## Machine Learning

## Regression

Linear regression, non-linear features (polynomial, RBFs, piece-wise), regularization, cross validation, Ridge/Lasso, kernel trick

Marc Toussaint
University of Stuttgart
Summer 2019


- Are these linear models? Linear in what?
- Input: No.
- Parameters, features: Yes!

Linear Modelling is more powerful than it might seem at first!

## Linear Modelling is more powerful than it might seem at first!

- Linear Regression on non-linear features $\rightarrow$ very powerful (polynomials, piece-wise, spline basis, kernels)
- Regularization (Ridge, Lasso) \& cross-validation for proper generalization to test data
- Gaussian Processes and SVMs are closely related (linear in kernel features, but with different optimality criteria)
- Liquid/Echo State Machines, Extreme Learning, are examples of linear modelling on many (sort of random) non-linear features
- Basic insights in model complexity (effective degrees of freedom)
- Input relevance estimation (z-score) and feature selection (Lasso)
- Linear regression $\rightarrow$ linear classification (logistic regression: outputs are likelihood ratios)
$\Rightarrow$ Linear modelling is a core of ML
(We roughly follow Hastie, Tibshirani, Friedman: Elements of Statistical Learning)


## Linear Regression

- Notation:
- input vector $x \in \mathbb{R}^{d}$
- output value $y \in \mathbb{R}$
- parameters $\beta=\left(\beta_{0}, \beta_{1}, . ., \beta_{d}\right)^{\top} \in \mathbb{R}^{d+1}$
- linear model

$$
f(x)=\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{j}
$$

## Linear Regression

- Notation:
- input vector $x \in \mathbb{R}^{d}$
- output value $y \in \mathbb{R}$
- parameters $\beta=\left(\beta_{0}, \beta_{1}, . ., \beta_{d}\right)^{\top} \in \mathbb{R}^{d+1}$
- linear model

$$
f(x)=\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{j}
$$

- Given training data $D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ we define the least squares cost (or "loss")

$$
L^{\text {ls }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

## Optimal parameters $\beta$

- Augment input vector with a 1 in front:

$$
\begin{aligned}
& \bar{x}=(1, x)=\left(1, x_{1}, . ., x_{d}\right)^{\top} \in \mathbb{R}^{d+1} \\
& \beta=\left(\beta_{0}, \beta_{1}, . ., \beta_{d}\right)^{\top} \in \mathbb{R}^{d+1} \\
& \quad f(x)=\beta_{0}+\sum_{j=1}^{n} \beta_{j} x_{j}=\bar{x}^{\top} \beta
\end{aligned}
$$

## Optimal parameters $\beta$

- Augment input vector with a 1 in front:

$$
\begin{aligned}
& \bar{x}=(1, x)=\left(1, x_{1}, . ., x_{d}\right)^{\top} \in \mathbb{R}^{d+1} \\
& \beta=\left(\beta_{0}, \beta_{1}, . ., \beta_{d}\right)^{\top} \in \mathbb{R}^{d+1} \\
& \quad f(x)=\beta_{0}+\sum_{j=1}^{n} \beta_{j} x_{j}=\bar{x}^{\top} \beta
\end{aligned}
$$

- Rewrite sum of squares as:

$$
\begin{gathered}
L^{\text {|s }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\bar{x}_{i}^{\top} \beta\right)^{2}=\|y-X \beta\|^{2} \\
X=\left(\begin{array}{c}
\bar{x}_{1}^{\top} \\
\vdots \\
\bar{x}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \cdots & x_{1, d} \\
\vdots & & & & \vdots \\
1 & x_{n, 1} & x_{n, 2} & \cdots & x_{n, d}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
\end{gathered}
$$

## Optimal parameters $\beta$

- Augment input vector with a 1 in front:

$$
\begin{aligned}
& \bar{x}=(1, x)=\left(1, x_{1}, . ., x_{d}\right)^{\top} \in \mathbb{R}^{d+1} \\
& \beta=\left(\beta_{0}, \beta_{1}, . ., \beta_{d}\right)^{\top} \in \mathbb{R}^{d+1} \\
& \quad f(x)=\beta_{0}+\sum_{j=1}^{n} \beta_{j} x_{j}=\bar{x}^{\top} \beta
\end{aligned}
$$

