
Machine Learning

Classification & Structured Output

Structured output, structured input, discriminative
function, joint input-output features, Likelihood

Maximization, Logistic regression, binary & multi-class
case, conditional random fields

Marc Toussaint
University of Stuttgart

Summer 2019

Structured Output & Structured Input

• regression:

Rd → R

• structured output:

Rd → binary class label {0, 1}
Rd → integer class label {1, 2, ..,M}
Rd → sequence labelling y1:T

Rd → image labelling y1:W,1:H

Rd → graph labelling y1:N

• structured input:

relational database→ R

labelled graph/sequence→ R

2/32

The discriminative function

3/32

Discriminative Function

• Represent a discrete-valued function F : Rd → Y via a discriminative
function

f : Rd × Y → R

such that
F : x 7→ argmaxy f(x, y)

That is, a discriminative function f(x, y) maps an input x to an output

ŷ(x) = argmax
y

f(x, y)

• A discriminative function f(x, y) has high value if y is a correct answer
to x; and low value if y is a false answer

• In that way a discriminative function discriminates correct labelling from
wrong ones

4/32

Example Discriminative Function

• Input: x ∈ R2; output y ∈ {1, 2, 3}
displayed are p(y=1|x), p(y=2|x), p(y=3|x)

 0.9
 0.5
 0.1
 0.9
 0.5
 0.1
 0.9
 0.5
 0.1

-2
-1

 0
 1

 2
 3 -2

-1
 0

 1
 2

 3

 0

 0.2

 0.4

 0.6

 0.8

 1

(here already “scaled” to the interval [0,1]... explained later)

• You can think of f(x, y) as M separate functions, one for each class y ∈ {1, ..,M}. The
highest one determines the class prediction ŷ

• More examples: plot[-3:3] -x-2,0,x-2 splot[-3:3][-3:3] -x-y-2,0,x+y-2 5/32

How could we parameterize a discriminative function?

• Linear in features!
– Same features, different parameters for each output: f(x, y) = φ(x)>βy

– More general input-output features: f(x, y) = φ(x, y)>β

• Example for joint features: Let x ∈ R and y ∈ {1, 2, 3}, might be

φ(x, y) =



1 [y = 1]
x [y = 1]
x2 [y = 1]
1 [y = 2]
x [y = 2]
x2 [y = 2]
1 [y = 3]
x [y = 3]
x2 [y = 3]



, which is equivalent to f(x, y) =


1

x

x2


>

βy

• Example when both x, y ∈ {0, 1} are discrete:

φ(x, y) =



1
[x = 0][y = 0]
[x = 0][y = 1]
[x = 1][y = 0]
[x = 1][y = 1]


6/32

Notes on features

• Features “connect” input and output. Each φj(x, y) allows f to capture
a certain dependence between x and y

• If both x and y are discrete, a feature φj(x, y) is typically a joint
indicator function (logical function), indicating a certain “event”

• Each weight βj mirrors how important/frequent/infrequent a certain
dependence described by φj(x, y) is

• −f(x, y) is also called energy, and the is also called energy-based
modelling, esp. in neural modelling

7/32

Loss functions for classification

8/32

What is a good objective to train a classifier?

• Accuracy, Precision & Recall:
For data size n, false positives (FP), true positives (TP), we define:

– accuracy = TP+TN
n

– precision = TP
TP+FP (TP+FP = classifier positives)

– recall (TP-rate) = TP
TP+FN (TP+FN = data positives)

– FP-rate = FP
FP+TN (FP+TN = data negatives)

• Such metrics be our actual objective. But they are not differentiable.
For the purpose of ML, we need to define a “proxy” objective that is
nice to optimize.

• Bad idea: Squared error regression

9/32

Bad idea: Squared error regression of class indicators

• Train f(x, y) to be the indicator function for class y
that is, ∀y : train f(x, y) on the regression data D = {(xi, I(y=yi))}ni=1:

train f(x, 1) on value 1 for all xi with yi = 1 and on 0 otherwise
train f(x, 2) on value 1 for all xi with yi = 2 and on 0 otherwise
train f(x, 3) on value 1 for all xi with yi = 3 and on 0 otherwise

...

