Machine Learning

Unsupervised Learning

PCA, kernel PCA Spectral Clustering, Multidimensional Scaling, ISOMAP Non-negative Matrix Factorization*, Factor Analysis*, ICA*, PLS*, Clustering, k-means, Gaussian Mixture model Agglomerative Hierarchical Clustering

Marc Toussaint University of Stuttgart
Summer 2019

Unsupervised learning

- What does that mean? Generally: modelling $P(x)$
- Instances:
- Finding lower-dimensional spaces
- Clustering
- Density estimation
- Fitting a graphical model
- "Supervised Learning as special case"...

Principle Component Analysis (PCA)

- Assume we have data $D=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}^{d}$.

Intuitively: "We believe that there is an underlying lower-dimensional space explaining this data".

- How can we formalize this?

PCA: minimizing projection error

- For each $x_{i} \in \mathbb{R}^{d}$ we postulate a lower-dimensional latent variable $z_{i} \in \mathbb{R}^{p}$

$$
x_{i} \approx V_{p} z_{i}+\mu
$$

- Optimality:

Find V_{p}, μ and values z_{i} that minimize $\sum_{i=1}^{n}\left\|x_{i}-\left(V_{p} z_{i}+\mu\right)\right\|^{2}$

Optimal V_{p}

$$
\begin{array}{r}
\hat{\mu}, \hat{z}_{1: n}=\underset{\mu, z_{1: n}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|x_{i}-V_{p} z_{i}-\mu\right\|^{2} \\
\Rightarrow \hat{\mu}=\left\langle x_{i}\right\rangle=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \hat{z}_{i}=V_{p}^{\top}\left(x_{i}-\mu\right)
\end{array}
$$

Optimal V_{p}

$$
\begin{array}{r}
\hat{\mu}, \hat{z}_{1: n}=\underset{\mu, z_{1: n}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|x_{i}-V_{p} z_{i}-\mu\right\|^{2} \\
\Rightarrow \hat{\mu}=\left\langle x_{i}\right\rangle=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \hat{z}_{i}=V_{p}^{\top}\left(x_{i}-\mu\right)
\end{array}
$$

- Center the data $\tilde{x}_{i}=x_{i}-\hat{\mu}$. Then

$$
\hat{V}_{p}=\underset{V_{p}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|\tilde{x}_{i}-V_{p} V_{p}^{\top} \tilde{x}_{i}\right\|^{2}
$$

Optimal V_{p}

$$
\begin{array}{r}
\hat{\mu}, \hat{z}_{1: n}=\underset{\mu, z_{1: n}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|x_{i}-V_{p} z_{i}-\mu\right\|^{2} \\
\Rightarrow \hat{\mu}=\left\langle x_{i}\right\rangle=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \hat{z}_{i}=V_{p}^{\top}\left(x_{i}-\mu\right)
\end{array}
$$

- Center the data $\tilde{x}_{i}=x_{i}-\hat{\mu}$. Then

$$
\hat{V}_{p}=\underset{V_{p}}{\operatorname{argmin}} \sum_{i=1}^{n}\left\|\tilde{x}_{i}-V_{p} V_{p}^{\top} \tilde{x}_{i}\right\|^{2}
$$

- Solution via Singular Value Decomposition
- Let $X \in \mathbb{R}^{n \times d}$ be the centered data matrix containing all \tilde{x}_{i}
- We compute a sorted Singular Value Decomposition $X^{\top} X=V D V^{\top}$
D is diagonal with sorted singular values $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$ $V=\left(v_{1} v_{2} \cdots v_{d}\right)$ contains largest eigenvectors v_{i} as columns

$$
V_{p}:=V_{1: d, 1: p}=\left(v_{1} v_{2} \cdots v_{p}\right)
$$

Principle Component Analysis (PCA)

V_{p}^{\top} is the matrix that projects to the largest variance directions of $X^{\top} X$

$$
z_{i}=V_{p}^{\top}\left(x_{i}-\mu\right), \quad Z=X V_{p}
$$

- In non-centered case: Compute SVD of variance

$$
A=\operatorname{Var}\{x\}=\left\langle x x^{\top}\right\rangle-\mu \mu^{\top}=\frac{1}{n} X^{\top} X-\mu \mu^{\top}
$$

