
Machine Learning

Neural Networks

NN models, objectives & regularization, training,
stochastic gradient descent, computation graphs, images

& sequences, architectures

Marc Toussaint
University of Stuttgart

Summer 2019

Outline

• Model, Objective, Solver:
– How do NNs represent a function f(x), or discriminative function f(y, x)?
– What are objectives? (standard objectives, different regularizations)
– How are they trained? (Initialization, SGD)

• Computation Graphs & Chain Rules

• Images & Sequences
– CNNs
– LSTMs & GRUs
– Complex architectures (e.g. Mask-RCNN, dense pose prediction, etc)

2/41

Neural Network models

• NNs are a parameterized function fβ : Rd 7→ RM

– β are called weights
– Given a data set D = {(xi, yi)}ni=1, we minimize some loss

β∗ = argmin
β

n∑
i=1

`(fβ(xi), yi) + regularization

• In that sense, they just replace our previous model assumption
f(x) = φ(x)>β, the reset is “in principle” the same

3/41

Neural Network models

• A (fwd-forward) NN Rh0 7→ RhL with L layers, each hl-dimensional,
defines the function

1-layer: fβ(x) = W1x+ b1, W1 ∈ Rh1×h0 , b1 ∈ Rh1

2-layer: fβ(x) = W2σ(W1x+ b1) + b2, Wl ∈ Rhl×hl-1 , bl ∈ Rhl

L-layer: fβ(x) = WLσ(· · ·σ(W1x+ b1) · · ·) + bL

• The parameter β = (W1:L, b1:L) is the collection of all
weights Wl ∈ Rhl×hl-1 and biases bl ∈ Rhl

• To describe the mapping as an iteration, we introduce notation for the
intermediate values:

– the input to layer l is zl = Wlxl-1 + bl ∈ Rhl

– the activation of layer l is xl = σ(zl) ∈ Rhl

Then the L-layer NN model can be computed using the forward
propagation:

∀l=1,..,L-1 : zl = Wlxl-1 + bl , xl = σ(zl)

where x0 ≡ x is the input, and fβ(x) ≡ zL the output
4/41

Neural Network models

• The activation function σ(z) is applied element-wise,
rectified linear unit (ReLU) σ(z) = [z]+ = max{0, z} = z[z ≥ 0]

leaky ReLU σ(z) = max{0.01z, z} =

0.01z z < 0

z z ≥ 0

sigmoid, logistic σ(z) = 1/(1 + e−z)

tanh σ(z) = tanh(z)

• L-layer means L− 1 hidden layers plus 1 output layer. (The input x0 is
not counted.)

• The forward propagation therefore iterates applying
– a linear transformation xl-1 7→ zl, highly parameterized with Wl, bl

– a non-linear transformation zl 7→ xl, element-wise and without parameters

5/41

feature-based regression

6/41

feature-based classification
(same features for all outputs)

6/41

neural network

6/41

Neural Network models

• We can think of the second-to-last layer xL-1 as a feature vector

φβ(x) = xL-1

• This aligns NNs models with what we discussed so far. But the crucial
difference is:
In NNs, the features φβ(x) are also parameterized and trained!
While in previous lectures, we had to fix φ(x) by hand, NNs allow us to
learn features and intermediate representations

• Note: It is a common approach to train NNs as usual, but after training fix the trained
features φ(x) (“remove the head (=output layer) and fix the remaining body of the NN”)
and use these trained features for similar problems or other kinds of ML on top.

7/41

NNs as unversal function approximators

• A 1-layer NN is linear in the input

• Already a 2-layer NN with h1 →∞ hidden neurons is a universal
function approximator

– Corresponds to k →∞ features φ(x) ∈ Rk that are well tuned

8/41

Objectives to train NNs
– loss functions
– regularization

9/41

Loss functions as usual

• Squared error regression, for 1-dim or hL-dimensional:
– for a single data point (x, y∗), `(f(x), y∗) = (f(x)− y∗)2

– the loss gradient is ∂`
∂f

= 2(f − y∗)>

• For multi-class classification we have hL = M outputs, and
fβ(x) ∈ RM represents the discriminative function

• Neg-log-likelihood or cross entropy loss:
– for a single data point (x, y∗), `(f(x), y∗) = − log p(y∗|x)

– the loss gradient at output y is ∂`
∂fy

= p(y|x)− [y = y∗]

• One-vs-all hinge loss:
– for a single data point (x, y∗), `(f(x), y∗) =

∑
y 6=y∗ [1− (fy∗ − fy)]+,

– the loss gradient at non-target outputs y 6= y∗ is ∂`
∂fy

= [fy∗ < fy + 1]

– the loss gradient at the target output y∗ is ∂`
∂fy∗

= −
∑
y 6=y∗ [fy∗ < fy + 1]

10/41

New types of regularization
• Conventional, add a L2 or L1 regularization.