- Rewrite sum of squares as:

$$
\begin{gathered}
L^{\text {|s }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\bar{x}_{i}^{\top} \beta\right)^{2}=\|y-X \beta\|^{2} \\
X=\left(\begin{array}{c}
\bar{x}_{1}^{\top} \\
\vdots \\
\bar{x}_{n}^{\top}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \cdots & x_{1, d} \\
\vdots & & & & \vdots \\
1 & x_{n, 1} & x_{n, 2} & \cdots & x_{n, d}
\end{array}\right), \quad y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
\end{gathered}
$$

- Optimum:

$$
\begin{gathered}
\mathbf{0}_{d}^{\top}=\frac{\partial L^{\text {ls }}(\beta)}{\partial \beta}=-2(y-X \beta)^{\top} X \Longleftrightarrow \mathbf{0}_{d}=X^{\top} X \beta-X^{\top} y \\
\hat{\beta}^{\text {ls }}=\left(X^{\top} X\right)^{-1} X^{\top} y
\end{gathered}
$$


./x.exe -mode 1 -dataFeatureType 1 -modelFeatureType 1

## Non-linear features

- Replace the inputs $x_{i} \in \mathbb{R}^{d}$ by some non-linear features $\phi\left(x_{i}\right) \in \mathbb{R}^{k}$

$$
f(x)=\sum_{j=1}^{k} \phi_{j}(x) \beta_{j}=\phi(x)^{\top} \beta
$$

- The optimal $\beta$ is the same

$$
\hat{\beta}^{\text {ls }}=\left(X^{\top} X\right)^{-1} X^{\top} y \quad \text { but with } \quad X=\left(\begin{array}{c}
\phi\left(x_{1}\right)^{\top} \\
\vdots \\
\phi\left(x_{n}\right)^{\top}
\end{array}\right) \in \mathbb{R}^{n \times k}
$$

- What are "features"?
a) Features are an arbitrary set of basis functions
b) Any function linear in $\beta$ can be written as $f(x)=\phi(x)^{\top} \beta$ for some $\phi$, which we denote as "features"


## Example: Polynomial features

- Linear: $\phi(x)=\left(1, x_{1}, . ., x_{d}\right) \in \mathbb{R}^{1+d}$
- Quadratic: $\phi(x)=\left(1, x_{1}, . ., x_{d}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, . ., x_{d}^{2}\right) \in \mathbb{R}^{1+d+\frac{d(d+1)}{2}}$
- Cubic: $\phi(x)=\left(. ., x_{1}^{3}, x_{1}^{2} x_{2}, x_{1}^{2} x_{3}, . ., x_{d}^{3}\right) \in \mathbb{R}^{1+d+\frac{d(d+1)}{2}+\frac{d(d+1)(d+2)}{6}}$

$$
x \quad \phi(x) \quad f(x)=\phi(x)^{\top} \beta
$$


./x.exe -mode 1 -dataFeatureType 1 -modelFeatureType 1

## Example: Piece-wise features (in 1D)

- Piece-wise constant: $\phi_{j}(x)=\left[\xi_{j}<x \leq \xi_{j+1}\right]$
- Piece-wise linear: $\phi_{j}(x)=(1, x)^{\top}\left[\xi_{j}<x \leq \xi_{j+1}\right]$
- Continuous piece-wise linear: $\phi_{j}(x)=\left[x-\xi_{j}\right]_{+} \quad\left(\right.$ and $\left.\phi_{0}(x)=x\right)$

Piecewise Constant


Continuous Piecewise Linear


Piecewise Linear


Piecewise-linear Basis Function


## Example: Radial Basis Functions (RBF)

- Given a set of centers $\left\{c_{j}\right\}_{j=1}^{k}$, define

$$
\phi_{j}(x)=b\left(x, c_{j}\right)=e^{-\frac{1}{2}\left\|x-c_{j}\right\|^{2}} \in[0,1]
$$

Each $\phi_{j}(x)$ measures similarity with the center $c_{j}$

- Special case:
use all training inputs $\left\{x_{i}\right\}_{i=1}^{n}$ as centers

$$
\phi(x)=\left(\begin{array}{c}
1 \\
b\left(x, x_{1}\right) \\
\vdots \\
b\left(x, x_{n}\right)
\end{array}\right) \quad(n+1 \operatorname{dim})
$$

This is related to "kernel methods" and GPs, but not quite the same-we'll discuss this later.