Example: Digits

Example: Digits

- The "basis vectors" in V_{p} are also eigenvectors

Every data point can be expressed in these eigenvectors

$$
\begin{aligned}
x & \approx \mu+V_{p} z \\
& =\mu+z_{1} v_{1}+z_{2} v_{2}+\ldots \\
& =\mathbf{3}+z_{1} \cdot 3+z_{2} \cdot \mathbf{3}+\cdots
\end{aligned}
$$

Example: Eigenfaces

(Viola \& Jones)

Non-linear Autoencoders

- PCA given the "optimal linear autoencode"
- We can relax the encoding $\left(V_{p}\right)$ and decoding $\left(V_{p}^{\top}\right)$ to be non-linear mappings, e.g., represented as a neural network

A NN which is trained to reproduce the input: $\min _{i}\left\|y\left(x_{i}\right)-x_{i}\right\|^{2}$ The hidden layer ("bottleneck") needs to find a good representation/compression.

- Stacking autoencoders:

Augmenting NN training with semi-supervised embedding objectives

- Weston et al. (ICML, 2008)

(a) Output

(b) Internal

(c) Auxiliary

Mnist1h dataset, deep NNs of 2, 6, 8, 10 and 15 layers; each hidden layer 50 hidden units

	2	4	6	8	10	15
NN	26.0	26.1	27.2	28.3	34.2	47.7
Embed O NN	19.7	15.1	15.1	15.0	13.7	11.8
Embed $^{A L L}$ NN	18.2	12.6	7.9	8.5	6.3	9.3

What are good representations?

- Reproducing/autoencoding data, maintaining maximal information
- Disentangling correlations (e.g., ICA)
- those that are most correlated with desired outputs (PLS, NNs)
- those that maintain the clustering
- those that maintain relative distances (MDS)
- those that enable efficient reasoning, decision making \& learning in the real world
- How do we represent our 3D environment, enabeling physical \& geometric reasoning?
- How do we represent things to enable us inventing novel things, machines, technology, science?

Independent Component Analysis*

- Assume we have data $D=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}^{d}$. PCA: $P\left(x_{i} \mid z_{i}\right)=\mathcal{N}\left(x_{i} \mid W z_{i}+\mu, \mathbf{I}\right), \quad P\left(z_{i}\right)=\mathcal{N}\left(z_{i} \mid 0, \mathbf{I}\right)$
Factor Analysis: $P\left(x_{i} \mid z_{i}\right)=\mathcal{N}\left(x_{i} \mid W z_{i}+\mu, \Sigma\right), \quad P\left(z_{i}\right)=\mathcal{N}\left(z_{i} \mid 0, \mathbf{I}\right)$
ICA: $P\left(x_{i} \mid z_{i}\right)=\mathcal{N}\left(x_{i} \mid W z_{i}+\mu, \epsilon \mathbf{I}\right), \quad P\left(z_{i}\right)=\prod_{j=1}^{d} P\left(z_{i j}\right)$

- In ICA

1) We have (usually) as many latent variables as observed $\operatorname{dim}\left(x_{i}\right)=\operatorname{dim}\left(z_{i}\right)$
2) We require all latent variables to be independent
3) We allow for latent variables to be non-Gaussian

Partial least squares (PLS)*

- Is it really a good idea to just pick the p-higest variance components??

Why should that be a good idea?

PLS*

- Idea: The first dimension to pick should be the one most correlated with the OUTPUT, not with itself!

```
Input: data \(X \in \mathbb{R}^{n \times d}, y \in \mathbb{R}^{n}\)
Output: predictions \(\hat{y} \in \mathbb{R}^{n}\)
    1: initialize the predicted output: \(\hat{y}=\langle y\rangle 1_{n}\)
    2: initialize the remaining input dimensions: \(\hat{X}=X\)
    : for \(i=1, . ., p\) do
    4: \(\quad i\)-th input 'basis vector': \(z_{i}=\hat{X} \hat{X}^{\top} y\)
    5: update prediction: \(\hat{y} \leftarrow \hat{y}+Z_{i} y \quad\) where \(Z_{i}=\frac{z_{i} z_{i}^{\top}}{z_{i}^{\top} z_{i}}\)
    6: remove "used" input dimensions: \(\hat{X} \leftarrow \hat{X}\left(\mathbf{I}-Z_{i}\right)\)
    7: end for
```

(Hastie, page 81)
Line 4 identifies a new input "coordinate" via maximal correlation between the remaning input dimensions and y.
Line 5 updates the prediction to include the project of y onto z_{i}
Line 6 removes the projection of input data \hat{X} along z_{i}. All z_{i} will be orthogonal.

