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Structured Output & Structured Input
e regression:
R? - R
e structured output:

R? — binary class label {0, 1}
R? — integer class label {1,2, .., M}
R? — sequence labelling ;.7
R? — image labelling y.iw 1.4

R? — graph labelling y.n
e structured input:
relational database — R

labelled graph/sequence — R
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The discriminative function
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Discriminative Function

e Represent a discrete-valued function £ : R? — Y via a discriminative
function
f:RIxY =R

such that
F: z— argmax, f(z,y)
That is, a discriminative function f(x,y) maps an input = to an output

() = argmax f(z,y)
Y

e A discriminative function f(z,y) has high value if y is a correct answer
to x; and low value if y is a false answer

¢ In that way a discriminative function discriminates correct labelling from
wrong ones
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Example Discriminative Function

e Input: z € R?; output y € {1,2,3}
displayed are p(y=1|z), p(y=2z), p(y=3|z)

(here already “scaled” to the interval [0,1]... explained later)

e You can think of f(z,y) as M separate functions, one for each class y € {1,.., M}. The
highest one determines the class prediction g
e More examples: plot[-3:3] -x-2,0,x-2 splot[-3:3]1[-3:3] -x-y-2,0,x+y-2 5/32



How could we parameterize a discriminative function?

e Linear in features!

— Same features, different parameters for each output: f(z,y) = ¢(z)'5,
— More general input-output features: f(z,y) = ¢(x,y)' 3

e Example for joint features: Let z € R and y € {1, 2, 3}, might be

1 [y=1]
z [y=1]
z? [y =1]
1 [y=2]
¢($,y): x [y:2] )
a? [y =2
1 [y=3]
z [y=3
a? [y = 3]

which is equivalent to f(z,y) = (

e Example when both z,y € {0, 1} are discrete:

(z,y) =

"BRER

([ T
e e
I

A==
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Notes on features

e Features “connect” input and output. Each ¢;(x,y) allows f to capture

a certain dependence between x and y

e If both = and y are discrete, a feature ¢;(x, y) is typically a joint
indicator function (logical function), indicating a certain “event”

e Each weight 8; mirrors how important/frequent/infrequent a certain
dependence described by ¢,(x,y) is

e —f(z,y) is also called energy, and the is also called energy-based
modelling, esp. in neural modelling
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Loss functions for classification
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What is a good objective to train a classifier?

e Accuracy, Precision & Recall:
For data size n, false positives (FP), true positives (TP), we define:

— accuracy = N

— precision = % (TP+FP = classifier positives)
— recall (TP-rate) = tpiry  (TP+FN = data positives)

— FP-rate = 50 (FP+TN = data negatives)

e Such metrics be our actual objective. But they are not differentiable.

For the purpose of ML, we need to define a “proxy” objective that is
nice to optimize.

e Bad idea: Squared error regression
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Bad idea: Squared error regression of class indicators

e Train f(xz,y) to be the indicator function for class y
that is, Vy : train f(xz,y) on the regression data D = {(xs, I(y=w:))}"4:
train f(x, 1) on value 1 for all z; with y; = 1 and on 0 otherwise
train f(x,2) on value 1 for all z; with y; = 2 and on 0 otherwise
train f(x, 3) on value 1 for all z; with y; = 3 and on 0 otherwise
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Bad idea: Squared error regression of class indicators

e Train f(xz,y) to be the indicator function for class y
that is, Vy : train f(xz,y) on the regression data D = {(xs, I(y=w:))}"4:
train f(x, 1) on value 1 for all z; with y; = 1 and on 0 otherwise
train f(x,2) on value 1 for all z; with y; = 2 and on 0 otherwise
train f(x, 3) on value 1 for all z; with y; = 3 and on 0 otherwise

e This typically fails: (see also Hastie 4.2)

05 f-------- Rt

X,
Xo

00 [------, B e R RS
7
b

700 02 04 ‘06 08 10 X1
Although the optimal separating boundaries are linear and linear discriminating
functions could represent them, the linear functions trained on class indicators

fail to discriminate.
— squared error regression on class indicators is the “wrong objective”10 /32



Log-Likelihood

e The discriminative function f(y, z) not only defines the class prediction

F(z); we can additionally also define probabilities,

f(z,y)
py1e) = = ey

e Maximizing Log-Likelihood: (minimize neg-log-likelihood, nll)
L(B) = = i log p(ys | i)
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Cross Entropy

e This is the same as log-likelihood for categorical data, just a notational
trick, really.

