
Machine Learning

Regression

Linear regression, non-linear features (polynomial,
RBFs, piece-wise), regularization, cross validation,

Ridge/Lasso, kernel trick

Marc Toussaint
University of Stuttgart

Summer 2019

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-3 -2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

'train' us 1:2

'model' us 1:2

-2

-1

 0

 1

 2

 3

-2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

train
decision boundary

• Are these linear models? Linear in what?
– Input: No.
– Parameters, features: Yes!

2/24

Linear Modelling is more powerful than it might seem at first!

• Linear Regression on non-linear features→ very powerful (polynomials,
piece-wise, spline basis, kernels)

• Regularization (Ridge, Lasso) & cross-validation for proper generalization to
test data

• Gaussian Processes and SVMs are closely related (linear in kernel features,
but with different optimality criteria)

• Liquid/Echo State Machines, Extreme Learning, are examples of linear
modelling on many (sort of random) non-linear features

• Basic insights in model complexity (effective degrees of freedom)

• Input relevance estimation (z-score) and feature selection (Lasso)

• Linear regression→ linear classification (logistic regression: outputs are
likelihood ratios)

⇒ Linear modelling is a core of ML
(We roughly follow Hastie, Tibshirani, Friedman: Elements of Statistical

Learning)

3/24

Linear Modelling is more powerful than it might seem at first!

• Linear Regression on non-linear features→ very powerful (polynomials,
piece-wise, spline basis, kernels)

• Regularization (Ridge, Lasso) & cross-validation for proper generalization to
test data

• Gaussian Processes and SVMs are closely related (linear in kernel features,
but with different optimality criteria)

• Liquid/Echo State Machines, Extreme Learning, are examples of linear
modelling on many (sort of random) non-linear features

• Basic insights in model complexity (effective degrees of freedom)

• Input relevance estimation (z-score) and feature selection (Lasso)

• Linear regression→ linear classification (logistic regression: outputs are
likelihood ratios)

⇒ Linear modelling is a core of ML
(We roughly follow Hastie, Tibshirani, Friedman: Elements of Statistical

Learning)
3/24

Linear Regression

• Notation:
– input vector x ∈ Rd

– output value y ∈ R
– parameters β = (β0, β1, .., βd)

>∈ Rd+1

– linear model
f(x) = β0 +

∑d
j=1 βjxj

• Given training data D = {(xi, yi)}ni=1 we define the least squares cost
(or “loss”)

Lls(β) =
∑n
i=1(yi − f(xi))

2

4/24

Linear Regression

• Notation:
– input vector x ∈ Rd

– output value y ∈ R
– parameters β = (β0, β1, .., βd)

>∈ Rd+1

– linear model
f(x) = β0 +

∑d
j=1 βjxj

• Given training data D = {(xi, yi)}ni=1 we define the least squares cost
(or “loss”)

Lls(β) =
∑n
i=1(yi − f(xi))

2

4/24

Optimal parameters β

• Augment input vector with a 1 in front:
x̄ = (1, x) = (1, x1, .., xd)

>∈ Rd+1

β = (β0, β1, .., βd)
>∈ Rd+1

f(x) = β0 +
∑n
j=1 βjxj = x̄>β

• Rewrite sum of squares as:
Lls(β) =

∑n
i=1(yi − x̄>iβ)2 = ||y −Xβ||2

X =

x̄>1
...
x̄>n

=

1 x1,1 x1,2 · · · x1,d
...

...
1 xn,1 xn,2 · · · xn,d

, y =

y1
...
yn

• Optimum:
0>d = ∂Lls(β)

∂β = −2(y −Xβ)>X ⇐⇒ 0d = X>Xβ −X>y

β̂ ls = (X>X)-1X>y

5/24

Optimal parameters β

• Augment input vector with a 1 in front:
x̄ = (1, x) = (1, x1, .., xd)

>∈ Rd+1

β = (β0, β1, .., βd)
>∈ Rd+1

f(x) = β0 +
∑n
j=1 βjxj = x̄>β

• Rewrite sum of squares as:
Lls(β) =

∑n
i=1(yi − x̄>iβ)2 = ||y −Xβ||2

X =

x̄>1
...
x̄>n

=

1 x1,1 x1,2 · · · x1,d
...

...
1 xn,1 xn,2 · · · xn,d

, y =

y1
...
yn

• Optimum:
0>d = ∂Lls(β)

∂β = −2(y −Xβ)>X ⇐⇒ 0d = X>Xβ −X>y

β̂ ls = (X>X)-1X>y

5/24

Optimal parameters β

• Augment input vector with a 1 in front:
x̄ = (1, x) = (1, x1, .., xd)

>∈ Rd+1

β = (β0, β1, .., βd)
>∈ Rd+1

f(x) = β0 +
∑n
j=1 βjxj = x̄>β

• Rewrite sum of squares as:
Lls(β) =

∑n
i=1(yi − x̄>iβ)2 = ||y −Xβ||2

X =

x̄>1
...
x̄>n

=

1 x1,1 x1,2 · · · x1,d
...