– adds a penalty λW 2
l,ij (Ridge) or λ|Wl,ij | (Lasso) for every weight

– In practise, compute the unregularized gradient as usual, then add λWl,ij

(for L2), or λ signWl,ij (for L1) to the gradient
– Historically, this is called weight decay, as the additional gradient

(executed after the unregularized weight update) just decays weights

• Dropout
– Srivastava et al: Dropout: a simple way to prevent neural networks from

overfitting, JMLR 2014.
– “a way of approximately combining exponentially many different neural

network architectures efficiently”
– “p can simply be set at 0.5, which seems to be close to optimal for a wide

range ofnetworks and tasks”
– on test/prediction time, take true averages

• Others:
– Data Augmentation
– Training ensembles, bagging (averaging bootstrapped models)
– Additional embedding objectives (e.g. semi-supervised embedding)
– Early stopping 11/41

Data Augmentation

• A very interesting form of regularization is to modify the data!

• Generate more data by applying invariances to the given data. The
model then learns to generalize as described by these invariances.

• This is a form of regularization that directly incorporates expert
knowledge

12/41

Optimization

13/41

Computing the gradient

• Recall forward propagation in an L-layer NN:

∀l=1,..,L-1 : zl = Wlxl-1 + bl , xl = σ(zl)

• For a single data point (x, y∗), assume we have a loss `(f(x), y∗)

We define δL
∆= d`
df = d`

dzL
∈ R1×M as the gradient (as row vector) w.r.t.

output values zL.

• Backpropagation: We can recursivly compute the gradient
d`
dzl
∈ R1×hl w.r.t. all other layers zl as:

∀l=L-1,..,1 : δl
∆=
d`

dzl
=

d`

dzl+1

∂zl+1

∂xl

∂xl
∂zl

= [δl+1 Wl+1] ◦ [σ′(zl)]
>

where ◦ is an element-wise product. The gradient w.r.t. parameters:

d`

dWl,ij
=

d`

dzl,i

∂zl,i
∂Wl,ij

= δl,i xl-1,j or
d`

dWl
= δ>l x

>
l-1 ,

d`

dbl
= δ>l

14/41

• This forward and backward computations are done for each data point
(xi, yi).

• Since the total loss is the sum L(β) =
∑
i `(fβ(xi), yi), the total

gradient is the sum of gradients per data point.

• Efficient implementations send multiple data points (tensors)
simultaneously through the network (fwd and bwd), which speeds up
computations.

15/41

Optimization

• For small data size:
We can compute the loss and its gradient

∑n
i=1∇β`(fβ(xi), yi).

– Use classical gradient-based optimization methods
– default: L-BFGS, oldish but efficient: Rprop
– Called batch learning (in contrast to online learning)

• For large data size: The
∑n
i=1 is highly inefficient!

– Adapt weights based on much smaller data subsets, mini batches

16/41

Stochastic Gradient Descent

• Compute the loss and gradient for a mini batch D̂ ⊂ D of fixed size k.

L(β, D̂) =
∑
i∈D̂

`(fβ(xi), yi)

∇βL(β, D̂) =
∑
i∈D̂

∇β`(fβ(xi), yi)

• Naive Stochastic Gradient Descent, iterate

β ← β − η∇βL(β, D̂)

– Choice of learning rate η is crucial for convergence!
– Exponential cooling: η = ηt0

17/41

Stochastic Gradient Descent

• SGD with momentum:

∆β ← α∆β − η∇βL(β, D̂)

β ← β + ∆β

• Nesterov Accelerated Gradient (“Nesterov Momentum”):

∆β ← α∆β − η∇βL(β + ∆β, D̂)

β ← β + ∆β

Yurii Nesterov (1983): A method for solving the convex programming problm with
convergence rate O(1/k2)

18/41

Adam

arXiv:1412.6980

(all operations interpreted element-wise)

19/41

Adam & Nadam

• Adam interpretations (everything element-wise!):
– mt ≈ 〈g〉 the mean gradient in the recent iterations
– vt ≈

〈
g2
〉

the mean gradient-square in the recent iterations
– m̂t, v̂t are bias corrected (check: in first iteration, t = 1, we have m̂t = gt,

unbiased, as desired)
– ∆θ ≈ −α 〈g〉〈g2〉 would be a Newton step if

〈
g2
〉

were the Hessian...