e The categorical data y; € {1, .., M} are class labels. But assume they
are encoded in a one-hot-vector

yi :eyi = (07"a071507“'70) ) giz = [%ZZ]
Then we can write the neg-log-likelihood as

n M

L””(B) — _ZZ logp(z|xz;) = ZH(Z% p(-, ;)

1=1 z=1

where H(p,q) = — ). p(z)logq(z) is the so-called cross entropy
between two normalized multinomial distributions p and q.

e As a side note, the cross entropy measure would also work if the target

1; are probabilities instead of one-hot-vectors. 12/32



Hinge loss

e For a data point (z, y*), the one-vs-all hinge loss “wants” that f(y*, z)
is larger than any other f(y, z), y # y*, by a margin of 1.
In other terms, it penalizes when f(y*,z) < f(y,z) + 1,y # y*.

¢ It penalizes linearly, therefore the one-vs-all hinge loss is defined as

LMe(f)y =Y [~ (fy",2) = fy,2))]+

y#Y*

e This is related to Support Vector Machines (only data points inside
the margin induce an error and gradient), and also to the Perceptron
Algorithm
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Logistic regression
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Logistic regression: Multi-class case

Data D = {(mzvyz)}:lzl with x; € R¢ and Y; € {]., . M}
We choose f(z,y) = ¢(x)" 8, with separate parameters 3, for each y

Conditional class probabilties

f(z.y)
PN = 0 @) S =l

(the discriminative functions model “log-ratios”)

~

Given data D = {(z;,v;)}i,, we minimize the regularized
neg-log-likelihood

LIogistiC(B) - _ Z?Zl logp(yi | xl) + /\H5||2

Written as cross entropy (with one-hot encoding §;. = [y: = z]):

Llogistuc Z Z logp | xz) + )\”ﬁHZ

i=1 z=1
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Optimal parameters

e Gradient:
8Llogistic (ﬁ)T n T
— = D (pic = Yie)$(@i) + 2M B = X (pe — ye) + 2MI B,
¢ i=1

where p;,. = p(y=c| ;)

which is non-linearin 3 = 0gL = 0 does not have an analytic solution

e Hessian:

32Llogisti0(5)
6ﬁcaﬁd

where W, is diagonal with W4 ;; = pic([c = d] — pia)

H= = X WeaX 4 2[c=d] M\

¢ Newton algorithm: iterate

18 logistic T
6(_5_H1 Laﬁ(ﬁ)

16/32



polynomial (quadratic) ridge 3-class logistic regression:

(MT/plot.h -> gnuplot pipe)

./x.exe -mode 3 -d 2 -n 200 -modelFeatureType 3 -lambda le+1
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¢ Note, if we have M discriminative functions f(z,y), w.l.o.g., we can
always choose one of them to be constantly zero. E.g.,

fle,M)=0o0rpy =0

The other functions then have to be greater/less relative to this
baseline.

e This is usually not done in the multi-class case, but almost always in
the binary case.
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Logistic regression: Binary case

e In the binary case, we have “two functions” f(x,0) and f(x,1). W.l.o.g. we

may fix f(z,0) = 0 to zero. Therefore we choose features

oz, y) = o(z) [y =1]

with arbitrary input features ¢(z) € R”
We have

Yy

0 |
f(IE, 1) = ¢($)Tﬂ 5 Z) = argmax f(q;7 y) — { else

and conditional class probabilities

oS
p(1|z) = @0 @D =o(f(z,1))

z

with the logistic sigmoid function o(z) = 5= = =17

Given data D = {(x;,y:) }i=1, we minimize the regularized neg-log-likelihood

LO9E(B) = = 301y log p(yi | i) + N8I

= =0y [wilogp(1] @) + (1 — i) loglL — p(1]22)]] + AIBI?

