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Kernel Ridge Regression—the “Kernel Trick”

¢ Reconsider solution of Ridge regression (using the Woodbury identity):
grdee — (XTX 4+ AL) Xy = X (XX + AL,y
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Kernel Ridge Regression—the “Kernel Trick”
¢ Reconsider solution of Ridge regression (using the Woodbury identity):
grdee — (XTX 4+ AL) Xy = X (XX + AL,y
e Recall XT = (¢(z1), .., d(x,,)) € RFX™, then:

fridge(x) _ ¢(x)Tﬁridge _ qﬁ(m)TXT(&/_/Xr"_)‘I)_ly

st K
K is called kernel matrix and has elements
Kij = k(zi, 25) := ¢(x:) d(x;)

k is the vector: k(z)" = ¢(z) X" = k(z, 21.,)

The kernel function k(x, «') calculates the scalar product in feature space.
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The Kernel Trick

¢ We can rewrite kernel ridge regression as:
f19%(z) = k(2) (K + M)y
with Kij = k;(xz,xj)
K/’L(I) = k(xaxl)
— at no place we actually need to compute the parameters B

— at no place we actually need to compute the features ¢(x;)
— we only need to be able to compute k(z, ') for any z, 2’
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The Kernel Trick
¢ We can rewrite kernel ridge regression as:

fring(l.) — /{(x)T(K + )\I)_ly
with K;; = k(z;,2;)
ki(z) = k(z, 2;)

— at no place we actually need to compute the parameters B
— at no place we actually need to compute the features ¢(x;)
— we only need to be able to compute k(z, ') for any z, 2’

e This rewriting is called kernel trick.

e It has great implications:
— Instead of inventing funny non-linear features, we may directly invent
funny kernels
— Inventing a kernel is intuitive: k(z,z") expresses how correlated y and ¢/’
should be: it is a meassure of similarity, it compares z and z’. Specifying
how 'comparable’ x and =’ are is often more intuitive than defining
“features that might work”. 3/9



e Every choice of features implies a kernel.

e But, does every choice of kernel correspond to a specific choice of
features?
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Reproducing Kernel Hilbert Space
e Let’s define a vector space Ky, spanned by infinitely many basis elements
{¢o = k(-,2) : z R}
Vectors in this space are linear combinations of such basis elements, e.g.,

f= Zaid)mi , flx)= Zaik(:r,ri)

e Let’s define a scalar product in this space. Assuming k(-, -) is positive definite,
we first define the scalar product for every basis element,

(P2, by) = k(z,y)

Then it follows

<¢927f> = Zai <¢€t7¢ﬂh> = Zalk(mvxl) = f(x)

e The ¢, = k(-, ) is the ‘feature’ we associate with z. Note that this is a function
and infinite dimensional. Choosing o = (K + \I)y represents
[ (z) = 3" | aik(z, x;) = k(x) o, and shows that ridge regression has a
finite-dimensional solution in the basis elements {¢., }. A more general
version of this insight is called representer theorem. 5/9



Representer Theorem

e For

f* = argminL(f(-Tl)v ) f(ajn)) + Q("f”%-(,c)
feHy

where L is an arbitrary loss function, and 2 a monotone regularization,

it holds N
= aik(-,x)
=1

e Proof:
decompose f = fs + fi, fs € span{¢s, : x; € D}
(@) = (f, u;) = (fs + fi,02) = (fss Gzi) = fs()
L(f(x1), .., f(zn)) = L(fs(z1), ., fs(@n))
QUfs + fel3e,) > QU fl%,)
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Example Kernels

e Kernel functions need to be positive definite: V.. .|~ : k(z,2") >0
— K is a positive definite matrix

e Examples:
— Polynomial: k(z,z') = (z'2’ + ¢)?
Let's verify for d = 2, ¢(x) = (1, V221, V222,23, V20122, 23) -

k(w,2') = ((azl,xg)(;ﬁ;) +1)?

= (z12) + zoxh + 1)2

2 72 o 2 12 ’ ’
=x1x7 + 2:1T221X5 + ToT + 22177 + 2T229 + 1

= ¢(x) o(a')

— Squared exponential (radial basis function): k(z,z') = exp(—y |z — 2’ |?)

7/9



Example Kernels

e Bag-of-words kernels: let ¢,,(x) be the count of word w in document z;
define k(z, y) = (¢(x), ¢(y))
e Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
— Random walk graph kernels
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Example Kernels

e Bag-of-words kernels: let ¢,,(x) be the count of word w in document z;
define k(z, y) = (¢(x), ¢(y))
e Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
— Random walk graph kernels

e Gaussian Process regression will explain that k(x, ') has the
semantics of an (apriori) correlatedness of the yet unknown underlying
function values f(z) and f(z")

— k(=z,2") should be high if you believe that f(x) and f(z’) might be similar
— k(z,z") should be zero if f(x) and f(z’) might be fully unrelated
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Kernel Logistic Regression*

For logistic regression we compute 8 using the Newton iterates

B B— (XWX + 227 [X (p—y) + 28] (1)
=—(XTWX +2XI)" XT[(p—y) - WXB] (2

Using the Woodbury identity we can rewrite this as

(XTWX + AITXTW = ATXT(XALXT + Wiyt (3)

1 7 1 T -13-1 117-1
EF—EX (XEX +W7)T W(p —y) - WX§B] (4)
= XT(XXT + 22w 1)1 [XB —Wlp - y)] . (5)

We can now compute the discriminative function values fx = X3 € R" at the training
points by iterating over those instead of 3:

fx = XXT(XXT 4+ 22w )2 [X B—=W'(p— y)} (6)
= K(K +22W ™) [fx = Whpx — )] M

Note, that px on the RHS also depends on fx. Given fx we can compute the
discriminative function values fz = Z3 € R™ for a set of m query points Z using

Iz KTK 20 [fx =W hpx —y)], & =2X7 (8)
9/9