• Incorporate Nesterov into Adam: Replace parameter update by

θt ← θt-1 − α/(
√
v̂t + ε) · (β1m̂t +

(1− β1)gt
1− βt1

)

Dozat: Incorporating Nesterov Momentum into Adam, ICLR’16

20/41

Initialization

• The Initialization of weights is important! Heuristics:

• Choose random weights that don’t grow or vanish the gradient:
– E.g., initialize weight vectors in Wl,i· with standard deviation 1, i.e., each

entry with sdv 1√
hl-1

– Roughly: If each element of zl has standard deviation ε, the same should
be true for zl+1.

• Choose each weight vector Wl,i· to point in a uniform random direction
→ same as above

• Choose biases bl,i randomly so that the ReLU hinges cover the input
well (think of distributing hinge features for continuous piece-wise linear
regression)

21/41

Brief Discussion

22/41

Historical Perspective
(This is completely subjective.)

• Early (from 40ies):
– McCulloch Pitts, Hebbian learning, Rosenblatt, Werbos (backpropagation)

• 80ies:
– Start of connectionism, NIPS
– ML wants to distinguish itself from pure statistics (“machines”, “agents”)

• ’90-’10:
– More theory, better grounded, Statistical Learning theory
– Good ML is pure statistics (again) (Frequentists, SVM)
– ...or pure Bayesian (Graphical Models, Bayesian X)
– sample-efficiency, great generalization, guarantees, theory
– Great successes, in applications across disciplines; supervised,

unsupervised, structured

• ’10-:
– Big Data. NNs. Size matters. GPUs.
– Disproportionate focus on images
– Software engineering becomes central 23/41

http://link.springer.com/journal/10994/82/3/page/1

• NNs did not become “better” than they were 20y ago. What changed is
the metrics by which they’re are evaluated:

• Old:
– Sample efficiency & generalization; get the most from little data
– Guarantees (both, w.r.t. generalization and optimization)
– generalize much better than nearest neighbor

• New:
– Ability to cope with billions of samples
→ no batch processing, but stochastic optimization (Adam) without

monotone convergence
→ nearest neighbor methods infeasible, compress data into high-capacity

NNs

24/41

• NNs did not become “better” than they were 20y ago. What changed is
the metrics by which they’re are evaluated:

• Old:
– Sample efficiency & generalization; get the most from little data
– Guarantees (both, w.r.t. generalization and optimization)
– generalize much better than nearest neighbor

• New:
– Ability to cope with billions of samples
→ no batch processing, but stochastic optimization (Adam) without

monotone convergence
→ nearest neighbor methods infeasible, compress data into high-capacity

NNs

24/41

NNs vs. nearest neighbor

• Imagine an autonomous car. Instead of carrying a neural net, it carries 1
Petabyte of data (500 hard drives, several billion pictures). In every split
second it records an image from a camera and wants to query the database to
returen the 100 most similar pictures. Perhaps with a non-trivial similarity
metric. That’s not reasonable!

• In that sense, NNs are much better than nearest neighbor. They
store/compress/memorize huge amounts of data. Sample efficiency and the
precise generalization behavior beome less relevant.

• That’s how the metrics changed from ’90-’10 to nowadays

25/41

Computation Graphs

– A great collateral benefit of NN research!
– Perhaps a new paradigm to design large scale systems, beyond what

software engineering teaches classically
– [see section 3.2 in “Maths” lecture]

26/41

Example

• Three real-valued quantities x, g and f which depend on each other:

f(x, g) = 3x+ 2g and g(x) = 2x .

What is ∂
∂xf(x, g) and what is d

dxf(x, g)?

• The partial derivative only considers a single function f(a, b, c, ..) and
asks how the output of this single function varies with one of its
arguments. (Not caring that the arguments might be functions of yet
something else).

• The total derivative considers full networks of dependencies between
quantities and asks how one quantity varies with some other.

27/41

Example

• Three real-valued quantities x, g and f which depend on each other:

f(x, g) = 3x+ 2g and g(x) = 2x .