PLS for classification*

- Not obvious.
- We'll try to invent one in the exercises :-)
- back to linear autoencoding, i.e., PCA - but now linear in RKHS

"Feature PCA" \& Kernel PCA

- The feature trick: $X=\left(\begin{array}{c}\phi\left(x_{1}\right)^{\top} \\ \vdots \\ \phi\left(x_{n}\right)^{\top}\end{array}\right) \in \mathbb{R}^{n \times k}$
- The kernel trick: rewrite all necessary equations such that they only involve scalar products $\phi(x)^{\top} \phi\left(x^{\prime}\right)=k\left(x, x^{\prime}\right)$:

We want to compute eigenvectors of $X^{\top} X=\sum_{i} \phi\left(x_{i}\right) \phi\left(x_{i}\right)^{\top}$. We can rewrite this as

$$
\begin{aligned}
X^{\top} X v_{j} & =\lambda v_{j} \\
\underbrace{X X^{\top}}_{K} \underbrace{X v_{j}}_{K \alpha_{j}} & =\lambda \underbrace{X v_{j}}_{K \alpha_{j}}, \quad v_{j}=\sum_{i} \alpha_{j i} \phi\left(x_{i}\right) \\
K \alpha_{j} & =\lambda \alpha_{j}
\end{aligned}
$$

Where $K=X X^{\top}$ with entries $K_{i j}=\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)$.
\rightarrow We compute SVD of the kernel matrix $K \rightarrow$ gives eigenvectors $\alpha_{j} \in \mathbb{R}^{n}$.
Projection: $\quad x \mapsto z=V_{p}^{\top} \phi(x)=\sum_{i} \alpha_{1: p, i} \phi\left(x_{i}\right)^{\top} \phi(x)=A \kappa(x)$
(with matrix $A \in \mathbb{R}^{p \times n}, A_{j i}=\alpha_{j i}$ and vector $\kappa(x) \in \mathbb{R}^{n}, \kappa_{i}(x)=k\left(x_{i}, x\right)$)
Since we cannot center the features $\phi(x)$ we actually need "the double centered kernel matrix" $\widetilde{K}=\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}{ }^{\top}\right) K\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\top}\right)$, where $K_{i j}=\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)$ is uncentered.

Kernel PCA

red points: data
green shading: eigenvector $\boldsymbol{\alpha}_{j}$ represented as functions $\sum_{i} \alpha_{j i} k\left(x_{j}, x\right)$

Eigenvalue $=\mathbf{2 1 . 7 2}$

Eigenvalue=3.66

Eigenvalue=21.65

Eigenvalue=3.09

Eigenvalue=4.11

Eigenvalue $=2.60$

Eigenvalue=3.93

Eigenvalue $=2.53$

Kernel PCA "coordinates" allow us to discriminate clusters!

Kernel PCA

- Kernel PCA uncovers quite surprising structure:

While PCA "merely" picks high-variance dimensions
Kernel PCA picks high variance features-where features correspond to basis functions (RKHS elements) over x

- Kernel PCA may map data x_{i} to latent coordinates z_{i} where clustering is much easier
- All of the following can be represented as kernel PCA:
- Local Linear Embedding
- Metric Multidimensional Scaling
- Laplacian Eigenmaps (Spectral Clustering)
see "Dimensionality Reduction: A Short Tutorial" by Ali Ghodsi

Kernel PCA clustering

- Using a kernel function $k\left(x, x^{\prime}\right)=e^{-\left\|x-x^{\prime}\right\|^{2} / c}$:

- Gaussian mixtures or k-means will easily cluster this

Spectral Clustering*

Spectral Clustering is very similar to kernel PCA:

- Instead of the kernel matrix K with entries $k_{i j}=k\left(x_{i}, x_{j}\right)$ we construct a weighted adjacency matrix, e.g.,

$$
w_{i j}=\left\{\begin{array}{cc}
0 & \text { if } x_{i} \text { are not a } k \mathrm{NN} \text { of } x_{j} \\
e^{-\left\|x_{i}-x_{j}\right\|^{2} / c} & \text { otherwise }
\end{array}\right.
$$

$w_{i j}$ is the weight of the edge between data point x_{i} and x_{j}.