## Features

- Polynomial
- Piece-wise
- Radial basis functions (RBF)
- Splines (see Hastie Ch. 5)
- Linear regression on top of rich features is extremely powerful!


## The need for regularization

Noisy sin data fitted with radial basis functions
./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 -rbfWidth ${ }^{2} 1$
-sigma . 5 -lambda 1e-10

## The need for regularization

Noisy sin data fitted with radial basis functions

```
    ./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 -rbfWidth . 1
-sigma .5 -lambda 1e-10
```

- Overfitting \& generalization:

The model overfits to the data-and generalizes badly

- Estimator variance:

When you repeat the experiment (keeping the underlying function fixed), the regression always returns a different model estimate

## Estimator variance

- Assumption:
- The data was noisy with variance $\operatorname{Var}\{y\}=\sigma^{2} \mathbf{I}_{n}$
- We computed parameters $\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y$, therefore

$$
\operatorname{Var}\{\hat{\beta}\}=\left(X^{\top} X\right)^{-1} \sigma^{2}
$$

- high data noise $\sigma \rightarrow$ high estimator variance
- more data $\rightarrow$ less estimator variance: $\operatorname{Var}\{\hat{\beta}\} \propto \frac{1}{n}$
- In practise we don't know $\sigma$, but we can estimate it based on the deviation from the learnt model: (with $k=\operatorname{dim}(\beta)=\operatorname{dim}(\phi)$ )

$$
\hat{\sigma}^{2}=\frac{1}{n-k} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

## Estimator variance

- "Overfitting"
- picking one specific data set $y \sim \mathcal{N}\left(y_{\text {mean }}, \sigma^{2} \mathbf{I}_{n}\right)$
$\leftrightarrow$ picking one specific $\hat{b} \sim \mathcal{N}\left(\beta_{\text {mean }},\left(X^{\top} X\right)^{-1} \sigma^{2}\right)$
- If we could reduce the variance of the estimator, we could reduce overfitting-and increase generalization.

Hastie's section on shrinkage methods is great! Describes several ideas on reducing estimator variance by reducing model complexity. We focus on regularization.

## Ridge regression: $L_{2}$-regularization

- We add a regularization to the cost:

$$
L^{\text {ridge }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda \sum_{j=2}^{k} \beta_{j}^{2}
$$

NOTE: $\beta_{1}$ is usually not regularized!

## Ridge regression: $L_{2}$-regularization

- We add a regularization to the cost:

$$
L^{\text {ridge }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda \sum_{j=2}^{k} \beta_{j}^{2}
$$

NOTE: $\beta_{1}$ is usually not regularized!

- Optimum:

$$
\hat{\beta}^{\text {ridge }}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
$$

(where $I=\mathbf{I}_{k}$, or with $I_{1,1}=0$ if $\beta_{1}$ is not regularized)

- The objective is now composed of two "potentials": The loss, which depends on the data and jumps around (introduces variance), and the regularization penalty (sitting steadily at zero). Both are "pulling" at the optimal $\beta \rightarrow$ the regularization reduces variance.
- The estimator variance becomes less: $\operatorname{Var}\{\hat{\beta}\}=\left(X^{\top} X+\lambda I\right)^{-1} \sigma^{2}$
- The ridge effectively reduces the complexity of the model:

$$
\operatorname{df}(\lambda)=\sum_{j=1}^{d} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}
$$

where $d_{j}^{2}$ is the eigenvalue of $X^{\top} X=V D^{2} V^{\top}$
(details: Hastie 3.4.1)

## Choosing $\lambda$ : generalization error \& cross validation

- $\lambda=0$ will always have a lower training data error We need to estimate the generalization error on test data


