
Machine Learning

Unsupervised Learning

PCA, kernel PCA Spectral Clustering, Multidimensional
Scaling, ISOMAP Non-negative Matrix Factorization*,

Factor Analysis*, ICA*, PLS*, Clustering, k-means,
Gaussian Mixture model Agglomerative Hierarchical

Clustering

Marc Toussaint
University of Stuttgart

Summer 2019

Unsupervised learning

• What does that mean? Generally: modelling P (x)

• Instances:
– Finding lower-dimensional spaces
– Clustering
– Density estimation
– Fitting a graphical model

• “Supervised Learning as special case”...

2/44

Principle Component Analysis (PCA)

• Assume we have data D = {xi}ni=1, xi ∈ Rd.

Intuitively: “We believe that there is an underlying lower-dimensional
space explaining this data”.

• How can we formalize this?

3/44

PCA: minimizing projection error

• For each xi ∈ Rd we postulate a lower-dimensional latent variable
zi ∈ Rp

xi ≈ Vpzi + µ

• Optimality:
Find Vp, µ and values zi that minimize

∑n
i=1 ||xi − (Vpzi + µ)||2

4/44

Optimal Vp

µ̂, ẑ1:n = argmin
µ,z1:n

n∑
i=1

||xi − Vpzi − µ||2

⇒ µ̂ = 〈xi〉 = 1
n

∑n
i=1 xi , ẑi = V>p (xi − µ)

• Center the data x̃i = xi − µ̂. Then

V̂p = argmin
Vp

n∑
i=1

||x̃i − VpV>p x̃i||2

• Solution via Singular Value Decomposition
– Let X ∈ Rn×d be the centered data matrix containing all x̃i
– We compute a sorted Singular Value Decomposition X>X = V DV>

D is diagonal with sorted singular values λ1 ≥ λ2 ≥ · · · ≥ λd
V = (v1 v2 · · · vd) contains largest eigenvectors vi as columns

Vp := V1:d,1:p = (v1 v2 · · · vp)

5/44

Optimal Vp

µ̂, ẑ1:n = argmin
µ,z1:n

n∑
i=1

||xi − Vpzi − µ||2

⇒ µ̂ = 〈xi〉 = 1
n

∑n
i=1 xi , ẑi = V>p (xi − µ)

• Center the data x̃i = xi − µ̂. Then

V̂p = argmin
Vp

n∑
i=1

||x̃i − VpV>p x̃i||2

• Solution via Singular Value Decomposition
– Let X ∈ Rn×d be the centered data matrix containing all x̃i
– We compute a sorted Singular Value Decomposition X>X = V DV>

D is diagonal with sorted singular values λ1 ≥ λ2 ≥ · · · ≥ λd
V = (v1 v2 · · · vd) contains largest eigenvectors vi as columns

Vp := V1:d,1:p = (v1 v2 · · · vp)

5/44

Optimal Vp

µ̂, ẑ1:n = argmin
µ,z1:n

n∑
i=1

||xi − Vpzi − µ||2

⇒ µ̂ = 〈xi〉 = 1
n

∑n
i=1 xi , ẑi = V>p (xi − µ)

• Center the data x̃i = xi − µ̂. Then

V̂p = argmin
Vp

n∑
i=1

||x̃i − VpV>p x̃i||2

• Solution via Singular Value Decomposition
– Let X ∈ Rn×d be the centered data matrix containing all x̃i
– We compute a sorted Singular Value Decomposition X>X = V DV>

D is diagonal with sorted singular values λ1 ≥ λ2 ≥ · · · ≥ λd
V = (v1 v2 · · · vd) contains largest eigenvectors vi as columns

Vp := V1:d,1:p = (v1 v2 · · · vp)
5/44

Principle Component Analysis (PCA)

V>p is the matrix that projects to the largest variance directions of X>X

zi = V>p (xi − µ) , Z = XVp

• In non-centered case: Compute SVD of variance

A = Var{x} =
〈
xx>
〉
− µµ>=

1

n
X>X − µµ>

6/44

Example: Digits

7/44

Example: Digits
• The “basis vectors” in Vp are also eigenvectors

Every data point can be expressed in these eigenvectors

x ≈ µ+ Vpz

= µ+ z1v1 + z2v2 + . . .

= + z1 · + z2 · + · · ·

8/44

Example: Eigenfaces

(Viola & Jones)

9/44

Non-linear Autoencoders

• PCA given the “optimal linear autoencode”

• We can relax the encoding (Vp) and decoding (V>p) to be non-linear
mappings, e.g., represented as a neural network

A NN which is trained to reproduce the input: mini ||y(xi)− xi||2

The hidden layer (“bottleneck”) needs to find a good
representation/compression.

