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• Imagine want to model M

• Imagine you want to train a neural network to predict x ∈M

• Would you come up with that representation:

M = {c ∈ C : [zk+1 ← z2
k + c] converges, with z0 = 0}

[implicit, requires computation for decoding, extremely powerful]

Learning and Intelligent Systems Lab, TU Berlin 3/31



• Imagine want to model M

• Imagine you want to train a neural network to predict x ∈M

• Would you come up with that representation:

M = {c ∈ C : [zk+1 ← z2
k + c] converges, with z0 = 0}

[implicit, requires computation for decoding, extremely powerful]

Learning and Intelligent Systems Lab, TU Berlin 3/31



• Imagine want to model M

• Imagine you want to train a neural network to predict x ∈M

• Would you come up with that representation:

M = {c ∈ C : [zk+1 ← z2
k + c] converges, with z0 = 0}

[implicit, requires computation for decoding, extremely powerful]

Learning and Intelligent Systems Lab, TU Berlin 3/31



Reasoning as computational decoding of an
implicited representation of behavior

“Goals”, “tasks”, “constraints” are the latent code (latent variables)
of that representation
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◦
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• “perhaps we can think big again in robotics..”
– general purpose LLMs

– general purpose physical reasoning

– general purpose robotic manipulation

• “Do we need a cognitive architecture debate again?”
– LLMs and TAMP distinguish higher-level decisions from skills/control

– Raises question of right abstractions/representations/interface

– Action & scene representations
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Action Representation
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• SayCan, CLIPort, etc, also TAMP assume given/pre-trained skills

• Skill learning, skill discovery, state/action abstraction learning, options,
hierarchical RL... discussed for decades

– Typical RL-researchers view: A skill/option/primitive defined by policy πi : x 7→ u, often
maximizing an associated reward Ri, perhaps initiation/termination sets

What are alternative views?
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◦
Boston Dynamics (2018)

• We should have a “glue” between such kind of reactive control and higher-level
TAMP/LLMs
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Implicit Action Representations

• Higher level decisions are about which objectives/constraints are active

• Consider we have a library {φi(x)} of objective/constraint functions
– A higher-level decision is set φi(x) as active objective

– Decisions are functions passed to a lower-level control loop

explicit: πi(u|x) implicit: u = argminu MPC({φi}active)

– cp. conditional random fields, energy-based models, implicit functions

• Why?
– φi are easier to learn (or hand-code)?

– Great generalization & compositionality
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Sequence-of-Constraints MPC

◦
• MPC through a given sequence of constraints φ1:K

Sequence-of-Constraints MPC: Reactive Timing-Optimal Control of Sequential Manipulation, Toussaint, Harris, Ha, Driess, Hnig.
IROS 2022
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Related Work

Using pre-defined controllers per action:
Representing robot task plans as robust logical-dynamical systems, Paxton, Ratliff, Eppner, Fox. IROS 2019

Reactive task and motion planning under temporal logic specifications, Li, Park, Sung, Shah, Roy. ICRA 2021

... or interpreting reference trajectories relative to objects:
Object-centric task and motion planning in dynamic environments, Migimatsu, Bohg. RAL 2020

... or online kino-dynamic replanning:
Modeling and planning manipulation in dynamic environments, Schmitt, Wirnshofer, Wurm, v Wichert, Burgard. ICRA 2019
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Sequence-of-Constraints MPC (SecMPC)

• Provided from higher-level (e.g. TAMP):
Sequence of

– waypoint constraints φ̂1:K
– running constraints φ̄1:K

which impose φ̂i(ξ(ti)) ≤ 0 and φ̄i(ξ(ti-1 < t ≤ ti)) ≤ 0

• Problem:
– robustly transition through them

– backtrack if a constraint is missed
(“re-initiation”)
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Problem Formulation

• Org. SecMPC Problem:

min
ξ,t1:K

tK + α

∫ tK

0
c(ξ(t), ξ̇(t), ξ̈(t)) dt

s.t. ξ(0) = x, ξ̇(0) = ẋ, ξ̇(tK) = 0 ,

∀k : 0 < tk < tk+1 ,

∀k : φ̂k(ξ(tk)) ≤ 0,

∀t∈[tk-1,tk]
: φ̄k(ξ(t)) ≤ 0 .