- Instead of computing maximal eigenvectors of \widetilde{K}, compute minimal eigenvectors of

$$
L=\mathbf{I}-\widetilde{W}, \quad \widetilde{W}=\operatorname{diag}\left(\sum_{j} w_{i j}\right)^{-1} W
$$

($\sum_{j} w_{i j}$ is called degree of node i, \widetilde{W} is the normalized weighted adjacency matrix)

- Given $L=U D V^{\top}$, we pick the p smallest eigenvectors $V_{p}=V_{1: n, 1: p}$ (perhaps exclude the trivial smallest eigenvector)
- The latent coordinates for x_{i} are $z_{i}=V_{i, 1: p}$
- Spectral Clustering provides a method to compute latent low-dimensional coordinates $z_{i}=V_{i, 1: p}$ for each high-dimensional $x_{i} \in \mathbb{R}^{d}$ input.
- This is then followed by a standard clustering, e.g., Gaussian Mixture or k-means

Eigenvectors

Spectral Clustering

- Spectral Clustering is similar to kernel PCA:
- The kernel matrix K usually represents similarity The weighted adjacency matrix W represents proximity \& similarity
- High Eigenvectors of K are similar to low EV of $L=\mathbf{I}$ - W
- Original interpretation of Spectral Clustering:
- $L=\mathbf{I}$ - W (weighted graph Laplacian) describes a diffusion process:

The diffusion rate $W_{i j}$ is high if i and j are close and similar

- Eigenvectors of L correspond to stationary solutions
- The Graph Laplacian L : For some vector $f \in \mathbb{R}^{n}$, note the following identities:

$$
\begin{aligned}
(L f)_{i} & =\left(\sum_{j} w_{i j}\right) f_{i}-\sum_{j} w_{i j} f_{j}=\sum_{j} w_{i j}\left(f_{i}-f_{j}\right) \\
f^{\top} L f & =\sum_{i} f_{i} \sum_{j} w_{i j}\left(f_{i}-f_{j}\right)=\sum_{i j} w_{i j}\left(f_{i}^{2}-f_{i} f_{j}\right) \\
& =\sum_{i j} w_{i j}\left(\frac{1}{2} f_{i}^{2}+\frac{1}{2} f_{j}^{2}-f_{i} f_{j}\right)=\frac{1}{2} \sum_{i j} w_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

where the second-to-last $=$ holds if $w_{i j}=w_{j i}$ is symmetric.

Metric Multidimensional Scaling

- Assume we have data $D=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}^{d}$. As before we want to indentify latent lower-dimensional representations $z_{i} \in \mathbb{R}^{p}$ for this data.
- A simple idea: Minimize the stress

$$
S_{C}\left(z_{1: n}\right)=\sum_{i \neq j}\left(d_{i j}^{2}-\left\|z_{i}-z_{j}\right\|^{2}\right)^{2}
$$

We want distances in high-dimensional space to be equal to distances in low-dimensional space.

Metric Multidimensional Scaling = (kernel) PCA

- Note the relation:

$$
d_{i j}^{2}=\left\|x_{i}-x_{j}\right\|^{2}=\left\|x_{i}-\bar{x}\right\|^{2}+\left\|x_{j}-\bar{x}\right\|^{2}-2\left(x_{i}-\bar{x}\right)^{\top}\left(x_{j}-\bar{x}\right)
$$

This translates a distance into a (centered) scalar product

Metric Multidimensional Scaling = (kernel) PCA

- Note the relation:

$$
d_{i j}^{2}=\left\|x_{i}-x_{j}\right\|^{2}=\left\|x_{i}-\bar{x}\right\|^{2}+\left\|x_{j}-\bar{x}\right\|^{2}-2\left(x_{i}-\bar{x}\right)^{\top}\left(x_{j}-\bar{x}\right)
$$

