
Truncated Gaussian Expectation Propagation for motion plan-
ning under hard constraints

When truncating a Gaussian distribution (multiplying with a heavyside function)
we can approximate the remaining probability mass with another Gaussian, the
mean and variance of which can be compute analytically. We can use this for ap-
proximate inference of motion trajectories under hard constraints: Collision and
joint limit avoidance imply messages of the form of heavyside functions; using EP
we can approximate the motion posterior.

Note: Herbrich has already an (unpublished) technical note on EP with truncated
Gaussians (http://research.microsoft.com/pubs/74554/EP.pdf) So that’s not so novel.
But I’ve never seen it applied.

Problem: Let x ∈ R and g(x) = e−x2/2 and θ(x) = [x ≥ 0] (the heavyside func-
tion). We want to compute a Gaussian approximation of g(x)θ(x), that is, the inte-
grals ∫ ∞

z
e−x2/2 x dx and

∫ ∞
z

e−x2/2 x2 dx (1)

Norm:∫ z

0
e−t2 dt =

√
π

2
erf(z) (2)∫ ∞

z
e−x2/2 dx =

√
2

∫ ∞
z/
√

2
e−t2 dt =

√
π/2 [1− erf(z/

√
2)] (3)

Mean:∫ ∞
z

e−x2/2 x dx (4)

= −
∫ −∞
− 1

2
z2

et dt = −
[
et

]−∞
−z2/2

= −
[
0− e−z2/2

]
= e−z2/2 (5)

Variance:

In(z, a) =
∫ ∞

z
e−ax2

xn dx (6)

∂

∂a
In(z, a) =

∫ ∞
z

e−ax2
(−x2) xn dx = −In+2(z, a) (7)

∂

∂a
erf(
√
az) =

a−1/2z

2
2√
π
e−az2

(8)

I2(z, a) = − ∂

∂a
N(z, a) (9)

1

Algorithm 1 Truncated Standard Gaussian
1: Input: z
2: Output: norm n, mean m, variance v
3: n =

√
π/2[1− erf(z

√
2)]

4: m = exp(−z2/2)/n
5: v = 1 + zm−m2

= a−3/2

√
π

4
[1− erf(

√
az)] + a−1/2

√
π

2
[
a−1/2z√

π
e−az2

] (10)

= a−3/2

√
π

4
[1− erf(

√
az)] +

z

2a
e−az2

(11)

I2(z,
1
2
) =

√
π/2 [1− erf(z/

√
2)] + z e−z2/2 (12)

Higher order moments... With (7) we can compute any higher order moments

Summary

normN =
√
π/2 [1− erf(z/

√
2)] (13)

meanM = e−z2/2/N (14)

varianceV = 1 + zM −M2 (15)
(16)

1 General case

We now have a n-dim Gaussian and heavyside function

f(y) = N(y|a,A) ∝ exp{−1
2
(y − a)>A-1 (y − a)} (17)

θ(y) = [[c>y + d ≥ 0]] (18)

where [[·]] is the indicator function. We transform this problem such that the Gaus-
sian becomes a standard Gaussian and the constraint is aligned with the x-axis.
We need two transformations for this: first a linear transform to standartize the
Gaussian, then a rotation to align with the x-axis. Let A = M>M be the Cholesky
decomposition (A-1 = M -1M−>) and we define x = M−>(y − a). We have

f(x) = exp{−1
2
x>x} (19)

t(x) = [[c>(M>x+ a) + d ≥ 0]] = [[v>x+ z ≥ 0]] , (20)

v := Mc/|Mc| , z := (c>a+ d)/|Mc| (21)

Note that we defined v to be normalized. (If |Mc| is zero the truncation has no
effect or zero likelihood, depending on whether d > 0 or d < 0, respectively.) We

2

Algorithm 2 Truncate Gaussian
1: Input: mean a, covariance A, constraint coeffs c, d
2: Output: mean b, covariance B
3: MTM = A // Cholesky decomposition
4: z = (c>a+ d)/|Mc|
5: v = Mc/|Mc|
6: R = rotation onto v // as in equation (22)
7: (m, v) = Truncated Standard Gaussian(z)
8: b = M>R(m, 0, .., 0) + a
9: B = M>Rdiag(v, 1, .., 1)R>M

define a rotation that rotates the unit vector e = (1, 0, .., 0) onto v. In 4D we choose
the rotation

R =

0BBBBBBB@

v1 −v2 −v3 −v4
v2 v3 −v4 −v1
v3 v4 v1 −v2
v4 v1 v2 v3

1CCCCCCCA
(22)

which generalizes to arbitrary dimensionality. We define x′ = R-1x. We have v =
Re and

f(x′) = exp{−1
2
x′>x′} (23)

θ(x′) = [[v>Rx′ + z ≥ 0]] = [[(R-1v)>x′ + z ≥ 0]] = [[x′1 + z ≥ 0]] (24)

That is, θ(x′) truncates along the first axis in the x′ coordinate system. Given the
mean m and variance v of the z-truncated standard Gaussian, we have

f(x′) θ(x′) ≈ N(x′|b′, B′) (25)
b′ = (m, 0, .., 0) (26)
B′ = diag(v, 1, .., 1) (27)

We undo the transformation x′ = R-1M−>(y − a) and get the result

f(y) θ(y) ≈ N(y|b, B) (28)

b = M>Rb′ + a (29)

B = M>RB′R>M (30)

In summary, the mean and covariance of the truncated Gaussian is

gnuplot
a = .37
z = -.5
f(x) = exp(-a*x**2.)
h(x) = (sgn(x-z)+1)/2.

fnorm = sqrt(pi/a)
norm = a**(-1./2.)*sqrt(pi)/2.*(1.-erf(sqrt(a)*z))
mean = exp(-a*(z**2.))/(2.*a)/norm
sumOfSqr = a**(-3./2.)*sqrt(pi)/4.*(1.-erf(sqrt(a)*z)) + z/(2*a)*exp(-a*z**2)
var = sumOfSqr/norm-mean**2

g(x) = exp(-.5/var*(x-mean)**2)

plot [-3:5] f(x),h(x),norm*g(x)/fnorm

print ’mean=’,mean,’, sumOfSqr=’, sumOfSqr/norm, ’, var=’,var

3