What is ∂
∂xf(x, g) and what is d

dxf(x, g)?

• The partial derivative only considers a single function f(a, b, c, ..) and
asks how the output of this single function varies with one of its
arguments. (Not caring that the arguments might be functions of yet
something else).

• The total derivative considers full networks of dependencies between
quantities and asks how one quantity varies with some other.

27/41

Computation Graphs

• A function network or computation graph is a DAG of n quantities xi
where each quantity is a deterministic function of a set of parents
π(i) ⊂ {1, .., n}, that is

xi = fi(xπ(i))

where xπ(i) = (xj)j∈π(i) is the tuple of parent values

• (This could also be called deterministic Bayes net.)

• Total derivative: Given a variation dx of some quantity, how would all
child quantities (down the DAG) vary?

28/41

Chain rules

• Forward-version:

f

g

x

(I use in robotics)

df

dx
=

∑
g∈π(f)

∂f

∂g

dg

dx

Why “forward”? You’ve computed dg
dx

already, now you move forward to df
dx

.
Note: If x ∈ π(f) is also a direct argument to f , the sum includes the term ∂f

∂x
dx
dx
≡ ∂f

∂x
.

To emphasize this, one could also write df
dx

= ∂f
∂x

+
∑

g∈π(f)
g 6=x

∂f
∂g

dg
dx

.

• Backward-version:
f

x

g

(used in NNs!)

df

dx
=

∑
g:x∈π(g)

df

dg

∂g

∂x

Why “backward”? You’ve computed df
dg

already, now you move backward to df
dx

.

Note: If f ∈ π(g), the sum includes df
df

∂f
∂x
≡ ∂f

∂x
. We could also write

df
dx

= ∂f
∂x

+
∑

g:x∈π(g)
g 6=f

df
dg

∂g
∂x

.

29/41

Images & Time Series

30/41

Images & Time Series

• My guess: 90% of the recent success of NNs is in the areas of images
or time series

• For images, convolutional NNs (CNNs) impose a very sensible prior;
the representations that emerge in CNNs are in fact similar to
representations in the visual area of our brain.

• For time series, long-short term memory (LSTM) networks represent
long-term dependencies in a way that is well trainable – something that
is hard to do with other model structures.

• Both these structural priors, combined with huge data and capacity,
make these methods very strong.

31/41

Convolutional NNs

• Standard fully connected layer: full matrix Wi has hihi+1 parameters

• Convolutional: Each neuron (entry of zi+1) receives input from a
square receptive field, with k × k parameters. All neurons share these
parameters→ translation invariance. The whole layer only has k2

parameters.

• There are often multiple neurons with the same receitive field (“depth”
of the layer), to represent different “filters”. Stride leads to
downsampling. Padding at borders.

• Pooling applies a predefined operation on the receptive field (no
parameters): max or average. Typically for downsampling.

32/41

Learning to read these diagrams...

AlexNet

33/41

ResNet

34/41

ResNeXt

35/41

Pretrained networks

• ImageNet5k, AlexNet, VGG, ResNet, ResNeXt

36/41

LSTMs

37/41

LSTM

• c is a memory signal, that is multiplied with a sigmoid signal Γf . If that
is saturated (Γf ≈ 1), the memory is preserved; and backpropagation
copies gradients back

• If Γi is close to 1, a new signal c̃ is written into memory

• If Γo is close to 1, the memory contributes to the normal neural
activations a

38/41

Gated Recurrent Units

• Cleaner and more modern: Gated Recurrent Units
but perhaps just similar performance

• Gated Feedback RNNs

39/41

Deep RL

• Value Network

• Advantage Network

• Action Network

• Experience Replay (prioritized)

• Fixed Q-targets

• etc, etc

40/41

Conclusions

• Conventional feed-forward neural networks are by no means magic. They’re a
parameterized function, which is fit to data.

• Convolutional NNs do make strong and good assumptions about how
information processing on images should be structured. The results are great
and related to some degree to human visual representations. A large part of
the success of deep learning is on images.
Also LSTMs make good assumptions about how memory signals help
represent time series.
The flexibility of “clicking together” network structures and general
differentiable computation graphs is great.
All these are innovations w.r.t. formulating structured models for ML

• The major strength of NNs is in their capacity and that, using massive
parallelized computation, they can be trained on tons of data. Maybe they don’t
even need to be better than nearest neighbor lookup, but they can be queried
much faster.

41/41

