— Metric Multidimensional Scaling
— Laplacian Eigenmaps (Spectral Clustering)

They all use different notions of distance/correlation as input to kernel PCA

see “Dimensionality Reduction: A Short Tutorial” by Ali Ghodsi
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PCA variants*
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PCA variant: Non-negative Matrix Factorization*

e Assume we have data D = {z;}7,, z; € R9,
As for PCA (where we had z; ~ V,,z; + 1) we search for a
lower-dimensional space with linear relation to z;

¢ In NMF we require everything is non-negative: the data z;, the
projection W, and latent variables z;
Find W € RP*4 (the tansposed projection) and Z € R™*? (the latent
variables z;) such that
X ~ZW

e lterative solution: (E-step and M-step like...)

Sy wigaig / (ZW)i

Zik < Zik p
D j=1 Whj
N
N o xii (TW),
Wj + W Zt—l Zlk;\?l]/( )zg
Z¢:1 Zik
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PCA variant: Non-negative Matrix Factorization*
Original

(from Hastie 14.6)
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PCA variant: Factor Analysis*

Another variant of PCA: (Bishop 12.64)
Allows for different noise in each dimension
P(x;|z) = N(x; | Vpz + 1, X) (with X diagonal)
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Clustering

e Clustering often involves two steps:

o First map the data to some embedding that emphasizes clusters
(Feature) PCA

Spectral Clustering

Kernel PCA

ISOMAP

e Then explicitly analyze clusters
— k-means clustering
— Gaussian Mixture Model
— Agglomerative Clustering
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k-means Clustering

e Givendata D = {z;}],, find K centers p, and a data assignment

c: 1+ k to minimize
min x; —
nin Y (v

)

e k-means clustering:
— Pick K data points randomly to initialize the centers
— lterate adapting the assignments c(i) and the centers p:

Vi oc(i) argmlnz — fhe( J) = argmln( — u)?
(i)

Vi © pk < argmin Z(xl — /LC(Z) = |c T Z i
s i iccl(k)
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k-means Clustering

Initial Centroids

Initial Partition

Iteration Number 20

from Hastie
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k-means Clustering

e Converges to local minimum — many restarts

e Choosing k? Plot L(k) = min.,, >, (x; — pe(:))? for different k& — choose
a tradeoff between model complexity (large k) and data fit (small loss
L(k))
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k-means Clustering for Classification

from Hastie
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Gaussian Mixture Model for Clustering

e GMMSs can/should be introduced as generative probabilistic model of
the data:
— K different Gaussians with parmameters ., i,
— Assignment RANDOM VARIABLE ¢; € {1,.., K} with P(¢c; =k) =
— The observed data point z; with P(x; | ¢; =k; pw, X)) = N(zi | pi, Xe)
e EM-Algorithm described as a kind of soft-assignment version of
k-means

— Initialize the centers p1.x randomly from the data; all covariances X1.x to
unit and all 7, uniformly.

— E-step: (probabilistic/soft assignment) Compute
q(ci=k) = P(ci=k |z, p1:x, X1:xc) o< N(@i | pe, Xk) 7

— M-step: Update parameters (centers AND covariances)

1
me = 3 aci=k)

1
=— > .qlci=k) z;
e = > qlci=k)z
1
Xp = pr S alci=k) mix] — pp,
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Gaussian Mixture Model

EM iterations for Gaussian Mixture model:
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from Bishop
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Agglomerative Hierarchical Clustering

e agglomerative = bottom-up, divisive = top-down
¢ Merge the two groups with the smallest intergroup dissimilarity

e Dissimilarity of two groups GG, H can be measures as
— Nearest Neighbor (or “single linkage”): d(G, H) = minscq, jen d(xi, x;)
— Furthest Neighbor (or “complete linkage”):
d(G,H) = maxieq,jen d(xi, x;)

— Group Average: d(G, H) = 1aimy Zica e m (i, ;)
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Agglomerative Hierarchical Clustering
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Appendix: Centering & Whitening

e Some prefer to center (shift to zero mean) the data before applying
methods:
Tx— (), yey—(y)
this spares augmenting the bias feature 1 to the data.

e More interesting: The loss and the best choice of A depends on the
scaling of the data. If we always scale the data in the same range, we
may have better priors about choice of A and interpretation of the loss

1

- V/Var{z}

T,

1
= v/ Var{y} Y

e Whitening: Transform the data to remove all correlations and
variances.
Let A = Var{z} = 1 XTX — puu" with Cholesky decomposition A = MM,

x < M1z, with Var{M'z} =1,
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