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Kernel Ridge Regression—the “Kernel Trick”

• Reconsider solution of Ridge regression (using the Woodbury identity):
β̂ridge = (X>X + λIk)-1X>y = X>(XX>+ λIn)-1y

• Recall X>= (φ(x1), .., φ(xn)) ∈ Rk×n, then:

f ridge(x) = φ(x)>βridge = φ(x)>X>︸ ︷︷ ︸
κ(x)>

(XX>︸ ︷︷ ︸
K

+λI)-1y

K is called kernel matrix and has elements

Kij = k(xi, xj) := φ(xi)
>φ(xj)

κ is the vector: κ(x)>= φ(x)>X>= k(x, x1:n)

The kernel function k(x, x′) calculates the scalar product in feature space.
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The Kernel Trick

• We can rewrite kernel ridge regression as:

f rigde(x) = κ(x)>(K + λI)-1y

with Kij = k(xi, xj)

κi(x) = k(x, xi)

→ at no place we actually need to compute the parameters β̂
→ at no place we actually need to compute the features φ(xi)

→ we only need to be able to compute k(x, x′) for any x, x′

• This rewriting is called kernel trick.

• It has great implications:
– Instead of inventing funny non-linear features, we may directly invent

funny kernels
– Inventing a kernel is intuitive: k(x, x′) expresses how correlated y and y′

should be: it is a meassure of similarity, it compares x and x′. Specifying
how ’comparable’ x and x′ are is often more intuitive than defining
“features that might work”.
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• Every choice of features implies a kernel.

• But, does every choice of kernel correspond to a specific choice of
features?
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Reproducing Kernel Hilbert Space
• Let’s define a vector space Hk, spanned by infinitely many basis elements

{φx = k(·, x) : x ∈ Rd}

Vectors in this space are linear combinations of such basis elements, e.g.,

f =
∑
i

αiφxi , f(x) =
∑
i

αik(x, xi)

• Let’s define a scalar product in this space. Assuming k(·, ·) is positive definite,
we first define the scalar product for every basis element,

〈φx, φy〉 := k(x, y)

Then it follows

〈φx, f〉 =
∑
i

αi 〈φx, φxi〉 =
∑
i

αik(x, xi) = f(x)

• The φx = k(·, x) is the ‘feature’ we associate with x. Note that this is a function
and infinite dimensional. Choosing α = (K + λI)-1y represents
f ridge(x) =

∑n
i=1 αik(x, xi) = κ(x)>α, and shows that ridge regression has a

finite-dimensional solution in the basis elements {φxi}. A more general
version of this insight is called representer theorem. 5/9



Representer Theorem

• For
f∗ = argmin

f∈Hk

L(f(x1), .., f(xn)) + Ω(||f ||2Hk
)

where L is an arbitrary loss function, and Ω a monotone regularization,
it holds

f∗ =

n∑
i=1

αik(·, xi)

• Proof:
decompose f = fs + f⊥, fs ∈ span{φxi : xi ∈ D}
f(xi) = 〈f, φxi〉 = 〈fs + f⊥, φxi〉 = 〈fs, φxi〉 = fs(xi)

L(f(x1), .., f(xn)) = L(fs(x1), .., fs(xn))

Ω(||fs + f⊥||2Hk
) ≥ Ω(||fs||2Hk

)
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Example Kernels

• Kernel functions need to be positive definite: ∀z:|z|>0 : k(z, z′) > 0

→ K is a positive definite matrix

• Examples:
– Polynomial: k(x, x′) = (x>x′ + c)d

Let’s verify for d = 2, φ(x) =
(
1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2

)>:

k(x, x′) = ((x1, x2)

x′1
x′2

 + 1)2

= (x1x
′
1 + x2x

′
2 + 1)2

= x21x
′
1
2

+ 2x1x2x
′
1x

′
2 + x22x

′
2
2

+ 2x1x
′
1 + 2x2x

′
2 + 1

= φ(x)>φ(x′)

– Squared exponential (radial basis function): k(x, x′) = exp(−γ |x− x′ | 2)
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Example Kernels

• Bag-of-words kernels: let φw(x) be the count of word w in document x;
define k(x, y) = 〈φ(x), φ(y)〉

• Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
– Random walk graph kernels

• Gaussian Process regression will explain that k(x, x′) has the
semantics of an (apriori) correlatedness of the yet unknown underlying
function values f(x) and f(x′)

– k(x, x′) should be high if you believe that f(x) and f(x′) might be similar
– k(x, x′) should be zero if f(x) and f(x′) might be fully unrelated
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Kernel Logistic Regression*
For logistic regression we compute β using the Newton iterates

β ← β − (X>WX + 2λI)-1 [X>(p− y) + 2λβ] (1)

= −(X>WX + 2λI)-1 X>[(p− y)−WXβ] (2)

Using the Woodbury identity we can rewrite this as

(X>WX +A)-1X>W = A-1X>(XA-1X>+W -1)-1 (3)

β ← −
1

2λ
X>(X

1

2λ
X>+W -1)-1 W -1[(p− y)−WXβ] (4)

= X>(XX>+ 2λW -1)-1
[
Xβ −W -1(p− y)

]
. (5)

We can now compute the discriminative function values fX = Xβ ∈ Rn at the training
points by iterating over those instead of β:

fX ← XX>(XX>+ 2λW -1)-1
[
Xβ −W -1(p− y)

]
(6)

= K(K + 2λW -1)-1
[
fX −W -1(pX − y)

]
(7)

Note, that pX on the RHS also depends on fX . Given fX we can compute the
discriminative function values fZ = Zβ ∈ Rm for a set of m query points Z using

fZ ← κ>(K + 2λW -1)-1
[
fX −W -1(pX − y)

]
, κ>= ZX> (8)
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