
Introduction to
Optimization

Gradient-based Methods

Marc Toussaint
U Stuttgart

Gradient descent methods

• Plain gradient descent (with adaptive stepsize)

• Steepest descent (w.r.t. a known metric)

• Conjugate gradient (requires line search)

• Rprop (heuristic, but quite efficient)

2/22

Gradient descent

• Notation:
objective function: f : Rn → R

gradient vector: ∇f(x) =
[
∂
∂x
f(x)

]>
∈ Rn

• Problem:

min
x
f(x)

where we can evaluate f(x) and ∇f(x) for any x ∈ Rn

• Gradient descent:
Make iterative steps in the direction −∇f(x).

3/22

Plain Gradient Descent

4/22

Fixed stepsize

BAD! gradient descent:

Input: initial x ∈ Rn, function ∇f(x), stepsize α, tolerance θ
Output: x

1: repeat
2: x← x− α∇f(x)

3: until |∆x| < θ [perhaps for 10 iterations in sequence]

5/22

Making steps proportional to ∇f(x)??

large gradient
 large step?

small gradient
 small step?

NO!

We need methods indep. of |∇f(x)|, invariant of scaling of f and x!

6/22

How can we become independent of |∇f(x)|?

• Line search — which we’ll discuss briefly later

• Stepsize adaptation

7/22

Gradient descent with stepsize adaptation

Input: initial x ∈ Rn, functions f(x) and∇f(x), initial stepsize α, tolerance
θ

Output: x
1: repeat
2: y ← x− α ∇f(x)

|∇f(x)|
3: if [thenstep is accepted]f(y) ≤ f(x)

4: x← y

5: α← 1.2α // increase stepsize
6: else[step is rejected]
7: α← 0.5α // decrease stepsize
8: end if
9: until |y − x| < θ [perhaps for 10 iterations in sequence]

(“magic numbers”)

α determins the absolute stepsize
stepsize is automatically adapted

8/22

• Guaranteed monotonicity (by construction)

If f is convex⇒ convergence
For typical non-convex bounded f ⇒ convergence to local optimum

9/22

Steepest Descent

10/22

Steepest Descent

• The gradient ∇f(x) is sometimes called steepest descent direction

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when I make a step
of length 1, I get the largest decrease of f in its linear approximation.

argmin
δ
∇f(x)>δ s.t. ||δ|| = 1

11/22

Steepest Descent

• The gradient ∇f(x) is sometimes called steepest descent direction

Is it really?

• Here is a possible definition:

The steepest descent direction is the one where, when I make a step
of length 1, I get the largest decrease of f in its linear approximation.

argmin
δ
∇f(x)>δ s.t. ||δ|| = 1

11/22

Steepest Descent

• But the norm ||δ||2 = δ>Aδ depends on the metric A!

Let A = B>B (Cholesky decomposition) and z = Bδ

δ∗ = argmin
δ
∇f>δ s.t. δ>Aδ = 1

= B-1 argmin
z

(B-1z)>∇f s.t. z>z = 1

= B-1 argmin
z

z>B->∇f s.t. z>z = 1

= B-1[−B->∇f] = −A-1∇f

The steepest descent direction is δ = −A-1∇f

12/22

Behavior under linear coordinate transformations

• Let B be a matrix that describes a linear transformation in coordinates

• A coordinate vector x transforms as z = Bx

• The gradient vector ∇xf(x) transforms as ∇zf(z) = B->∇xf(x)

• The metric A transforms as Az = B->AxB
-1

• The steepest descent transforms as A-1
z ∇zf(z) = BA-1

x∇xf(x)

The steepest descent transforms like a normal coordinate vector
(covariant)

13/22

(Nonlinear) Conjugate Gradient

14/22

Conjugate Gradient

• The “Conjugate Gradient Method” is a method for solving large linear
eqn. systems Ax+ b = 0

We mention its extension for optimizing nonlinear functions f(x)

• A key insight:

– at xk we computed ∇f(xk)

– we made a (line-search) step to xk+1

– at xk+1 we computed ∇f(xk+1)

What conclusions can we draw about the “local quadratic shape” of f?

15/22

Conjugate Gradient

Input: initial x ∈ Rn, functions f(x),∇f(x), tolerance θ
Output: x

1: initialize descent direction d = g = −∇f(x)

2: repeat
3: α← argminα f(x+ αd) // line search
4: x← x+ αd

5: g′ ← g, g = −∇f(x) // store and compute grad

6: β ← max

{
g>(g−g′)
g′>g′

, 0

}
7: d← g + βd // conjugate descent direction
8: until |∆x| < θ

• Notes:
– β > 0: The new descent direction always adds a bit of the old direction!
– This essentially provides 2nd order information
– The equation for β is by Polak-Ribière: On a quadratic function f(x) = x>Ax

this leads to conjugate search directions, d′>Ad = 0.

– All this really only works with line search

16/22

Conjugate Gradient

• For quadratic functions CG converges in n iterations. But each iteration
does line search!

17/22

Conjugate Gradient

• Useful tutorial on CG and line search:

J. R. Shewchuk: An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain

18/22

Rprop

19/22

Rprop
“Resilient Back Propagation” (outdated name from NN times...)

Input: initial x ∈ Rn, function f(x),∇f(x), initial stepsize α, tolerance θ
Output: x

1: initialize x = x0, all αi = α, all gi = 0

2: repeat
3: g ← ∇f(x)
4: x′ ← x

5: for i = 1 : n do
6: if [thensame direction as last time]gig′i > 0

7: αi ← 1.2αi

8: xi ← xi − αi sign(gi)

9: g′i ← gi
10: else if [thenchange of direction]gig′i < 0

11: αi ← 0.5αi

12: xi ← xi − αi sign(gi)

13: g′i ← 0 // force last case next time
14: else
15: xi ← xi − αi sign(gi)

16: g′i ← gi
17: end if
18: optionally: cap αi ∈ [αmin xi, αmax xi]

19: end for
20: until |x′ − x| < θ for 10 iterations in sequence

20/22

Rprop

• Rprop is a bit crazy:
– stepsize adaptation in each dimension separately
– it not only ignores |∇f | but also its exact direction

step directions may differ up to < 90◦ from ∇f
– Often works very robustly
– Guarantees? See work by Ch. Igel

• If you like, have a look at:
Christian Igel, Marc Toussaint, W. Weishui (2005): Rprop using the natural
gradient compared to Levenberg-Marquardt optimization. In Trends and
Applications in Constructive Approximation. International Series of Numerical
Mathematics, volume 151, 259-272.

21/22

Appendix
Two little comments on stopping criteria & costs...

22/22

Appendix: Stopping Criteria

• Standard references (Boyd) define stopping criteria based on the
“change” in f(x), e.g. |∆f(x)| < θ or |∇f(x)| < θ.

• Throughout I will define stopping criteria based on the change in x, e.g.
|∆x| < θ! In my experience this is in many problems more meaningful,
and invariant of the scaling of f .

23/22

Appendix: Optimization Costs

• Standard references (Boyd) assume line search is cheap and measure
optimization costs as the number of iterations (counting 1 per line
search).

• Throughout I will assume that every evaluation of f(x) or (f(x),∇f(x))

or (f(x),∇f(x),∇2f(x)) is equally expensive!

24/22

