Machine Learning

Kernelization

Marc Toussaint University of Stuttgart
Summer 2019

Kernel Ridge Regression-the "Kernel Trick"

- Reconsider solution of Ridge regression (using the Woodbury identity):

$$
\hat{\beta}^{\text {ridge }}=\left(X^{\top} X+\lambda \mathbf{I}_{k}\right)^{-1} X^{\top} y=X^{\top}\left(X X^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} y
$$

Kernel Ridge Regression-the "Kernel Trick"

- Reconsider solution of Ridge regression (using the Woodbury identity):

$$
\hat{\beta}^{\text {ridge }}=\left(X^{\top} X+\lambda \mathbf{I}_{k}\right)^{-1} X^{\top} y=X^{\top}\left(X X^{\top}+\lambda \mathbf{I}_{n}\right)^{-1} y
$$

- Recall $X^{\top}=\left(\phi\left(x_{1}\right), . ., \phi\left(x_{n}\right)\right) \in \mathbb{R}^{k \times n}$, then:

$$
f^{\text {ridge }}(x)=\phi(x)^{\top} \beta^{\text {ridge }}=\underbrace{\phi(x)^{\top} X^{\top}}_{\kappa(x)^{\top}}(\underbrace{X X^{\top}}_{K}+\lambda I)^{-1} y
$$

K is called kernel matrix and has elements

$$
K_{i j}=k\left(x_{i}, x_{j}\right):=\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)
$$

κ is the vector: $\kappa(x)^{\top}=\phi(x)^{\top} X^{\top}=k\left(x, x_{1: n}\right)$

The kernel function $k\left(x, x^{\prime}\right)$ calculates the scalar product in feature space.

The Kernel Trick

- We can rewrite kernel ridge regression as:

$$
\begin{aligned}
f^{\text {rigde }}(x) & =\kappa(x)^{\top}(K+\lambda I)^{-1} y \\
\text { with } K_{i j} & =k\left(x_{i}, x_{j}\right) \\
\kappa_{i}(x) & =k\left(x, x_{i}\right)
\end{aligned}
$$

\rightarrow at no place we actually need to compute the parameters $\hat{\beta}$
\rightarrow at no place we actually need to compute the features $\phi\left(x_{i}\right)$
\rightarrow we only need to be able to compute $k\left(x, x^{\prime}\right)$ for any x, x^{\prime}

The Kernel Trick

- We can rewrite kernel ridge regression as:

$$
\begin{aligned}
f^{\text {rigde }}(x) & =\kappa(x)^{\top}(K+\lambda I)^{-1} y \\
\text { with } K_{i j} & =k\left(x_{i}, x_{j}\right) \\
\kappa_{i}(x) & =k\left(x, x_{i}\right)
\end{aligned}
$$

\rightarrow at no place we actually need to compute the parameters $\hat{\beta}$
\rightarrow at no place we actually need to compute the features $\phi\left(x_{i}\right)$
\rightarrow we only need to be able to compute $k\left(x, x^{\prime}\right)$ for any x, x^{\prime}

- This rewriting is called kernel trick.
- It has great implications:
- Instead of inventing funny non-linear features, we may directly invent funny kernels
- Inventing a kernel is intuitive: $k\left(x, x^{\prime}\right)$ expresses how correlated y and y^{\prime} should be: it is a meassure of similarity, it compares x and x^{\prime}. Specifying how 'comparable' x and x^{\prime} are is often more intuitive than defining "features that might work".
- Every choice of features implies a kernel.
- But, does every choice of kernel correspond to a specific choice of features?

Reproducing Kernel Hilbert Space

- Let's define a vector space \mathcal{H}_{k}, spanned by infinitely many basis elements

$$
\left\{\phi_{x}=k(\cdot, x): x \in \mathbb{R}^{d}\right\}
$$

Vectors in this space are linear combinations of such basis elements, e.g.,

$$
f=\sum_{i} \alpha_{i} \phi_{x_{i}}, \quad f(x)=\sum_{i} \alpha_{i} k\left(x, x_{i}\right)
$$

- Let's define a scalar product in this space. Assuming $k(\cdot, \cdot)$ is positive definite, we first define the scalar product for every basis element,

$$
\left\langle\phi_{x}, \phi_{y}\right\rangle:=k(x, y)
$$

Then it follows

$$
\left\langle\phi_{x}, f\right\rangle=\sum_{i} \alpha_{i}\left\langle\phi_{x}, \phi_{x_{i}}\right\rangle=\sum_{i} \alpha_{i} k\left(x, x_{i}\right)=f(x)
$$

- The $\phi_{x}=k(\cdot, x)$ is the 'feature' we associate with x. Note that this is a function and infinite dimensional. Choosing $\alpha=(K+\lambda I)^{-1} y$ represents $f^{\text {ridge }}(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)=\kappa(x)^{\top} \alpha$, and shows that ridge regression has a finite-dimensional solution in the basis elements $\left\{\phi_{x_{i}}\right\}$. A more general version of this insight is called representer theorem.