This translates a distance into a (centered) scalar product

- If may we define

$$
\widetilde{K}=\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{\top}\right) D\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\top}\right), \quad D_{i j}=-d_{i j}^{2} / 2
$$

then $\widetilde{K_{i j}}=\left(x_{i}-\bar{x}\right)^{\top}\left(x_{j}-\bar{x}\right)$ is the normal covariance matrix and MDS is equivalent to kernel PCA

Non-metric Multidimensional Scaling

- We can do this for any data (also non-vectorial or not $\in \mathbb{R}^{d}$) as long as we have a data set of comparative dissimilarities $d_{i j}$

$$
S\left(z_{1: n}\right)=\sum_{i \neq j}\left(d_{i j}^{2}-\left|z_{i}-z_{j}\right|^{2}\right)^{2}
$$

- Minimize $S\left(z_{1: n}\right)$ w.r.t. $z_{1: n}$ without any further constraints!

Example for Non-Metric MDS: ISOMAP

- Construct $k \mathrm{NN}$ graph and label edges with Euclidean distance
- Between any two x_{i} and x_{j}, compute "geodescic" distance $d_{i j}$ (shortest path along the graph)
- Then apply MDS

The zoo of dimensionality reduction methods

- PCA family:
- kernel PCA, non-neg. Matrix Factorization, Factor Analysis
- All of the following can be represented as kernel PCA:
- Local Linear Embedding
- Metric Multidimensional Scaling
- Laplacian Eigenmaps (Spectral Clustering)

They all use different notions of distance/correlation as input to kernel PCA
see "Dimensionality Reduction: A Short Tutorial" by Ali Ghodsi

PCA variants*

PCA variant: Non-negative Matrix Factorization*

- Assume we have data $D=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}^{d}$. As for PCA (where we had $x_{i} \approx V_{p} z_{i}+\mu$) we search for a lower-dimensional space with linear relation to x_{i}
- In NMF we require everything is non-negative: the data x_{i}, the projection W, and latent variables z_{i}
Find $W \in \mathbb{R}^{p \times d}$ (the tansposed projection) and $Z \in \mathbb{R}^{n \times p}$ (the latent variables z_{i}) such that

$$
X \approx Z W
$$

- Iterative solution: (E-step and M-step like...)

$$
\begin{aligned}
& z_{i k} \leftarrow z_{i k} \frac{\sum_{j=1}^{d} w_{k j} x_{i j} /(Z W)_{i j}}{\sum_{j=1}^{d} w_{k j}} \\
& w_{k j} \leftarrow w_{k j} \frac{\sum_{i=1}^{N} z_{i k} x_{i j} /(Z W)_{i j}}{\sum_{i=1}^{N} z_{i k}}
\end{aligned}
$$

PCA variant: Non-negative Matrix Factorization*

(from Hastie 14.6)

PCA variant: Factor Analysis*

Another variant of PCA: (Bishop 12.64)
Allows for different noise in each dimension
$P\left(x_{i} \mid z_{i}\right)=\mathcal{N}\left(x_{i} \mid V_{p} z_{i}+\mu, \Sigma\right)$ (with Σ diagonal)

Clustering

- Clustering often involves two steps:
- First map the data to some embedding that emphasizes clusters
- (Feature) PCA
- Spectral Clustering
- Kernel PCA
- ISOMAP
- Then explicitly analyze clusters
- k-means clustering
- Gaussian Mixture Model
- Agglomerative Clustering

k-means Clustering

- Given data $D=\left\{x_{i}\right\}_{i=1}^{n}$, find K centers μ_{k}, and a data assignment $c: i \mapsto k$ to minimize

$$
\min _{c, \mu} \sum_{i}\left(x_{i}-\mu_{c(i)}\right)^{2}
$$

- k-means clustering:
- Pick K data points randomly to initialize the centers μ_{k}
- Iterate adapting the assignments $c(i)$ and the centers μ_{k} :