• Approximate decomposition:
In each MPC cycle, sequentially solve:

1) Waypoints sub-problem:

min
x1:K

∑K
k=1 c̃(xk-1, xk)

s.t. ∀k : φ̂k(xk) ≤ 0, φ̄k(xk-1, xk) ≤ 0

2) Timing sub-problem:

min
τ1:K ,v1:K-1

∑K
k=1 τK + α

∑K
k=1 ψ(xk-1, vk-1, xk, vk, τk) ,

with cubic spline piece cost ψ

3) Receding horizon path sub-problem:

min
ξ

∫H
0 α ξ̈(t)2 + ||ξ(t)− ξ∗(t)||2 dt

s.t. ξ(0) = x, ξ̇(0) = ẋ ,

∀t∈[0,H] : φ̄k(t)(ξ(t)) ≤ 0

where ξ∗ is defined by timed waypoints.Learning and Intelligent Systems Lab, TU Berlin 14/31



MPC cycle

• In each cycle (∼10Hz in experiments)
– solve for sequence of waypoints xκ:K given x, τκ:K

– solve for timing τκ:K , vκ:K given xκ:K

– solve for path ξH given τκ:K , xκ:K , vκ:K

But also:
– Maintain which constraints κ : K are still ahead

– Loosing a constraint, ||φ̄κ(x)|| > θ̄, ⇒ backtrack κ← κ− 1

• Could be viewed as continuous TAMP replanning, but only “within skeleton”
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More details in the paper

• Alternating MPC steps ∼ coordinate descent, but sub-problems are
approximations!

• Temporal (Bellman) Consistency of timing MPC:
“Sanity check theory”: Iff there were no perturbations, opt. timings in two consecutive MPC steps are consistent;
stationarity of control except for phase variable (backtracking).

• Comparison of gains/convergence with Linear Regulator
Timing optimization implies interesting gain profile – cp. to (clipped) linear regulator: much more explicit

convergence within finite time with low gains

• Time-of-no-return when approaching a waypoint
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You can never thread an infinitesimal needle – you will always slighly miss noisy constraints
→ allow for a margin, or follow no-abort policy if constraint is very soon
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Demonstrations

• Pushing scenario:

Sequence of four constraints φ1:4
– φ̂4: red & green touch

– φ̂3: stick touches (into) red
opposite to the final red pose

– φ̂2, φ̂1: approach
opposite to final red pose

• Pick-and-place scenario

• Drone-through-gates scenario

◦

• All looping behavior is implicit!
– running constraints missed→ backtrack

– final waypoint constraint lost→ backtrack

• Code & videos:
https://www.user.tu-berlin.de/mtoussai/22-SecMPC/

Learning and Intelligent Systems Lab, TU Berlin 17/31

https://www.user.tu-berlin.de/mtoussai/22-SecMPC/


Action Representation – Discussion

• Higher-level decisions concern sequence of constraints

• The controls u also depend on future high-level decisions
– Cp. to skill πi(u|x), where u only depends on current high-level decision i

– Skills/options/hierRL are strictly temporally hierarchical (sMDP) – SecMPC is not!

Learning and Intelligent Systems Lab, TU Berlin 18/31



Side note: Planning-as-Inference
CONSTRAINTS

GOALS

C
U

R
R

E
N

T
 S

T
A

T
E

ACTIONS

SUB−GOALS

We condition on future goals/constraints and infer actions/motion.

Probabilistic inference for solving discrete and continuous state Markov Decision Processes, Toussaint & Storkey. ICML’06

Planning as probabilistic inference, Botvinick & Toussaint. Trends in CogSci 2012

Scalable Multiagent Planning Using Probabilistic Inference, Kumar, Zilberstein & Toussaint. IJCAI’11 & JAIR 2015

On stochastic optimal control and reinforcement learning by approximate, Rawlik, Toussaint & Vijayakumar. R:SS’12

Learning and Intelligent Systems Lab, TU Berlin 19/31



Action Representation – Discussion

• Is that a promising action representation also for learning systems? LLMs?

• Inherits strong generalization and compositionality of MPC

• “φi are easier to learn” ?
– Skill learning→ Constraint learning

Learning and Intelligent Systems Lab, TU Berlin 20/31



Scene Representation
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• What is input to higher-level decision making and control?

• Standard TAMP: full information setting
“full-information setting” (aka. “privileged setting”): full model knowledge, full state information, no uncertainty, not need for
perception or control

• SayCan and similar: “only” textual scene description as input→ missing out
direct geometric information

How exploit structure of 3D space, objects, physics?

