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Gradient descent methods

Plain gradient descent (with adaptive stepsize)

Steepest descent (w.r.t. a known metric)

Conjugate gradient (requires line search)

Rprop (heuristic, but quite efficient)
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Gradient descent

¢ Notation:
objective function: f: R* - R

gradient vector: Vf(z) = [a%f(x)}T €R”

e Problem:
min f(x)

where we can evaluate f(x) and Vf(x) for any € R™

e Gradient descent:
Make iterative steps in the direction —Vf(x).
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Plain Gradient Descent
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Fixed stepsize

BAD! gradient descent:

Input: initial z € R™, function Vf(x), stepsize «, tolerance 6
Output: =

1: repeat

2: z + x — aVf(x)

3: until |Az| < 6 [perhaps for 10 iterations in sequence]
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Making steps proportional to Vf (x)??

f(x)

Zo

A
\

\
\

small gradient

— small step?

- large gradient
— large step?

NO!

We need methods indep. of |Vf ()|, invariant of scaling of f and «!
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How can we become independent of |Vf(z)|?

e Line search — which we’ll discuss briefly later
e Stepsize adaptation
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Gradient descent with stepsize adaptation

Input: initial z € R™, functions f(z) and Vf(x), initial stepsize «, tolerance
0

Output: =
1: repeat
2y oo g
3 if [ thenstep is accepted]f(y) < f(z)
4 T4y
5: a <+ 1.2« // increase stepsize
6: else[step is rejected]
7 a <+ 0.5a // decrease stepsize
8 end if

9: until |y — z| < 6 [perhaps for 10 iterations in sequence]

(“magic numbers”)

« determins the absolute stepsize
stepsize is automatically adapted
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e Guaranteed monotonicity (by construction)

If fis convex = convergence
For typical non-convex bounded f = convergence to local optimum
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Steepest Descent
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Steepest Descent

e The gradient Vf(x) is sometimes called steepest descent direction

Is it really?
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Steepest Descent

e The gradient Vf(x) is sometimes called steepest descent direction

Is it really?

e Here is a possible definition:

The steepest descent direction is the one where, when | make a step
of length 1, | get the largest decrease of f in its linear approximation.

argmin Vf(x)'6 st o] =1
é
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Steepest Descent

e But the norm |§|? = 4" AJ depends on the metric A!

Let A = B'B (Cholesky decomposition) and z = B¢
5 = arg;nin Vs st A =1
= Blargmin(B'2)'Vf st zz=1
= Blargmin z' BT Vf st.zlz=1

z

= BY-B"Vf] = —A1Vf

The steepest descent direction is § = — A1 Vf
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Behavior under linear coordinate transformations
e Let B be a matrix that describes a linear transformation in coordinates
A coordinate vector x transforms as z = Bz

The gradient vector V, f(z) transforms as V., f(z) = BTV, f(z)
The metric A transformsas A, = BT A, B

The steepest descent transforms as AV, f(z) = BA!V, f(x)

The steepest descent transforms like a normal coordinate vector
(covariant)
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(Nonlinear) Conjugate Gradient
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Conjugate Gradient

e The “Conjugate Gradient Method” is a method for solving large linear
eqgn. systems Az +b=20
We mention its extension for optimizing nonlinear functions f(x)

e A key insight:
— at x we computed Vf(xy)
—we made a (line-search) step to x4

— at zx1 we computed Vf(zj41)

What conclusions can we draw about the “local quadratic shape” of f?
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Conjugate Gradient

Input: initial z € R, functions f(x), Vf(z), tolerance 0

Output: =
1: initialize descent direction d = g = —Vf(z)
2: repeat
3: o < argming, f(z + ad)
4: T x+ad
5 g g, g=—Vf(x) // store and compute grad

T ’
6: ﬁ%max{g;,g;g,g%O}

7 d<« g+ pd // conjugate descent direction

8: until |Az| < 6

o Notes:

— B > 0: The new descent direction always adds a bit of the old direction!

— This essentially provides 2nd order information

— The equation for § is by Polak-Ribiere: On a quadratic function f(x)

this leads to conjugate search directions, d"Ad = 0.
— All this really only works with line search

=

Az
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Conjugate Gradient

e For quadratic functions CG converges in n iterations. But each iteration
does line search!
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Conjugate Gradient

e Useful tutorial on CG and line search:

J. R. Shewchuk: An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain
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Rprop
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Rprop

“Resilient Back Propagation” (outdated name from NN times...)

Input: initial z € R™, function f(x), Vf(x), initial stepsize «, tolerance 6
Output: =

1: initialize z = xp, all a; = o, allg; =0

2: repeat

3 g+ Vf(z)

4 g —

5: fori =1:ndo

6 if [ thensame direction as last time]g; g; > 0
7
8

a; +— 1.2a4

: z; < x; — o sign(g;)
9: g; — gi
10: else if [ thenchange of direction]g; g; < 0
11: a; +— 0.5
12: z; < x; — o sign(g;)
13: g; ~— 0 // force last case next time
14: else
15: z;  x; — a; sign(g;)
16: gg — gi
17: end if
18: optionally: cap a; € [otmin T4, Omax Zi]

19: end for
20: until |z’ — x| < 0 for 10 iterations in sequence
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Rprop

e Rprop is a bit crazy:
— stepsize adaptation in each dimension separately
— it not only ignores |Vf| but also its exact direction
step directions may differ up to < 90° from Vf
— Often works very robustly
— Guarantees? See work by Ch. Igel

e If you like, have a look at:
Christian Igel, Marc Toussaint, W. Weishui (2005): Rprop using the natural
gradient compared to Levenberg-Marquardt optimization. In Trends and
Applications in Constructive Approximation. International Series of Numerical
Mathematics, volume 151, 259-272.
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Appendix

Two little comments on stopping criteria & costs...
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Appendix: Stopping Criteria

e Standard references (Boyd) define stopping criteria based on the
“change” in f(x), e.g. |Af(z)| < 0 or |Vf(z)| < 0.

e Throughout | will define stopping criteria based on the change in z, e.g.
|Az| < 6! In my experience this is in many problems more meaningful,
and invariant of the scaling of f.
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Appendix: Optimization Costs

e Standard references (Boyd) assume line search is cheap and measure
optimization costs as the number of iterations (counting 1 per line
search).

e Throughout | will assume that every evaluation of f(z) or (f(x), Vf(z))
or (f(x), Vf(z), V2 f(z)) is equally expensive!
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