$$
\begin{aligned}
& \forall_{i}: c(i) \leftarrow \underset{c(i)}{\operatorname{argmin}} \sum_{j}\left(x_{j}-\mu_{c(j)}\right)^{2}=\underset{k}{\operatorname{argmin}}\left(x_{i}-\mu_{k}\right)^{2} \\
& \forall_{k}: \mu_{k} \leftarrow \underset{\mu_{k}}{\operatorname{argmin}} \sum_{i}\left(x_{i}-\mu_{c(i)}\right)^{2}=\frac{1}{\left|c^{-1}(k)\right|} \sum_{i \in c^{-1}(k)} x_{i}
\end{aligned}
$$

k-means Clustering

Initial Centroids

Iteration Number 2

Initial Partition

Iteration Number 20

k-means Clustering

- Converges to local minimum \rightarrow many restarts
- Choosing k ? Plot $L(k)=\min _{c, \mu} \sum_{i}\left(x_{i}-\mu_{c(i)}\right)^{2}$ for different k-choose a tradeoff between model complexity (large k) and data fit (small loss $L(k))$

k-means Clustering for Classification

from Hastie

Gaussian Mixture Model for Clustering

- GMMs can/should be introduced as generative probabilistic model of the data:
- K different Gaussians with parmameters μ_{k}, Σ_{k}
- Assignment RANDOM VARIABLE $c_{i} \in\{1, . ., K\}$ with $P\left(c_{i}=k\right)=\pi_{k}$
- The observed data point x_{i} with $P\left(x_{i} \mid c_{i}=k ; \mu_{k}, \Sigma_{k}\right)=\mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)$
- EM-Algorithm described as a kind of soft-assignment version of k-means
- Initialize the centers $\mu_{1: K}$ randomly from the data; all covariances $\Sigma_{1: K}$ to unit and all π_{k} uniformly.
- E-step: (probabilistic/soft assignment) Compute

$$
q\left(c_{i}=k\right)=P\left(c_{i}=k \mid x_{i}, \mu_{1: K}, \Sigma_{1: K}\right) \propto \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right) \pi_{k}
$$

- M-step: Update parameters (centers AND covariances)

$$
\begin{aligned}
\pi_{k} & =\frac{1}{n} \sum_{i} q\left(c_{i}=k\right) \\
\mu_{k} & =\frac{1}{n \pi_{k}} \sum_{i} q\left(c_{i}=k\right) x_{i} \\
\Sigma_{k} & =\frac{1}{n \pi_{k}} \sum_{i} q\left(c_{i}=k\right) x_{i} x_{i}^{\top}-\mu_{k} \mu_{k}^{\top}
\end{aligned}
$$

Gaussian Mixture Model

EM iterations for Gaussian Mixture model:

from Bishop

Agglomerative Hierarchical Clustering

- agglomerative = bottom-up, divisive = top-down
- Merge the two groups with the smallest intergroup dissimilarity
- Dissimilarity of two groups G, H can be measures as
- Nearest Neighbor (or "single linkage"): $d(G, H)=\min _{i \in G, j \in H} d\left(x_{i}, x_{j}\right)$
- Furthest Neighbor (or "complete linkage"): $d(G, H)=\max _{i \in G, j \in H} d\left(x_{i}, x_{j}\right)$
- Group Average: $d(G, H)=\frac{1}{|G||H|} \sum_{i \in G} \sum_{j \in H} d\left(x_{i}, x_{j}\right)$

Agglomerative Hierarchical Clustering

Appendix: Centering \& Whitening

- Some prefer to center (shift to zero mean) the data before applying methods:

$$
x \leftarrow x-\langle x\rangle, \quad y \leftarrow y-\langle y\rangle
$$

this spares augmenting the bias feature 1 to the data.

- More interesting: The loss and the best choice of λ depends on the scaling of the data. If we always scale the data in the same range, we may have better priors about choice of λ and interpretation of the loss

$$
x \leftarrow \frac{1}{\sqrt{\operatorname{Var}\{x\}}} x, \quad y \leftarrow \frac{1}{\sqrt{\operatorname{Var}\{y\}}} y
$$

- Whitening: Transform the data to remove all correlations and variances.
Let $A=\operatorname{Var}\{x\}=\frac{1}{n} X^{\top} X-\mu \mu^{\top}$ with Cholesky decomposition $A=M M^{\top}$.

$$
x \leftarrow M^{-1} x, \quad \text { with } \operatorname{Var}\left\{M^{-1} x\right\}=\mathbf{I}_{d}
$$

