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(MT/plot.h -> gnuplot pipe)
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(MT/plot.h -> gnuplot pipe)

Are these linear models? Linear in what?

—Input: No.
— Parameters, features: Yes!
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Linear Modelling is more powerful than it might seem at first!
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Linear Modelling is more powerful than it might seem at first!

Linear Regression on non-linear features — very powerful (polynomials,
piece-wise, spline basis, kernels)

Regularization (Ridge, Lasso) & cross-validation for proper generalization to
test data

Gaussian Processes and SVMs are closely related (linear in kernel features,
but with different optimality criteria)

Liquid/Echo State Machines, Extreme Learning, are examples of linear
modelling on many (sort of random) non-linear features

Basic insights in model complexity (effective degrees of freedom)

Input relevance estimation (z-score) and feature selection (Lasso)

Linear regression — linear classification (logistic regression: outputs are
likelihood ratios)

Linear modelling is a core of ML
(We roughly follow Hastie, Tibshirani, Friedman: Elements of Statistical
Learning)
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Linear Regression

¢ Notation:
— input vector z € R?
—output value y € R
— parameters 3 = (Bo, B, .., Bq)" € R4
— linear model

(@) = Bo + X5y B
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Linear Regression

¢ Notation:
— input vector z € R?
—output value y € R
— parameters 3 = (Bo, B, .., Bq)" € R4
— linear model

(@) = Bo + X5y B

e Given training data D = {(z;, y;)}!, we define the least squares cost
(or “loss”)

LS(B) = Y0 (i — f(a:))?
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Optimal parameters

e Augment input vector with a 1 in front:
= (1,2) = (1,21,..,2q)" € R
B = (Bo,B1,..,Ba)" € R
f(@)=Bo+ 25 Biz; =Z'8
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Optimal parameters

e Augment input vector with a 1 in front:
= (1,2) = (1,21,..,2q)" € R
B = (Bo,B1,..,Ba)" € R
f(@)=Bo+ 25 Biz; =Z'8

e Rewrite sum of squares as:
L*(B) = 0 (v — 7 8)° = ly — XBI°

T 1

Xy i1 T2 o Tld Y1
_X = . = : s y —_—

T

T 1 Tn,1 Tn,2 e Tn,d Yn
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Optimal parameters

e Augment input vector with a 1 in front:
= (1,2) = (1,21,..,2q)" € R
B = (Bo,B1,..,Ba)" € R
f@)=Bo+ X5 Biz; =T

e Rewrite sum of squares as:

L8(B) = 31y (yi — 71B)? = |y — X B

T

T 1 z11 12 - Z14d Y1
_X f— . f— : s y —_—

T

Zy 1 Zni Tnz2 -+ Tnad Yn

e Optimum:
Is
0 =25 = —2(y - XB)'X = 04=X'XB-X"y

BIS _ (XTX)-lXTy
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(MT/plot.h -> gnuplot pipe)
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./x.exe -mode 1 -dataFeatureType 1

(MT/plot.h -> gnuplot pipe)
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Non-linear features

¢ Replace the inputs z; € R? by some non-linear features ¢(z;) € R*

fl@) =5, 6;(x) B = ¢(=)TB

e The optimal 3 is the same
o(z1)"
' = (XTX)1XTy butwith X = : € R"xk

¢($n)T

e What are “features”?
a) Features are an arbitrary set of basis functions
b) Any function linear in 3 can be written as f(z) = ¢(z)'3
for some ¢, which we denote as “features”
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Example: Polynomial features

e Linear: ¢(x) = (1,21, ..,74) € R

_ 2 2 1+d
e Quadratic: ¢(z) = (1,21, .., 24, 27, ¥122, 123, .., %) € RITIT—=5—
R+t A i

d(d+1)

e Cubic: ¢(z) = (.., 23, 23z, 2323, .., 23)

Tq 3
al =
122
L123

./x.exe -mode 1 -dataFeatureType 1 -modelFeatureType 1
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Example: Piece-wise features (in 1D)

e Piece-wise constant: ¢;(z) = [§; < < &;41]

e Piece-wise linear: ¢;(z) = (1,2)" [§; <z < &j41]

e Continuous piece-wise linear: ¢;(z) = [z — &)+

Piecewise Constant

Piecewise Linear

(and ¢o(z) = )
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Example: Radial Basis Functions (RBF)

« Given a set of centers {c;}}_,, define

(b](l‘) = b(x>cj) = 6_%"‘77—("5 1 S [Oa 1]

Each ¢;(x) measures similarity with the center ¢,

e Special case:
use all training inputs {x;}!_, as centers

1

o) = | k1 aim)

b(x,.xn)

This is related to “kernel methods” and GPs, but not quite the same—we’ll
discuss this later.
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Features

Polynomia

Piece-wise

Radial basis functions (RBF)
Splines (see Hastie Ch. 5)

Linear regression on top of rich features is extremely powerful!
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The need for regularization

Noisy sin data fitted with radial basis functions
./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 ~rbfWidth .1