• This typically fails: (see also Hastie 4.2)

Although the optimal separating boundaries are linear and linear discriminating
functions could represent them, the linear functions trained on class indicators
fail to discriminate.

→ squared error regression on class indicators is the “wrong objective”

10/32

Bad idea: Squared error regression of class indicators

• Train f(x, y) to be the indicator function for class y
that is, ∀y : train f(x, y) on the regression data D = {(xi, I(y=yi))}ni=1:

train f(x, 1) on value 1 for all xi with yi = 1 and on 0 otherwise
train f(x, 2) on value 1 for all xi with yi = 2 and on 0 otherwise
train f(x, 3) on value 1 for all xi with yi = 3 and on 0 otherwise

...

• This typically fails: (see also Hastie 4.2)

Although the optimal separating boundaries are linear and linear discriminating
functions could represent them, the linear functions trained on class indicators
fail to discriminate.

→ squared error regression on class indicators is the “wrong objective”
10/32

Log-Likelihood

• The discriminative function f(y, x) not only defines the class prediction
F (x); we can additionally also define probabilities,

p(y |x) = ef(x,y)∑
y′ e

f(x,y′)

• Maximizing Log-Likelihood: (minimize neg-log-likelihood, nll)
Lnll(β) = −

∑n
i=1 log p(yi |xi)

11/32

Cross Entropy

• This is the same as log-likelihood for categorical data, just a notational
trick, really.

• The categorical data yi ∈ {1, ..,M} are class labels. But assume they
are encoded in a one-hot-vector

ŷi = eyi = (0, .., 0, 1, 0, ..., 0) , ŷiz = [yi = z]

Then we can write the neg-log-likelihood as

Lnll(β) = −
n∑
i=1

M∑
z=1

ŷiz log p(z |xi) =
n∑
i=1

H(ŷi, p(·, xi))

where H(p, q) = −
∑
z p(z) log q(z) is the so-called cross entropy

between two normalized multinomial distributions p and q.

• As a side note, the cross entropy measure would also work if the target
ŷi are probabilities instead of one-hot-vectors.

12/32

Hinge loss

• For a data point (x, y∗), the one-vs-all hinge loss “wants” that f(y∗, x)
is larger than any other f(y, x), y 6= y∗, by a margin of 1.
In other terms, it penalizes when f(y∗, x) < f(y, x) + 1, y 6= y∗.

• It penalizes linearly, therefore the one-vs-all hinge loss is defined as

Lhinge(f) =
∑
y 6=y∗

[1− (f(y∗, x)− f(y, x))]+

• This is related to Support Vector Machines (only data points inside
the margin induce an error and gradient), and also to the Perceptron
Algorithm

13/32

Logistic regression

14/32

Logistic regression: Multi-class case

• Data D = {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ {1, ..,M}
• We choose f(x, y) = φ(x)>βy with separate parameters βy for each y

• Conditional class probabilties

p(y |x) = ef(x,y)∑
y′ e

f(x,y′)
↔ f(x, y)− f(x, z) = log

p(y |x)
p(z |x)

(the discriminative functions model “log-ratios”)

• Given data D = {(xi, yi)}ni=1, we minimize the regularized
neg-log-likelihood

Llogistic(β) = −
∑n
i=1 log p(yi |xi) + λ||β||2

Written as cross entropy (with one-hot encoding ŷiz = [yi = z]):

Llogistic(β) = −
n∑
i=1

M∑
z=1

[yi = z] log p(z |xi) + λ||β||2

15/32

Optimal parameters β

• Gradient:

∂Llogistic(β)

∂βc

>

=

n∑
i=1

(pic − yic)φ(xi) + 2λIβc = X>(pc − yc) + 2λIβc

where pic = p(y=c |xi)
which is non-linear in β ⇒ ∂βL = 0 does not have an analytic solution

