Machine Learning

Regression

Linear regression, non-linear features (polynomial,
RBFs, piece-wise), regularization, cross validation,
Ridge/Lasso, kernel trick

Marc Toussaint
University of Stuttgart
Summer 2019

vy

(MT/plot.h -> gnuplot pipe)

15 . —
‘train’ ug, 1:2 +
:model' ys 1.2 —
s * +%—++]
+H AL
+ +
+4+++
+ Tt
0.5 -
- +
w7
++++ +H
0 7 +1
)\ LA
*trﬁ' + +
LA+ + 4
05 A +h 4t
-+ oA
*\+++ 4+ +
1 s
Atk R i
4+ +
+
15 I I I I I
3 2 1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

Are these linear models? Linear in what?

—Input: No.
— Parameters, features: Yes!

2/24

Linear Modelling is more powerful than it might seem at first!

3/24

Linear Modelling is more powerful than it might seem at first!

Linear Regression on non-linear features — very powerful (polynomials,
piece-wise, spline basis, kernels)

Regularization (Ridge, Lasso) & cross-validation for proper generalization to
test data

Gaussian Processes and SVMs are closely related (linear in kernel features,
but with different optimality criteria)

Liquid/Echo State Machines, Extreme Learning, are examples of linear
modelling on many (sort of random) non-linear features

Basic insights in model complexity (effective degrees of freedom)

Input relevance estimation (z-score) and feature selection (Lasso)

Linear regression — linear classification (logistic regression: outputs are
likelihood ratios)

Linear modelling is a core of ML
(We roughly follow Hastie, Tibshirani, Friedman: Elements of Statistical
Learning)

3/24

Linear Regression

¢ Notation:
— input vector z € R?
—output value y € R
— parameters 3 = (Bo, B, .., Bq)" € R4
— linear model

(@) = Bo + X5y B

4/24

Linear Regression

¢ Notation:
— input vector z € R?
—output value y € R
— parameters 3 = (Bo, B, .., Bq)" € R4
— linear model

(@) = Bo + X5y B

e Given training data D = {(z;, y;)}!, we define the least squares cost
(or “loss”)

LS(B) = Y0 (i — f(a:))?

4/24

Optimal parameters

e Augment input vector with a 1 in front:
= (1,2) = (1,21,..,2q)" € R
B = (Bo,B1,..,Ba)" € R
f(@)=Bo+ 25 Biz; =Z'8

5/24

Optimal parameters

e Augment input vector with a 1 in front:
= (1,2) = (1,21,..,2q)" € R
B = (Bo,B1,..,Ba)" € R
f(@)=Bo+ 25 Biz; =Z'8

e Rewrite sum of squares as:
L*(B) = 0 (v — 7 8)° = ly — XBI°

T 1

Xy i1 T2 o Tld Y1
X = . = : s y ——

T

T 1 Tn,1 Tn,2 e Tn,d Yn

5/24

Optimal parameters

e Augment input vector with a 1 in front:
= (1,2) = (1,21,..,2q)" € R
B = (Bo,B1,..,Ba)" € R
f@)=Bo+ X5 Biz; =T

e Rewrite sum of squares as:

L8(B) = 31y (yi — 71B)? = |y — X B

T

T 1 z11 12 - Z14d Y1
X f— . f— : s y ——

T

Zy 1 Zni Tnz2 -+ Tnad Yn

e Optimum:
Is
0 =25 = —2(y - XB)'X = 04=X'XB-X"y

BIS _ (XTX)-lXTy

5/24

(MT/plot.h -> gnuplot pipe)

T T
Ftrain'us 12 +

'model' us 1:2
+ i
4
R
+ * +
F +
LA
+ i
T
I I
1 2 3

./x.exe -mode 1 -dataFeatureType 1

(MT/plot.h -> gnuplot pipe)

'model’ us, 13
00e I 2

+
G

T T
'train'us 1:2 +

M+
o Ty
T
4
et]