-sigma .5 -lambda 1e-10

12/24



The need for regularization

Noisy sin data fitted with radial basis functions
./x.exe -mode 1 -n 40 -modelFeatureType 4 -dataType 2 “rbfWidth .1

-sigma .5 -lambda 1e-10

e Overfitting & generalization:
The model overfits to the data—and generalizes badly

¢ Estimator variance:
When you repeat the experiment (keeping the underlying function
fixed), the regression always returns a different model estimate
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Estimator variance

e Assumption:
— The data was noisy with variance Var{y} = I,

e We computed parameters 3 = (X' X)Xy, therefore
Var{g} = (X" X) 102
— high data noise ¢ — high estimator variance
— more data — less estimator variance: Var{3} « i

¢ In practise we don’t know o, but we can estimate it based on the
deviation from the learnt model: (with k£ = dim(8) = dim(¢))

LS i S
i=1

6% =
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Estimator variance

e “Overfitting”

— picking one specific data set y ~ N(ymean, 021,,)
+» picking one specific b ~ N(SBmean, (X X)20?)

e |f we could reduce the variance of the estimator, we could reduce
overfitting—and increase generalization.
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Hastie’s section on shrinkage methods is great! Describes several
ideas on reducing estimator variance by reducing model complexity.
We focus on regularization.
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Ridge regression: L.-regularization
e We add a regularization to the cost:

L% (8) = 377, (v — ¢(m:) B2 + A X5, B2

NOTE: j; is usually not regularized!
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Ridge regression: L.-regularization
e We add a regularization to the cost:

L% (8) = 377, (v — ¢(m:) B2 + A X5, B2

NOTE: j; is usually not regularized!

e Optimum:
Bridge _ (XTX + /\I)‘lXTy

(where I =1y, or with I, ; = 0 if 81 is not regularized)
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e The objective is now composed of two “potentials”: The loss, which
depends on the data and jumps around (introduces variance), and the
regularization penalty (sitting steadily at zero). Both are “pulling” at the
optimal 5 — the regularization reduces variance.

e The estimator variance becomes less: Var{3} = (XX + AI)" o2
e The ridge effectively reduces the complexity of the model:

2
dj

df() = X5 zix

where d? is the eigenvalue of X'X = VDV’
(details: Hastie 3.4.1)
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Choosing \: generalization error & cross validation

¢ )\ = 0 will always have a lower training data error
We need to estimate the generalization error on test data
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Choosing \: generalization error & cross validation

¢ )\ = 0 will always have a lower training data error
We need to estimate the generalization error on test data

e k-fold cross-validation:

Dy D, D; Dy,

Qe R wbh2

. Partition data D in k equal sized subsets D = {D1, .., Dy}
:fori=1,..,kdo

compute BZ on the training data D \ D; leaving out D;
compute the error ¢; = L'S(B;, D;)/|D;| on the validation data D;
end for

: report mean squared error ¢ = 1/k>>,4; and variance

1/ (B-D)[(3Z; €7) — ke?]

e Choose ) for which 7 is smallest
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quadratic features on sinus data:

(MT/plot.h -> gnuplot pipe)
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Lasso: L;-regularization

e We add a L, regularization to the cost:
Des0(8) = Y0, (g5 — (@) B)2 + A 25, 18]
NOTE: g, is usually not regularized!
e Has no closed form expression for optimum

(Optimum can be found by solving a quadratic program; see appendix.)
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Lasso vs. Ridge:

e Lasso — sparsity! feature selection!
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LI(B) = S0 (i — (i) B) + Ak, 18519

e Subset selection: ¢ = 0 (counting the number of 3, # 0)
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Summary

¢ Representation: choice of features

e Objective: squared error + Ridge/Lasso regularization

n

Lridge(ﬁ) — Z(yl — qﬁ(aji)—rﬁ)Q + A”ﬂ“%

i=1

e Solver: analytical (or quadratic program for Lasso)

Bridge — (XTX + )\I)—lXTy
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Summary

¢ Linear models on non-linear features—extremely powerful

linear

polynomial . .
piece-wise linear Ridge regression
RBF Lasso classification*
kernel

*logistic regression
e Generalization + Regularization < complexity/DoF penalty
e Cross validation to estimate generalization empirically — use to

choose regularization parameters
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Appendix: Dual formulation of Ridge

e The standard way to write the Ridge regularization:

L1998 () = S (y; — p(a:) )2 + AZ?:Q 532

o Finding 3799 = argmin; L99(3) is equivalent to solving

frdge — argmln Z o(z:)"8)?

i=1

subject to Zﬁf <t

=2

A is the Lagrange multiplier for the inequality constraint
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Appendix: Dual formulation of Lasso

e The standard way to write the Lasso regularization:

Le0(8) = S (ys — (i) 8)% + A 5, 18]
e Equivalent formulation (via KKT):

ﬁlasso _ argmm Z xl )Tﬂ)

subject to Z 18;] < t

Jj=2

e Decreasing t is called “shrinkage”: The space of allowed (3 shrinks.

Some $ will become zero — feature selection
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