• Hessian:

H =
∂2Llogistic(β)

∂βc∂βd
= X>WcdX + 2[c = d] λI

where Wcd is diagonal with Wcd,ii = pic([c = d]− pid)

• Newton algorithm: iterate

β ← β −H -1 ∂Llogistic(β)
∂β

>

16/32

polynomial (quadratic) ridge 3-class logistic regression:

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

train
p=0.5

 0.9
 0.5
 0.1
 0.9
 0.5
 0.1
 0.9
 0.5
 0.1

-2
-1

 0
 1

 2
 3 -2

-1
 0

 1
 2

 3

 0

 0.2

 0.4

 0.6

 0.8

 1

./x.exe -mode 3 -d 2 -n 200 -modelFeatureType 3 -lambda 1e+1

17/32

• Note, if we have M discriminative functions f(x, y), w.l.o.g., we can
always choose one of them to be constantly zero. E.g.,

f(x,M) ≡ 0 or βM ≡ 0

The other functions then have to be greater/less relative to this
baseline.

• This is usually not done in the multi-class case, but almost always in
the binary case.

18/32

Logistic regression: Binary case
• In the binary case, we have “two functions” f(x, 0) and f(x, 1). W.l.o.g. we

may fix f(x, 0) = 0 to zero. Therefore we choose features

φ(x, y) = φ(x) [y = 1]

with arbitrary input features φ(x) ∈ Rk

• We have

f(x, 1) = φ(x)>β , ŷ = argmax
y

f(x, y) =

 0 else

1 if φ(x)>β > 0

• and conditional class probabilities

p(1 |x) = ef(x,1)

ef(x,0) + ef(x,1)
= σ(f(x, 1))

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -5 0 5 10

exp(x)/(1+exp(x))

with the logistic sigmoid function σ(z) = ez

1+ez
= 1

e−z+1
.

• Given data D = {(xi, yi)}ni=1, we minimize the regularized neg-log-likelihood

Llogistic(β) = −
∑n
i=1 log p(yi |xi) + λ||β||2

= −
∑n
i=1

[
yi log p(1 |xi) + (1− yi) log[1− p(1 |xi)]

]
+ λ||β||2

19/32

Optimal parameters β

• Gradient (see exercises):

∂Llogistic(β)

∂β

>

=

n∑
i=1

(pi − yi)φ(xi) + 2λIβ = X>(p− y) + 2λIβ

where pi := p(y=1 |xi) , X =



φ(x1)
>

...
φ(xn)

>


∈ Rn×k

• Hessian H = ∂2Llogistic(β)
∂β2 = X>WX + 2λI

W = diag(p ◦ (1− p)), that is, diagonal with Wii = pi(1− pi)

• Newton algorithm: iterate

β ← β −H -1 ∂Llogistic(β)
∂β

>

20/32

polynomial (cubic) ridge logistic regression:

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

train
decision boundary

 1
 0
 -1

-2
-1

 0
 1

 2
 3 -2

-1
 0

 1
 2

 3

-3
-2
-1
 0
 1
 2
 3

./x.exe -mode 2 -d 2 -n 200 -modelFeatureType 3 -lambda 1e+0

21/32

RBF ridge logistic regression:

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

train
decision boundary

 1
 0
 -1

-2
-1

 0
 1

 2
 3 -2

-1
 0

 1
 2

 3

-3
-2
-1
 0
 1
 2
 3

./x.exe -mode 2 -d 2 -n 200 -modelFeatureType 4 -lambda 1e+0 -rbfBias 0

-rbfWidth .2

22/32

Recap

ridge regression logistic regression

REPRESENTATION f(x) = φ(x)>β f(x, y) = φ(x, y)>β

OBJECTIVE Lls(β) =∑n
i=1(yi − f(xi))