Representer Theorem

- For

$$
f^{*}=\underset{f \in \mathscr{H}_{k}}{\operatorname{argmin}} L\left(f\left(x_{1}\right), . ., f\left(x_{n}\right)\right)+\Omega\left(\|f\|_{\mathscr{H}_{k}}^{2}\right)
$$

where L is an arbitrary loss function, and Ω a monotone regularization, it holds

$$
f^{*}=\sum_{i=1}^{n} \alpha_{i} k\left(\cdot, x_{i}\right)
$$

- Proof:

$$
\begin{aligned}
& \text { decompose } f=f_{s}+f_{\perp}, f_{s} \in \operatorname{span}\left\{\phi_{x_{i}}: x_{i} \in D\right\} \\
& f\left(x_{i}\right)=\left\langle f, \phi_{x_{i}}\right\rangle=\left\langle f_{s}+f_{\perp}, \phi_{x_{i}}\right\rangle=\left\langle f_{s}, \phi_{x_{i}}\right\rangle=f_{s}\left(x_{i}\right) \\
& L\left(f\left(x_{1}\right), . ., f\left(x_{n}\right)\right)=L\left(f_{s}\left(x_{1}\right), . ., f_{s}\left(x_{n}\right)\right) \\
& \Omega\left(\left\|f_{s}+f_{\perp}\right\|_{\mathcal{H}_{k}}^{2}\right) \geq \Omega\left(\left\|f_{s}\right\|_{\mathscr{H}_{k}}\right)
\end{aligned}
$$

Example Kernels

- Kernel functions need to be positive definite: $\forall_{z:|z|>0}: k\left(z, z^{\prime}\right)>0$
$\rightarrow K$ is a positive definite matrix
- Examples:
- Polynomial: $k\left(x, x^{\prime}\right)=\left(x^{\top} x^{\prime}+c\right)^{d}$ Let's verify for $d=2, \phi(x)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}$:

$$
\begin{aligned}
& k\left(x, x^{\prime}\right)=\left(\left(x_{1}, x_{2}\right)\binom{x_{1}^{\prime}}{x_{2}^{\prime}}+1\right)^{2} \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2} \\
& =x_{1}^{2} x_{1}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2}{x_{2}^{\prime}}^{2}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+1 \\
& =\phi(x)^{\top} \phi\left(x^{\prime}\right)
\end{aligned}
$$

- Squared exponential (radial basis function): $k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left|x-x^{\prime}\right|^{2}\right)$

Example Kernels

- Bag-of-words kernels: let $\phi_{w}(x)$ be the count of word w in document x; define $k(x, y)=\langle\phi(x), \phi(y)\rangle$
- Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
- Random walk graph kernels

Example Kernels

- Bag-of-words kernels: let $\phi_{w}(x)$ be the count of word w in document x; define $k(x, y)=\langle\phi(x), \phi(y)\rangle$
- Graph kernels (Vishwanathan et al: Graph kernels, JMLR 2010)
- Random walk graph kernels
- Gaussian Process regression will explain that $k\left(x, x^{\prime}\right)$ has the semantics of an (apriori) correlatedness of the yet unknown underlying function values $f(x)$ and $f\left(x^{\prime}\right)$
- $k\left(x, x^{\prime}\right)$ should be high if you believe that $f(x)$ and $f\left(x^{\prime}\right)$ might be similar
- $k\left(x, x^{\prime}\right)$ should be zero if $f(x)$ and $f\left(x^{\prime}\right)$ might be fully unrelated

Kernel Logistic Regression*

For logistic regression we compute β using the Newton iterates

$$
\begin{align*}
\beta \leftarrow & \leftarrow-\left(X^{\top} W X+2 \lambda I\right)^{-1}\left[X^{\top}(p-y)+2 \lambda \beta\right] \tag{1}\\
& =-\left(X^{\top} W X+2 \lambda I\right)^{-1} X^{\top}[(p-y)-W X \beta] \tag{2}
\end{align*}
$$

Using the Woodbury identity we can rewrite this as

$$
\begin{align*}
&\left(X^{\top} W X+A\right)^{-1} X^{\top} W=A^{-1} X^{\top}\left(X A^{-1} X^{\top}+W^{-1}\right)^{-1} \tag{3}\\
& \beta \leftarrow \leftarrow-\frac{1}{2 \lambda} X^{\top}\left(X \frac{1}{2 \lambda} X^{\top}+W^{-1}\right)^{-1} W^{-1}[(p-y)-W X \beta] \tag{4}\\
&=X^{\top}\left(X X^{\top}+2 \lambda W^{-1}\right)^{-1}\left[X \beta-W^{-1}(p-y)\right] . \tag{5}
\end{align*}
$$

We can now compute the discriminative function values $f_{X}=X \beta \in \mathbb{R}^{n}$ at the training points by iterating over those instead of β :

$$
\begin{align*}
f_{X} & \leftarrow X X^{\top}\left(X X^{\top}+2 \lambda W^{-1}\right)^{-1}\left[X \beta-W^{-1}(p-y)\right] \tag{6}\\
& =K\left(K+2 \lambda W^{-1}\right)^{-1}\left[f_{X}-W^{-1}\left(p_{X}-y\right)\right] \tag{7}
\end{align*}
$$

Note, that p_{X} on the RHS also depends on f_{X}. Given f_{X} we can compute the discriminative function values $f_{Z}=Z \beta \in \mathbb{R}^{m}$ for a set of m query points Z using

$$
\begin{equation*}
f_{Z} \leftarrow \kappa^{\top}\left(K+2 \lambda W^{-1}\right)^{-1}\left[f_{X}-W^{-1}\left(p_{X}-y\right)\right], \quad \kappa^{\top}=Z X^{\top} \tag{8}
\end{equation*}
$$