T
e

+

¥

-modelFeatureType 1

6/24

Non-linear features

¢ Replace the inputs z; € R? by some non-linear features ¢(z;) € R*

fl@) =5, 6;(x) B = ¢(=)TB

e The optimal 3 is the same
o(z1)"
' = (XTX)1XTy butwith X = : € R"xk

¢($n)T

e What are “features”?
a) Features are an arbitrary set of basis functions
b) Any function linear in 3 can be written as f(z) = ¢(z)'3
for some ¢, which we denote as “features”

7/24

Example: Polynomial features

e Linear: ¢(x) = (1,21, ..,74) € R

_ 2 2 1+d
e Quadratic: ¢(z) = (1,21, .., 24, 27, ¥122, 123, .., %) € RITIT—=5—
R+t A i

d(d+1)

e Cubic: ¢(z) = (.., 23, 23z, 2323, .., 23)

Tq 3
al =
122
L123

./x.exe -mode 1 -dataFeatureType 1 -modelFeatureType 1

8/24

Example: Piece-wise features (in 1D)

e Piece-wise constant: ¢;(z) = [§; < < &;41]

e Piece-wise linear: ¢;(z) = (1,2)" [§; <z < &j41]

e Continuous piece-wise linear: ¢;(z) = [z — &)+

Piecewise Constant

Piecewise Linear

(and ¢o(z) =)

]

° \e
R
>

2

o

° |

° |

Lt
)

P NG

oG

N
N\ 7.
R
R
1
|
|
L

8

p

&

Continuous Piecewise Linear

&

Piecewise-linear Basis Function

N/

s

(X —&)+

-
’

&

T
|
|
|
|
|
|
|
|
|
o
|
|
|
|
}
&

9/24

Example: Radial Basis Functions (RBF)

« Given a set of centers {c;}}_,, define

(b](l‘) = b(x>cj) = 6_%"‘77—("5 1 S [Oa 1]

Each ¢;(x) measures similarity with the center ¢,

e Special case:
use all training inputs {x;}!_, as centers

1

o) = | k1 aim)

b(x,.xn)

This is related to “kernel methods” and GPs, but not quite the same—we’ll
discuss this later.

10/24

Features

Polynomia

Piece-wise

Radial basis functions (RBF)
Splines (see Hastie Ch. 5)

Linear regression on top of rich features is extremely powerful!

11/24

The need for regularization

Noisy sin data fitted with radial basis functions
./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 ~rbfWidth .1

-sigma .5 -lambda 1e-10

12/24

The need for regularization

Noisy sin data fitted with radial basis functions
./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 “rbfWidth .1

-sigma .5 -lambda 1e-10

e Overfitting & generalization:
The model overfits to the data—and generalizes badly

¢ Estimator variance:
When you repeat the experiment (keeping the underlying function
fixed), the regression always returns a different model estimate

12/24

Estimator variance

e Assumption:
— The data was noisy with variance Var{y} = I,

e We computed parameters 3 = (X' X)Xy, therefore
Var{g} = (X" X) 102
— high data noise ¢ — high estimator variance
— more data — less estimator variance: Var{3} « i

¢ In practise we don’t know o, but we can estimate it based on the
deviation from the learnt model: (with k£ = dim(8) = dim(¢))

LS i S
i=1

6% =

13/24

Estimator variance

e “Overfitting”

— picking one specific data set y ~ N(ymean, 021,,)
+» picking one specific b ~ N(SBmean, (X X)20?)

e |f we could reduce the variance of the estimator, we could reduce
overfitting—and increase generalization.

14/24

Hastie’s section on shrinkage methods is great! Describes several
ideas on reducing estimator variance by reducing model complexity.
We focus on regularization.

15/24

Ridge regression: L.-regularization
e We add a regularization to the cost:

L% (8) = 377, (v — ¢(m:) B2 + A X5, B2

NOTE: j; is usually not regularized!