• Stacking autoencoders:

10/44

Augmenting NN training with semi-supervised
embedding objectives

• Weston et al. (ICML, 2008)

Mnist1h dataset, deep NNs of 2, 6, 8, 10 and 15 layers; each hidden layer 50
hidden units

11/44

What are good representations?

– Reproducing/autoencoding data, maintaining maximal information
– Disentangling correlations (e.g., ICA)
– those that are most correlated with desired outputs (PLS, NNs)
– those that maintain the clustering
– those that maintain relative distances (MDS)

...
– those that enable efficient reasoning, decision making & learning in the

real world
– How do we represent our 3D environment, enabeling physical & geometric

reasoning?
– How do we represent things to enable us inventing novel things,

machines, technology, science?

12/44

Independent Component Analysis*
• Assume we have data D = {xi}ni=1, xi ∈ Rd.

PCA: P (xi | zi) = N(xi |Wzi + µ, I) , P (zi) = N(zi | 0, I)
Factor Analysis: P (xi | zi) = N(xi |Wzi + µ,Σ) , P (zi) = N(zi | 0, I)
ICA: P (xi | zi) = N(xi |Wzi + µ, εI) , P (zi) =

∏d
j=1 P (zij)

x0

x1

x2

x3

x4

x5

x6

latent sources observed

mixing

y0

y1

y2

y3

• In ICA
1) We have (usually) as many latent variables as observed dim(xi) = dim(zi)

2) We require all latent variables to be independent
3) We allow for latent variables to be non-Gaussian

Note: without point (3) ICA would be without sense! 13/44

Partial least squares (PLS)*

• Is it really a good idea to just pick the p-higest variance components??

Why should that be a good idea?

14/44

PLS*

• Idea: The first dimension to pick should be the one most correlated
with the OUTPUT, not with itself!

Input: data X ∈ Rn×d, y ∈ Rn
Output: predictions ŷ ∈ Rn

1: initialize the predicted output: ŷ = 〈y〉 1n
2: initialize the remaining input dimensions: X̂ = X

3: for i = 1, .., p do
4: i-th input ‘basis vector’: zi = X̂X̂>y

5: update prediction: ŷ ← ŷ + Ziy where Zi =
ziz

>
i

z>izi

6: remove “used” input dimensions: X̂ ← X̂(I− Zi)
7: end for

(Hastie, page 81)
Line 4 identifies a new input “coordinate” via maximal correlation between the remaning
input dimensions and y.
Line 5 updates the prediction to include the project of y onto zi
Line 6 removes the projection of input data X̂ along zi. All zi will be orthogonal.

15/44

PLS for classification*

• Not obvious.

• We’ll try to invent one in the exercises :-)

16/44

• back to linear autoencoding, i.e., PCA - but now linear in RKHS

17/44

“Feature PCA” & Kernel PCA

• The feature trick: X =



φ(x1)>

...
φ(xn)>


∈ Rn×k

• The kernel trick: rewrite all necessary equations such that they only
involve scalar products φ(x)>φ(x′) = k(x, x′):

We want to compute eigenvectors of X>X =
∑
i φ(xi)φ(xi)

>. We can rewrite this as

X>Xvj = λvj

XX>︸ ︷︷ ︸
K

Xvj︸︷︷︸
Kαj

= λXvj︸︷︷︸
Kαj

, vj =
∑
i

αjiφ(xi)

Kαj = λαj

Where K = XX>with entries Kij = φ(xi)
>φ(xj).

→We compute SVD of the kernel matrix K → gives eigenvectors αj ∈ Rn.
Projection: x 7→ z = V>p φ(x) =

∑
i α1:p,iφ(xi)

>φ(x) = Aκ(x)

(with matrix A ∈ Rp×n, Aji = αji and vector κ(x) ∈ Rn, κi(x) = k(xi, x))
Since we cannot center the features φ(x) we actually need “the double centered kernel
matrix” K̃ = (I− 1

n
11>)K(I− 1

n
11>), where Kij = φ(xi)

>φ(xj) is uncentered.
18/44

Kernel PCA

red points: data
green shading: eigenvector αj represented as functions

∑
i αjik(xj , x)

Kernel PCA “coordinates” allow us to discriminate clusters!

19/44

Kernel PCA

• Kernel PCA uncovers quite surprising structure:

While PCA “merely” picks high-variance dimensions
Kernel PCA picks high variance features—where features correspond
to basis functions (RKHS elements) over x

• Kernel PCA may map data xi to latent coordinates zi where clustering
is much easier

• All of the following can be represented as kernel PCA:
– Local Linear Embedding
– Metric Multidimensional Scaling
– Laplacian Eigenmaps (Spectral Clustering)

see “Dimensionality Reduction: A Short Tutorial” by Ali Ghodsi

20/44

Kernel PCA clustering

• Using a kernel function k(x, x′) = e−||x−x
′||2/c:

• Gaussian mixtures or k-means will easily cluster this

21/44

Spectral Clustering*

Spectral Clustering is very similar to kernel PCA:

• Instead of the kernel matrix K with entries kij = k(xi, xj) we construct
a weighted adjacency matrix, e.g.,

wij =

 0 if xi are not a kNN of xj
e−||xi−xj ||2/c otherwise

wij is the weight of the edge between data point xi and xj .