1 if¢x)'B>0
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Optimal parameters

e Gradient (see exercises):

logistic T n
=1
<Z5(9U1)-r
where p; :=p(y=1|z;), X = : c R"*F
p(an)"

e Hessian H = ZL770) — XTI X 4 2A1
W = diag(po (1 — p)), that is, diagonal with W;; = p;(1 — p;)

¢ Newton algorithm: iterate

logistic T
5(7571;[—1 oL 85(5)
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polynomial (cubic) ridge logistic regression:

(MT/plot.h -> gnuplot pipe)

\
yo&&« ««M
s\e “:«‘

\

l”l

R / Wy
)
Z 'r”f/,"r/

'»/,'//

./x.exe -mode 2 -d 2 -n 200 -modelFeatureType 3 -lambda le+0
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RBF ridge logistic regression:

(MT/plot.h -> gnuplot pipe)

./x.exe -mode 2 -d 2 -n 200 -modelFeatureType 4 -lambda le+0 -rbfBias 0
-rbfWidth .2
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Recap

ridge regression

logistic regression

REPRESENTATION | f(z) = ¢(z)'3 flz,y) = d(x,9)'8
OBJECTIVE Ls(B) = Llogste( gy —
(v = f(2)® + A1 = logp(yi | =) + AlBI7
p(y|z) oc =¥
SOLVER pridee — (XTX + AT Xy binary case:

B+ B — (XWX +2x\D)*!
(X"(p—y) + 2MIB)
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Conditional Random Fields
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Examples for Structured Output

e Text tagging
X = sentence
Y = tagging of each word
http://sourceforge.net/projects/crftagger

e Image segmentation
X =image
Y = labelling of each pixel
http://scholar.google.com/scholar?cluster=13447702299042713582

e Depth estimation
X =single image
Y = depth map
http://make3d.cs.cornell.edu/
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http://sourceforge.net/projects/crftagger
http://scholar.google.com/scholar?cluster=13447702299042713582
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CRFs in image processing

Original Hand-labeling Classifier mCRF confidence

. rhino/hippo

polar bear
water
snow
vegetation
ground
sky

sky
vegetation
road marking
road surface
building
street object

car




CRFs in image processing

e Google “conditional random field image”
— Multiscale Conditional Random Fields for Image Labeling (CVPR 2004)

— Scale-Invariant Contour Completion Using Conditional Random Fields
(ICCV 2005)

— Conditional Random Fields for Object Recognition (NIPS 2004)

— Image Modeling using Tree Structured Conditional Random Fields (IJCAI
2007)

— A Conditional Random Field Model for Video Super-resolution (ICPR
2006)
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Conditional Random Fields (CRFs)

e CRFs are a generalization of logistic binary and multi-class
classification

e The output y may be an arbitrary (usually discrete) thing (e.g.,
sequence/image/graph-labelling)

e Hopefully we can maximize efficiently

argmax f(z,y)
Yy

over the output!
— f(=x,y) should be structuredin y so this optimization is efficient.

e The name CRF describes that p(y|z) « e/ (*¥) defines a probability
distribution (a.k.a. random field) over the output y conditional to the
input . The word “field” usually means that this distribution is
structured (a graphical model; see later part of lecture).
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CRFs: the structure is in the features

e Assume y = (y1,..,¥:) is a tuple of individual (local) discrete labels
e We can assume that f(z,y) is linear in features

k
Flay) =" 6i(@.y0;)8; = d(x,y)'B
j=1

where each feature ¢;(z, y»;) depends only on a subset y;, of
labels. ¢;(z,ys;) effectively couples the labels y,;. Then ef () is a
factor graph.
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Example: pair-wise coupled pixel labels

e Each black box corresponds to features ¢,(ys;) which couple
neighboring pixel labels ys;

e Each gray box corresponds to features ¢,(x;, y;) which couple a local
pixel observation z; with a pixel label y;
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CRFs: Core equations

flz,y) = o(z,y)'B
el (@)

p(ylz) = ST of @) =2 (2,6)
Y’ i

=log Y _e/@¥) (log partition function)

- Zlogp(yi|33i) == [f@i,yi) — Z(x:, B)]

)

B) = Zp(ylx) Vf (z,y)

V2 Z(x Zp yla) Vi (z,y) Vf (¢,9)" — VZ VZ"
Yy

e This gives the neg-log-likelihood L(f), its gradient and Hessian
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Training CRFs

e Maximize conditional likelihood
But Hessian is typically too large (Images: ~10 000 pixels, ~50 000 features)
If f(z,y) has a chain structure over y, the Hessian is usually banded —
computation time linear in chain length

Alternative: Efficient gradient method, e.g.:
Vishwanathan et al.: Accelerated Training of Conditional Random Fields with Stochastic
Gradient Methods

e Other loss variants, e.g., hinge loss as with Support Vector Machines
(“Structured output SVMs”)

e Perceptron algorithm: Minimizes hinge loss using a gradient method
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