...
1 xn,1 xn,2 · · · xn,d

, y =

y1
...
yn

• Optimum:
0>d = ∂Lls(β)

∂β = −2(y −Xβ)>X ⇐⇒ 0d = X>Xβ −X>y

β̂ ls = (X>X)-1X>y

5/24

-6

-5

-4

-3

-2

-1

 0

 1

-3 -2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

'train' us 1:2
'model' us 1:2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-3 -2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

'train' us 1:2
'model' us 1:2

./x.exe -mode 1 -dataFeatureType 1 -modelFeatureType 1

6/24

Non-linear features

• Replace the inputs xi ∈ Rd by some non-linear features φ(xi) ∈ Rk

f(x) =
∑k
j=1 φj(x) βj = φ(x)>β

• The optimal β is the same

β̂ ls = (X>X)-1X>y but with X =

φ(x1)>

...
φ(xn)>

∈ Rn×k

• What are “features”?
a) Features are an arbitrary set of basis functions
b) Any function linear in β can be written as f(x) = φ(x)>β

for some φ, which we denote as “features”

7/24

Example: Polynomial features

• Linear: φ(x) = (1, x1, .., xd) ∈ R1+d

• Quadratic: φ(x) = (1, x1, .., xd, x
2
1, x1x2, x1x3, .., x

2
d) ∈ R1+d+

d(d+1)
2

• Cubic: φ(x) = (.., x31, x
2
1x2, x

2
1x3, .., x

3
d) ∈ R1+d+

d(d+1)
2 +

d(d+1)(d+2)
6

x1

x2

xd

φ β

1

x2
1

x1

xd

x1x2

x1x3

x2
d

φ(x)x f(x) = φ(x)>β

f(x)

./x.exe -mode 1 -dataFeatureType 1 -modelFeatureType 1

8/24

Example: Piece-wise features (in 1D)

• Piece-wise constant: φj(x) = [ξj < x ≤ ξj+1]

• Piece-wise linear: φj(x) = (1, x)> [ξj < x ≤ ξj+1]

• Continuous piece-wise linear: φj(x) = [x− ξj]+ (and φ0(x) = x)

9/24

Example: Radial Basis Functions (RBF)

• Given a set of centers {cj}kj=1, define

φj(x) = b(x, cj) = e−
1
2 ||x−cj ||

2

∈ [0, 1]

Each φj(x) measures similarity with the center cj

• Special case:
use all training inputs {xi}ni=1 as centers

φ(x) =

1

b(x, x1)
...

b(x, xn)

(n+ 1 dim)

This is related to “kernel methods” and GPs, but not quite the same—we’ll

discuss this later.

10/24

Features

• Polynomial

• Piece-wise

• Radial basis functions (RBF)

• Splines (see Hastie Ch. 5)

• Linear regression on top of rich features is extremely powerful!

11/24

The need for regularization

Noisy sin data fitted with radial basis functions
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

'z.train' us 1:2
'z.model' us 1:2

./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 -rbfWidth .1

-sigma .5 -lambda 1e-10

• Overfitting & generalization:
The model overfits to the data—and generalizes badly

• Estimator variance:
When you repeat the experiment (keeping the underlying function
fixed), the regression always returns a different model estimate

12/24

The need for regularization

Noisy sin data fitted with radial basis functions
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

(MT/plot.h -> gnuplot pipe)

'z.train' us 1:2
'z.model' us 1:2

./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 -rbfWidth .1

-sigma .5 -lambda 1e-10

• Overfitting & generalization:
The model overfits to the data—and generalizes badly

• Estimator variance:
When you repeat the experiment (keeping the underlying function
fixed), the regression always returns a different model estimate

12/24

Estimator variance

• Assumption:
– The data was noisy with variance Var{y} = σ2In

• We computed parameters β̂ = (X>X)-1X>y, therefore

Var{β̂} = (X>X)-1σ2

– high data noise σ → high estimator variance
– more data→ less estimator variance: Var{β̂} ∝ 1

n

• In practise we don’t know σ, but we can estimate it based on the
deviation from the learnt model: (with k = dim(β) = dim(φ))

σ̂2 =
1

n− k

n∑
i=1

(yi − f(xi))
2

13/24

Estimator variance

• “Overfitting”
– picking one specific data set y ∼ N(ymean, σ

2In)

↔ picking one specific b̂ ∼ N(βmean, (X
>X)-1σ2)

• If we could reduce the variance of the estimator, we could reduce
overfitting—and increase generalization.

14/24

Hastie’s section on shrinkage methods is great! Describes several
ideas on reducing estimator variance by reducing model complexity.
We focus on regularization.

15/24

Ridge regression: L2-regularization

• We add a regularization to the cost:

Lridge(β) =
∑n
i=1(yi − φ(xi)

>β)2 + λ
∑k
j=2 β

2
j

NOTE: β1 is usually not regularized!