• Instead of computing maximal eigenvectors of K̃, compute minimal
eigenvectors of

L = I− W̃ , W̃ = diag(
∑
j wij)

-1W

(
∑
j wij is called degree of node i, W̃ is the normalized weighted

adjacency matrix)

22/44

• Given L = UDV>, we pick the p smallest eigenvectors Vp = V1:n,1:p

(perhaps exclude the trivial smallest eigenvector)

• The latent coordinates for xi are zi = Vi,1:p

• Spectral Clustering provides a method to compute latent
low-dimensional coordinates zi = Vi,1:p for each high-dimensional
xi ∈ Rd input.

• This is then followed by a standard clustering, e.g., Gaussian Mixture
or k-means

23/44

24/44

• Spectral Clustering is similar to kernel PCA:
– The kernel matrix K usually represents similarity

The weighted adjacency matrix W represents proximity & similarity
– High Eigenvectors of K are similar to low EV of L = I−W

• Original interpretation of Spectral Clustering:
– L = I−W (weighted graph Laplacian) describes a diffusion process:

The diffusion rate Wij is high if i and j are close and similar
– Eigenvectors of L correspond to stationary solutions

• The Graph Laplacian L: For some vector f ∈ Rn, note the following identities:

(Lf)i = (
∑
j

wij)fi −
∑
j

wijfj =
∑
j

wij(fi − fj)

f>Lf =
∑
i

fi
∑
j

wij(fi − fj) =
∑
ij

wij(f
2
i − fifj)

=
∑
ij

wij(
1

2
f2i +

1

2
f2j − fifj) =

1

2

∑
ij

wij(fi − fj)2

where the second-to-last = holds if wij = wji is symmetric.
25/44

Metric Multidimensional Scaling

• Assume we have data D = {xi}ni=1, xi ∈ Rd.
As before we want to indentify latent lower-dimensional
representations zi ∈ Rp for this data.

• A simple idea: Minimize the stress

SC(z1:n) =
∑
i6=j(d

2
ij − ||zi − zj ||2)2

We want distances in high-dimensional space to be equal to distances
in low-dimensional space.

26/44

Metric Multidimensional Scaling = (kernel) PCA

• Note the relation:

d2ij = ||xi − xj ||2 = ||xi − x̄||2 + ||xj − x̄||2 − 2(xi − x̄)>(xj − x̄)

This translates a distance into a (centered) scalar product

• If may we define
K̃ = (I− 1

n11
>)D(I− 1

n11
>) , Dij = −d2ij/2

then K̃ij = (xi − x̄)>(xj − x̄) is the normal covariance matrix and MDS
is equivalent to kernel PCA

27/44

Metric Multidimensional Scaling = (kernel) PCA

• Note the relation:

d2ij = ||xi − xj ||2 = ||xi − x̄||2 + ||xj − x̄||2 − 2(xi − x̄)>(xj − x̄)

This translates a distance into a (centered) scalar product

• If may we define
K̃ = (I− 1

n11
>)D(I− 1

n11
>) , Dij = −d2ij/2

then K̃ij = (xi − x̄)>(xj − x̄) is the normal covariance matrix and MDS
is equivalent to kernel PCA

27/44

Non-metric Multidimensional Scaling

• We can do this for any data (also non-vectorial or not ∈ Rd) as long as
we have a data set of comparative dissimilarities dij

S(z1:n) =
∑
i 6=j

(d2ij − |zi − zj |2)2

• Minimize S(z1:n) w.r.t. z1:n without any further constraints!