16/24

Ridge regression: L.-regularization
e We add a regularization to the cost:

L% (8) = 377, (v — ¢(m:) B2 + A X5, B2

NOTE: j; is usually not regularized!

e Optimum:
Bridge _ (XTX + /\I)‘lXTy

(where I =1y, or with I, ; = 0 if 81 is not regularized)

16/24

e The objective is now composed of two “potentials”: The loss, which
depends on the data and jumps around (introduces variance), and the
regularization penalty (sitting steadily at zero). Both are “pulling” at the
optimal 5 — the regularization reduces variance.

e The estimator variance becomes less: Var{3} = (XX + AI)" o2
e The ridge effectively reduces the complexity of the model:

2
dj

df() = X5 zix

where d? is the eigenvalue of X'X = VDV’
(details: Hastie 3.4.1)

17/24

Choosing \: generalization error & cross validation

¢)\ = 0 will always have a lower training data error
We need to estimate the generalization error on test data

18/24

Choosing \: generalization error & cross validation

¢)\ = 0 will always have a lower training data error
We need to estimate the generalization error on test data

e k-fold cross-validation:

Dy D, D; Dy,

Qe R wbh2

. Partition data D in k equal sized subsets D = {D1, .., Dy}
:fori=1,..,kdo

compute BZ on the training data D \ D; leaving out D;
compute the error ¢; = L'S(B;, D;)/|D;| on the validation data D;
end for

: report mean squared error ¢ = 1/k>>,4; and variance

1/ (B-D)[(3Z; €7) — ke?]

e Choose) for which 7 is smallest

18/24

quadratic features on sinus data:

(MT/plot.h -> gnuplot pipe)

09 -

0.8 |-

0.7 -

mean squared error

06 -

0.5 |-

0.4 1

T
cv error |
training error B

0.001 0.01

./x.exe -mode 4 -n 10 -modelFeatureType 2 -dataType 2 -sigma .
./x.exe -mode 1 -n 10 -modelFeatureType 2 -dataType 2 -sigma .

0.1

1

10 100 1000 1000010000

lambda

19/24

Lasso: L;-regularization

e We add a L, regularization to the cost:
Des0(8) = Y0, (g5 — (@) B)2 + A 25, 18]
NOTE: g, is usually not regularized!
e Has no closed form expression for optimum

(Optimum can be found by solving a quadratic program; see appendix.)

20/24

Lasso vs. Ridge:

e Lasso — sparsity! feature selection!

21/24

LI(B) = S0 (i — (i) B) + Ak, 18519

e Subset selection: ¢ = 0 (counting the number of 3, # 0)

22/24

Summary

¢ Representation: choice of features

e Objective: squared error + Ridge/Lasso regularization

n

Lridge(ﬁ) — Z(yl — qﬁ(aji)—rﬁ)Q + A”ﬂ“%

i=1

e Solver: analytical (or quadratic program for Lasso)

Bridge — (XTX +)\I)—lXTy

23/24

Summary

¢ Linear models on non-linear features—extremely powerful

linear

polynomial . .
piece-wise linear Ridge regression
RBF Lasso classification*
kernel

*logistic regression
e Generalization + Regularization < complexity/DoF penalty
e Cross validation to estimate generalization empirically — use to

choose regularization parameters

24/24

Appendix: Dual formulation of Ridge

e The standard way to write the Ridge regularization:

L1998 () = S (y; — p(a:))2 + AZ?:Q 532

o Finding 3799 = argmin; L99(3) is equivalent to solving

frdge — argmln Z o(z:)"8)?

i=1

subject to Zﬁf <t

=2

A is the Lagrange multiplier for the inequality constraint

25/24

Appendix: Dual formulation of Lasso

e The standard way to write the Lasso regularization:

Le0(8) = S (ys — (i) 8)% + A 5, 18]
e Equivalent formulation (via KKT):

ﬁlasso _ argmm Z xl)Tﬂ)

subject to Z 18;] < t

Jj=2

e Decreasing t is called “shrinkage”: The space of allowed (3 shrinks.

Some $ will become zero — feature selection

26,24