2 + λ||β||2I

Llogistic(β) =

−
∑n
i=1 log p(yi |xi) + λ||β||2I

p(y |x) ∝ ef(x,y)

SOLVER β̂ridge = (X>X + λI)-1X>y binary case:

β ← β − (X>WX + 2λI)-1

(X>(p− y) + 2λIβ)

23/32

Conditional Random Fields

24/32

Examples for Structured Output

• Text tagging
X = sentence
Y = tagging of each word
http://sourceforge.net/projects/crftagger

• Image segmentation
X = image
Y = labelling of each pixel
http://scholar.google.com/scholar?cluster=13447702299042713582

• Depth estimation
X = single image
Y = depth map
http://make3d.cs.cornell.edu/

25/32

http://sourceforge.net/projects/crftagger
http://scholar.google.com/scholar?cluster=13447702299042713582
http://make3d.cs.cornell.edu/

CRFs in image processing

26/32

CRFs in image processing

• Google “conditional random field image”
– Multiscale Conditional Random Fields for Image Labeling (CVPR 2004)
– Scale-Invariant Contour Completion Using Conditional Random Fields

(ICCV 2005)
– Conditional Random Fields for Object Recognition (NIPS 2004)
– Image Modeling using Tree Structured Conditional Random Fields (IJCAI

2007)
– A Conditional Random Field Model for Video Super-resolution (ICPR

2006)

27/32

Conditional Random Fields (CRFs)

• CRFs are a generalization of logistic binary and multi-class
classification

• The output y may be an arbitrary (usually discrete) thing (e.g.,
sequence/image/graph-labelling)

• Hopefully we can maximize efficiently

argmax
y

f(x, y)

over the output!
→ f(x, y) should be structured in y so this optimization is efficient.

• The name CRF describes that p(y|x) ∝ ef(x,y) defines a probability
distribution (a.k.a. random field) over the output y conditional to the
input x. The word “field” usually means that this distribution is
structured (a graphical model; see later part of lecture).

28/32

CRFs: the structure is in the features

• Assume y = (y1, .., yl) is a tuple of individual (local) discrete labels

• We can assume that f(x, y) is linear in features

f(x, y) =

k∑
j=1

φj(x, y∂j)βj = φ(x, y)>β

where each feature φj(x, y∂j) depends only on a subset y∂j of
labels. φj(x, y∂j) effectively couples the labels y∂j . Then ef(x,y) is a
factor graph.

29/32

Example: pair-wise coupled pixel labels

y31

yH1

y11 y12 y13 y14 y1W

y21

x11

• Each black box corresponds to features φj(y∂j) which couple
neighboring pixel labels y∂j

• Each gray box corresponds to features φj(xj , yj) which couple a local
pixel observation xj with a pixel label yj

30/32

CRFs: Core equations

f(x, y) = φ(x, y)>β

p(y|x) = ef(x,y)∑
y′ e

f(x,y′)
= ef(x,y)−Z(x,β)

Z(x, β) = log
∑
y′

ef(x,y
′) (log partition function)

L(β) = −
∑
i

log p(yi|xi) = −
∑
i

[f(xi, yi)− Z(xi, β)]

∇Z(x, β) =
∑
y

p(y|x) ∇f(x, y)

∇2Z(x, β) =
∑
y

p(y|x) ∇f(x, y) ∇f(x, y)>−∇Z ∇Z>

• This gives the neg-log-likelihood L(β), its gradient and Hessian

31/32

Training CRFs

• Maximize conditional likelihood
But Hessian is typically too large (Images: ∼10 000 pixels, ∼50 000 features)
If f(x, y) has a chain structure over y, the Hessian is usually banded→
computation time linear in chain length

Alternative: Efficient gradient method, e.g.:
Vishwanathan et al.: Accelerated Training of Conditional Random Fields with Stochastic
Gradient Methods

• Other loss variants, e.g., hinge loss as with Support Vector Machines
(“Structured output SVMs”)

• Perceptron algorithm: Minimizes hinge loss using a gradient method

32/32