28/44

Example for Non-Metric MDS: ISOMAP

• Construct kNN graph and label edges with Euclidean distance
– Between any two xi and xj , compute “geodescic” distance dij

(shortest path along the graph)
– Then apply MDS

by Tenenbaum et al.
29/44

The zoo of dimensionality reduction methods

• PCA family:
– kernel PCA, non-neg. Matrix Factorization, Factor Analysis

• All of the following can be represented as kernel PCA:
– Local Linear Embedding
– Metric Multidimensional Scaling
– Laplacian Eigenmaps (Spectral Clustering)

They all use different notions of distance/correlation as input to kernel PCA

see “Dimensionality Reduction: A Short Tutorial” by Ali Ghodsi

30/44

PCA variants*

31/44

PCA variant: Non-negative Matrix Factorization*

• Assume we have data D = {xi}ni=1, xi ∈ Rd.
As for PCA (where we had xi ≈ Vpzi + µ) we search for a
lower-dimensional space with linear relation to xi

• In NMF we require everything is non-negative: the data xi, the
projection W , and latent variables zi
Find W ∈ Rp×d (the tansposed projection) and Z ∈ Rn×p (the latent
variables zi) such that

X ≈ ZW

• Iterative solution: (E-step and M-step like...)

zik ← zik

∑d
j=1 wkjxij/(ZW)ij∑d

j=1 wkj

wkj ← wkj

∑N
i=1 zikxij/(ZW)ij∑N

i=1 zik

32/44

PCA variant: Non-negative Matrix Factorization*

(from Hastie 14.6)

33/44

PCA variant: Factor Analysis*

Another variant of PCA: (Bishop 12.64)
Allows for different noise in each dimension
P (xi | zi) = N(xi |Vpzi + µ,Σ) (with Σ diagonal)

34/44

Clustering

• Clustering often involves two steps:

• First map the data to some embedding that emphasizes clusters
– (Feature) PCA
– Spectral Clustering
– Kernel PCA
– ISOMAP

• Then explicitly analyze clusters
– k-means clustering
– Gaussian Mixture Model
– Agglomerative Clustering

35/44

k-means Clustering

• Given data D = {xi}ni=1, find K centers µk, and a data assignment
c : i 7→ k to minimize

min
c,µ

∑
i

(xi − µc(i))2

• k-means clustering:
– Pick K data points randomly to initialize the centers µk
– Iterate adapting the assignments c(i) and the centers µk:

∀i : c(i)← argmin
c(i)

∑
j

(xj − µc(j))2 = argmin
k

(xi − µk)2

∀k : µk ← argmin
µk

∑
i

(xi − µc(i))2 =
1

|c-1(k)|
∑

i∈c-1(k)

xi

36/44

k-means Clustering

from Hastie

37/44

k-means Clustering

• Converges to local minimum→ many restarts

• Choosing k? Plot L(k) = minc,µ
∑
i(xi − µc(i))2 for different k – choose

a tradeoff between model complexity (large k) and data fit (small loss
L(k))

38/44

k-means Clustering for Classification

from Hastie

39/44

Gaussian Mixture Model for Clustering
• GMMs can/should be introduced as generative probabilistic model of

the data:
– K different Gaussians with parmameters µk,Σk
– Assignment RANDOM VARIABLE ci ∈ {1, ..,K} with P (ci=k) = πk

– The observed data point xi with P (xi | ci=k;µk,Σk) = N(xi |µk,Σk)

• EM-Algorithm described as a kind of soft-assignment version of
k-means

– Initialize the centers µ1:K randomly from the data; all covariances Σ1:K to
unit and all πk uniformly.

– E-step: (probabilistic/soft assignment) Compute

q(ci=k) = P (ci=k |xi, µ1:K ,Σ1:K) ∝ N(xi |µk,Σk) πk

– M-step: Update parameters (centers AND covariances)

πk =
1

n

∑
i q(ci=k)

µk =
1

nπk

∑
i q(ci=k) xi

Σk =
1

nπk

∑
i q(ci=k) xix

>
i − µkµ>k

40/44

Gaussian Mixture Model

EM iterations for Gaussian Mixture model:

from Bishop

41/44

Agglomerative Hierarchical Clustering

• agglomerative = bottom-up, divisive = top-down

• Merge the two groups with the smallest intergroup dissimilarity

• Dissimilarity of two groups G, H can be measures as
– Nearest Neighbor (or “single linkage”): d(G,H) = mini∈G,j∈H d(xi, xj)

– Furthest Neighbor (or “complete linkage”):
d(G,H) = maxi∈G,j∈H d(xi, xj)

– Group Average: d(G,H) = 1
|G||H|

∑
i∈G

∑
j∈H d(xi, xj)

42/44

Agglomerative Hierarchical Clustering

43/44

Appendix: Centering & Whitening

• Some prefer to center (shift to zero mean) the data before applying
methods:

x← x− 〈x〉 , y ← y − 〈y〉

this spares augmenting the bias feature 1 to the data.

• More interesting: The loss and the best choice of λ depends on the
scaling of the data. If we always scale the data in the same range, we
may have better priors about choice of λ and interpretation of the loss

x← 1√
Var{x}

x , y ← 1√
Var{y}

y

• Whitening: Transform the data to remove all correlations and
variances.
Let A = Var{x} = 1

n
X>X − µµ>with Cholesky decomposition A =MM>.

x←M -1x , with Var{M -1x} = Id
44/44