• Optimum:

β̂ridge = (X>X + λI)-1X>y

(where I = Ik, or with I1,1 = 0 if β1 is not regularized)

16/24

Ridge regression: L2-regularization

• We add a regularization to the cost:

Lridge(β) =
∑n
i=1(yi − φ(xi)

>β)2 + λ
∑k
j=2 β

2
j

NOTE: β1 is usually not regularized!

• Optimum:

β̂ridge = (X>X + λI)-1X>y

(where I = Ik, or with I1,1 = 0 if β1 is not regularized)

16/24

• The objective is now composed of two “potentials”: The loss, which
depends on the data and jumps around (introduces variance), and the
regularization penalty (sitting steadily at zero). Both are “pulling” at the
optimal β → the regularization reduces variance.

• The estimator variance becomes less: Var{β̂} = (X>X + λI)-1σ2

• The ridge effectively reduces the complexity of the model:

df(λ) =
∑d
j=1

d2j
d2j+λ

where d2j is the eigenvalue of X>X = V D2V>

(details: Hastie 3.4.1)

17/24

Choosing λ: generalization error & cross validation

• λ = 0 will always have a lower training data error
We need to estimate the generalization error on test data

• k-fold cross-validation:

D1 D2 Di Dk· · · · · ·

1: Partition data D in k equal sized subsets D = {D1, .., Dk}
2: for i = 1, .., k do
3: compute β̂i on the training data D \Di leaving out Di

4: compute the error `i = Lls(β̂i, Di)/|Di| on the validation data Di

5: end for
6: report mean squared error ˆ̀ = 1/k

∑
i `i and variance

1/(k-1)[(
∑

i `
2
i)− k ˆ̀2]

• Choose λ for which ˆ̀ is smallest

18/24

Choosing λ: generalization error & cross validation

• λ = 0 will always have a lower training data error
We need to estimate the generalization error on test data

• k-fold cross-validation:

D1 D2 Di Dk· · · · · ·

1: Partition data D in k equal sized subsets D = {D1, .., Dk}
2: for i = 1, .., k do
3: compute β̂i on the training data D \Di leaving out Di

4: compute the error `i = Lls(β̂i, Di)/|Di| on the validation data Di

5: end for
6: report mean squared error ˆ̀ = 1/k

∑
i `i and variance

1/(k-1)[(
∑

i `
2
i)− k ˆ̀2]

• Choose λ for which ˆ̀ is smallest

18/24

quadratic features on sinus data:

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0.001 0.01 0.1 1 10 100 1000 10000 100000

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

lambda

(MT/plot.h -> gnuplot pipe)

cv error
training error

./x.exe -mode 4 -n 10 -modelFeatureType 2 -dataType 2 -sigma .1

./x.exe -mode 1 -n 10 -modelFeatureType 2 -dataType 2 -sigma .1

19/24

Lasso: L1-regularization

• We add a L1 regularization to the cost:

Llasso(β) =
∑n
i=1(yi − φ(xi)

>β)2 + λ
∑k
j=2 |βj |

NOTE: β1 is usually not regularized!

• Has no closed form expression for optimum

(Optimum can be found by solving a quadratic program; see appendix.)

20/24

Lasso vs. Ridge:

• Lasso→ sparsity! feature selection!

21/24

Lq(β) =
∑n
i=1(yi − φ(xi)

>β)2 + λ
∑k
j=2 |βj |q

• Subset selection: q = 0 (counting the number of βj 6= 0)

22/24

Summary

• Representation: choice of features

f(x) = φ(x)>β

• Objective: squared error + Ridge/Lasso regularization

Lridge(β) =

n∑
i=1

(yi − φ(xi)
>β)2 + λ||β||2I

• Solver: analytical (or quadratic program for Lasso)

β̂ridge = (X>X + λI)-1X>y

23/24

Summary

• Linear models on non-linear features—extremely powerful

linear
polynomial

piece-wise linear
RBF

kernel

Ridge
Lasso

regression
classification*

*logistic regression

• Generalization ↔ Regularization ↔ complexity/DoF penalty

• Cross validation to estimate generalization empirically→ use to
choose regularization parameters

24/24

Appendix: Dual formulation of Ridge

• The standard way to write the Ridge regularization:
Lridge(β) =

∑n
i=1(yi − φ(xi)

>β)2 + λ
∑k
j=2 β

2
j

• Finding β̂ridge = argminβ L
ridge(β) is equivalent to solving

β̂ridge = argmin
β

n∑
i=1

(yi − φ(xi)
>β)2

subject to
k∑
j=2

β2
j ≤ t

λ is the Lagrange multiplier for the inequality constraint

25/24

Appendix: Dual formulation of Lasso

• The standard way to write the Lasso regularization:
Llasso(β) =

∑n
i=1(yi − φ(xi)

>β)2 + λ
∑k
j=2 |βj |

• Equivalent formulation (via KKT):

β̂ lasso = argmin
β

n∑
i=1

(yi − φ(xi)
>β)2

subject to
k∑
j=2

|βj | ≤ t

• Decreasing t is called “shrinkage”: The space of allowed β shrinks.
Some β will become zero→ feature selection

26/24