Learning and Intelligent Systems Lab, TU Berlin 22/31
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Field Representations of Objects

• Represent object i as image-conditional field yi(x) ∈ Rd in 3D space
– e.g. Neural Descriptor Fields, NeRFs, SDF, Pixel-Aligned Implicit Functional Objects

– Captures locality in 3D space, out-projects affordances into space, smooth gradients

• Two instances:
– Field representations to learn task constraints (grasping, hanging)

Deep Visual Constraints: Neural Implicit Models for Manipulation Planning from Visual Input, Jung-Su Ha, Danny Driess,
Marc Toussaint. arXiv:2112.04812, RAL 2021

– Field representations to learn dynamics (dynamics of pushing & deformation)
Learning Multi-Object Dynamics with Compositional Neural Radiance Fields, Danny Driess, Zhiao Huang, Yunzhu Li, Russ
Tedrake, Marc Toussaint. arXiv:2202.11855, CoRL’22

Danny
Driess

Jung-Su
Ha
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Field Representations of Objects

“High-level decisions are functions φ passed to a lower-level control loop”

Neural field representations yi(x) 7→ neural constraint functions φ1:K

Learning and Intelligent Systems Lab, TU Berlin 24/31



Pixel-Aligned Implicit Functional Objects (PIFO)

Deep Visual Constraints: Neural Implicit Models for
Manipulation Planning from Visual Input, Jung-Su Ha,
Danny Driess, Marc Toussaint. arXiv:2112.04812, RAL
2021

• We have V camera views, images I =

{(I1,K1), ..., (IV ,KV )}, want to learn function

φ(x; I)

• We first train a d-dimensional field (“Pixel-
Aligned Implicit Functional Object”), x ∈ R3,

y(x; I) =
1

V

∑
i

MLP(UNet(Ii,Ki(x)),Ki(x))

• Field is queried at finite set of interaction points
x1, .., xK to get the feature

φ(x) = MLP(y1(x; I), .., yK(x; I))

Learning and Intelligent Systems Lab, TU Berlin 25/31
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Training Objectives: Distance Decoding & Task Constraints

• Field representation is trained for SDF decoding – cheap supervised data

• Constraint heads φi are trained for prediction of stable hanging, succesful
grasping

– More expensive supervision data: empirical success in simulation

– Random grasp / hanging configurations in simulation→ run→ evaluate success

→ supervised learning of φi

“Skill learning→ Constraint learning” (cp. reward learning, invRL)

Learning and Intelligent Systems Lab, TU Berlin 26/31
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Execution with Learned Constraints

(No search over skeletons, no reactive MPC, just optimal path for given sequence of constraints.)

◦ ◦
Deep Visual Constraints: Neural Implicit Models for Manipulation Planning from Visual Input, Jung-Su Ha, Danny Driess, Marc
Toussaint. arXiv:2112.04812, RAL 2021

Learning and Intelligent Systems Lab, TU Berlin 27/31



Image-Based Multi-Object Dynamics

◦
https://dannydriess.github.io/compnerfdyn/

Learning Multi-Object Dynamics with Compositional Neural Radiance Fields, Danny Driess, Zhiao Huang, Yunzhu Li, Russ
Tedrake, Marc Toussaint. arXiv:2202.11855, CoRL’22

• Similar in spririt, but learn multi-object dynamics (also deformable)
– Cheap supervision of representation learning via compositional NeRFs

– Training GNNs on latent NeRF encoding to predict dynamics
Learning and Intelligent Systems Lab, TU Berlin 28/31

https://dannydriess.github.io/compnerfdyn/


Embodied Multimodal Language Model

• Multi-modal sentences (interleaved text & images & state) as input to LLMs

entity self-reference

<emb>  <img>  … Q: How to grasp blue block? A: First grasp yellow block

Large Language Model (PaLM)

?
TBD

<emb>  <img>   … Q: How to grasp blue block? A: First grasp yellow block

?

Various Input Encoders

"How"

Vision 
Transformer

TBD Neural 3D 
Scene Enc.

TBD Obj. Vision 
Transformer

State Emb.

Text Emb.

Embodied Visual Language Model Training & Finetuning

loss gradients

on arxiv today...

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel
Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor
Mordatch, Pete Florence

Learning and Intelligent Systems Lab, TU Berlin 29/31



Discussion

“Reasoning as decoding of an implicited representation of behavior”

• Do we need reasoning? (TAMP vs. LLM)
– TAMP: Understand structure of sequential manipulation

– TAMP: Impressive generalization – target for what we should achieve in real, BUT
full-information planning

– LLM: exploit massive data, sensor-based high-level reasoning

– LLMs as heuristic for TAMP? Or TAMP as data generator for LLM?

• Lower level:
– Implicit Action Representations, e.g., MPC

– Supervised (constraint/reward learning, BC) over RL?

Learning and Intelligent Systems Lab, TU Berlin 30/31
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