Truncated Gaussian Expectation Propagation for motion plan-
ning under hard constraints

When truncating a Gaussian distribution (multiplying with a heavyside function)
we can approximate the remaining probability mass with another Gaussian, the
mean and variance of which can be compute analytically. We can use this for ap-
proximate inference of motion trajectories under hard constraints: Collision and
joint limit avoidance imply messages of the form of heavyside functions; using EP
we can approximate the motion posterior.

Note: Herbrich has already an (unpublished) technical note on EP with truncated
Gaussians (http:/ /research.microsoft.com/pubs /74554 /EP.pdf) So that’s not so novel.
But I've never seen it applied.

Problem: Letz € Rand g(z) = e *"/2and 6(z) = [z > 0] (the heavyside func-
tion). We want to compute a Gaussian approximation of g(z)6(z), that is, the inte-
grals
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Algorithm 1 Truncated Standard Gaussian
1: Input: 2
Output: norm n, mean m, variance v

n = +/7/2[1 — erf(z1/2)]
m = exp(—22/2)/n
v=1+2zm—m?
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= a3/2\{f (1 —erf(vaz)] + % e’ (11)
I(z, %) = /721 —erf(z/V2)] + 2 e/ (12)

Higher order moments... With (7) we can compute any higher order moments

Summary
normN = /7/2 [1 — erf(z/V/2)] (13)
meanM = e_ZQ/Q/N (14)
varianceV = 1+ zM — M? (15)
(16)
1 General case
We now have a n-dim Gaussian and heavyside function
1
() =N(yla, A) < exp{—5(y —a)’ A" (y — a)} (17)
0(y) = llc'y +d > 0]] (18)

where [[-]] is the indicator function. We transform this problem such that the Gaus-
sian becomes a standard Gaussian and the constraint is aligned with the z-axis.
We need two transformations for this: first a linear transform to standartize the
Gaussian, then a rotation to align with the z-axis. Let A = MM be the Cholesky
decomposition (A? = MM ~T) and we define z = M~ '(y — a). We have

£() = exp{~ ') (19)
t(@) = [['(M'e+a)+d > 0] =o'z +2 > 0], (20)
vi=Mc/|Mc|, z:=(c'a+d)/|Mc| (21)

Note that we defined v to be normalized. (If |M¢| is zero the truncation has no
effect or zero likelihood, depending on whether d > 0 or d < 0, respectively.) We
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Algorithm 2 Truncate Gaussian

1: Input: mean a, covariance A, constraint coeffs ¢, d
Output: mean b, covariance B

MTM=A // Cholesky decomposition
z=(cla+d)/|Mc|

v=Mec/|Mc|

R = rotation onto v // as in equation (22)
(m,v) = Truncated Standard Gaussian(z)

b= M"R(m,0,..,0) +a

B = MTRdiag(v, 1,..,1)RTM

define a rotation that rotates the unit vector e = (1,0, ..,0) onto v. In 4D we choose
the rotation

V1 —V2 —V3 —U4
R=1|Y2 Us ~—V4 —U1 (22)
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which generalizes to arbitrary dimensionality. We define 2’ = R'z. We have v =
Re and

f(x') = exp{— %m’Tx’ (23)
0(z') = [[v'Ra' + 2 > 0]] = [[(R"v) "2’ + 2 > 0] = [z} + 2 > 0] (24)

That is, 6(2’) truncates along the first axis in the 2’ coordinate system. Given the
mean m and variance v of the z-truncated standard Gaussian, we have

f(a") 6(2") =~ N(2'|V, B') (25)

v = (m,0,..,0) (26)

B’ = diag(v, 1, ..,1) (27)
We undo the transformation 2’ = R1M ~T(y — a) and get the result

fy) 6(y) = N(y|b, B) (28)

b=M'RV +a (29)

B=M'RB'R'M (30)

In summary, the mean and covariance of the truncated Gaussian is

gnuplot

a = .37

z = -.5

f(x) = exp(-axx*%2.)
h(x) = (sgn(x-z)+1)/2.

fnorm = sqrt(pi/a)

norm = a**(-1./2.)*sqrt (pi)/2.+(1l.-erf(sqrt(a)=*z))

mean = exp(-ax(zx*2.))/(2.*a)/norm

sumOfSqgr = axx(-3./2.)xsgrt(pi) /4. (l.-erf(sqrt(a)*z)) + z/(2+*a)x*exp(-axz**2)
var = sumOfSqr/norm-mean*2

g(x) = exp(-.5/var*(x—mean) x*2)
plot [-3:5] f(x),h(x),norm*g(x)/fnorm

print ’‘mean=’,mean,’, sumOfSqr=’, sumOfSgr/norm, ', var=',var