## Choosing $\lambda$ : generalization error \& cross validation

- $\lambda=0$ will always have a lower training data error

We need to estimate the generalization error on test data

- $k$-fold cross-validation:


1: Partition data $D$ in $k$ equal sized subsets $D=\left\{D_{1}, . ., D_{k}\right\}$
2: for $i=1, . ., k$ do
3: $\quad$ compute $\hat{\beta}_{i}$ on the training data $D \backslash D_{i}$ leaving out $D_{i}$
4: $\quad$ compute the error $\ell_{i}=L^{\text {Is }}\left(\hat{\beta}_{i}, D_{i}\right) /\left|D_{i}\right|$ on the validation data $D_{i}$
5: end for
6: report mean squared error $\hat{\ell}=1 / k \sum_{i} \ell_{i}$ and variance $1 /(k-1)\left[\left(\sum_{i} \ell_{i}^{2}\right)-k \hat{\ell}^{2}\right]$

- Choose $\lambda$ for which $\hat{\ell}$ is smallest


## quadratic features on sinus data:


./x.exe -mode 4 -n 10 -modelFeatureType 2 -dataType 2 -sigma . 1
$. / x . e x e ~-m o d e ~$
1

## Lasso: $L_{1}$-regularization

- We add a $L_{1}$ regularization to the cost:

$$
L^{\text {lasso }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda \sum_{j=2}^{k}\left|\beta_{j}\right|
$$

NOTE: $\beta_{1}$ is usually not regularized!

- Has no closed form expression for optimum
(Optimum can be found by solving a quadratic program; see appendix.)


## Lasso vs. Ridge:



- Lasso $\rightarrow$ sparsity! feature selection!

$$
L^{q}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda \sum_{j=2}^{k}\left|\beta_{j}\right|^{q}
$$





- Subset selection: $q=0$ (counting the number of $\beta_{j} \neq 0$ )


## Summary

- Representation: choice of features

$$
f(x)=\phi(x)^{\top} \beta
$$

- Objective: squared error + Ridge/Lasso regularization

$$
L^{\text {ridge }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda\|\beta\|_{I}^{2}
$$

- Solver: analytical (or quadratic program for Lasso)

$$
\hat{\beta}^{\text {ridge }}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
$$

## Summary

- Linear models on non-linear features-extremely powerful

| linear <br> polynomial <br> piece-wise linear <br> RBF <br> kernel | Ridge <br> Lasso | regression <br> classification* |
| :---: | :---: | :---: |
|  |  | *logistic regression |

- Generalization $\leftrightarrow$ Regularization $\leftrightarrow$ complexity/DoF penalty
- Cross validation to estimate generalization empirically $\rightarrow$ use to choose regularization parameters


## Appendix: Dual formulation of Ridge

- The standard way to write the Ridge regularization:

$$
L^{\text {ridge }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda \sum_{j=2}^{k} \beta_{j}^{2}
$$

- Finding $\hat{\beta}^{\text {ridge }}=\operatorname{argmin}_{\beta} L^{\text {ridge }}(\beta)$ is equivalent to solving

$$
\begin{aligned}
& \hat{\beta}^{\text {ridge }}=\underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2} \\
& \text { subject to } \sum_{j=2}^{k} \beta_{j}^{2} \leq t
\end{aligned}
$$

$\lambda$ is the Lagrange multiplier for the inequality constraint

## Appendix: Dual formulation of Lasso

- The standard way to write the Lasso regularization:

$$
L^{\text {lasso }}(\beta)=\sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2}+\lambda \sum_{j=2}^{k}\left|\beta_{j}\right|
$$

- Equivalent formulation (via KKT):

$$
\begin{aligned}
& \hat{\beta}^{\text {lasso }}=\underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\phi\left(x_{i}\right)^{\top} \beta\right)^{2} \\
& \text { subject to } \sum_{j=2}^{k}\left|\beta_{j}\right| \leq t
\end{aligned}
$$

- Decreasing $t$ is called "shrinkage": The space of allowed $\beta$ shrinks. Some $\beta$ will become zero $\rightarrow$ feature selection

