
libORS
Open Robot Simulation Toolkit

Marc Toussaint

September 7, 2011

Contents

1 Installation & testing 1

2 Scope & overview 1

3 Source code guide 1
3.1 ORS data structures 1

4 Tools 2
4.1 ors editor and the ors-file format 2
4.2 ors fileConverter 3

A Thinking in sequences of transformations 3

1 Installation & testing

The README file has more detailed installa-
tion instructions. The super quick way: on
Ubuntu/Debian copy this to your console:
sudo apt-get install liblapack-dev freeglut3-dev \

libqhull-dev libf2c2-dev
wget http://user.cs.tu-berlin.de/˜mtoussai/source-code/libORS.10.1.tgz
tar xvzf libORS.10.1.tgz
cd libORS
make
cd test/ors
./x.exe

Then test all executables x.exe in the directories
test/*.

2 Scope & overview

Basic tools for robot simulation. The lib defines basic
data structures to describe robot configurations (trees/-
graphs of rigid bodies), implements the basic computa-
tion of kinematic/Jacobian/Hessian functions, and links
to many external libraries and engines for more sophisti-
cated things. It uses:

• SWIFT++ to compute shape distances/collisions

• Featherstone’s Articulated Body Dynamics as an im-
plementation of exact dynamics on articulated tree
structures (much more precise than IBDS or ODE)

• IBDS (a rather robust impuls-based physical simula-
tor)

• ODE (I don’t like it)

• OpenGL for display

• read/write of file formats for robot configurations,
shape/mesh files (e.g., obj files), etc

3 Source code guide

Read the header
– ors.h

3.1 ORS data structures

• Check the Array class in array.h - it’s yet another
generic container class. There are many reasons why
I decided reimplementing such a generic container
(instead of using std::vector, blast, or whatever):

– it’s fully transparent, easy debugging

– very robust range checking

– direct linkage to LAPACK

– tensor (multi-dimensional array) functions which
are beyond most existing matrix implementations

– etc

Anyway, the Array class is central in all my
code. To get a first impression of its usage,
check the test/array. In the context of ORS, we
mainly use double arrays to represent vectors,
matrices and do linear algebra, note the typedef
typedef MT::Array<double> arr;

• Lists, Graphs, etc In my convention a List is simply an
array of pointers. Since arrays allow memmove op-
erations, insertion, deletion etc are all O(1). I also
represent graph structures via lists: e.g. a list of
nodes and a list of edges, a node may maintain a list
of adjoint edges, etc.

For Lists (Arrays of pointers) it makes sense to have
additional methods, like calling delete for all point-
ers, or writing the referenced objects to some output
– at the bottom of array.h there are a number of
template functions for lists and graphs.

1

file:/html/ors_8h-source.html
file:/html/array_8h-source.html
file:/html/array_8h-source.html

libORS
Open Robot Simulation Toolkit, Marc Toussaint—September 7, 2011 2

• See the ors.h file. It defines a number of triv-
ial data structures and methods that should be self-
explanatory:

– Vector

– Matrix

– Quaternion

– Frame (a coordinate system)

– Mesh (a triangulated surface)

– Spline

• Given these types, a dynamic physical configuration
is defined by lists of the following objects

– Body: describes the physical (inertial) properties
of a rigid body. This is mainly simply a Frame (po-
sition, orientation, velocities). Optionally (for dy-
namic physical simulation) this also includes inertial
properties (mass etc) and forces.

– Joint: desribes how two bodies are geometrically
linked and what/where its degree of freedom is. The
geometry of a Joint is given by a rigid transformation
A (from body1 into the joint frame), a free transfor-
mation Q (the transformation of the degrees of free-
dom), and a rigid transformation B (from the joint
frame to body2). Overall, the transformation from
body1 to body2 is the concatenation B ◦Q ◦A.

– Shape: describes the collision and shape properties
of a rigid body. To each rigid body we may associate
multiple Shapes, like primitive shapes (box, sphere,
etc) or Meshes; each shape has a relative transforma-
tion from its body.

– Proxy: describes a proximity between two shapes,
i.e., when two shapes are close to each other. This
includes information like the closest points on the
two shapes and the normal. This information is com-
puted from external libraries like SWIFT.

• The Graph data structure contains the lists of these
objects and thereby describes the configuration of
the whole physical system. It includes a number of
low level routines, in particular for computing kine-
matics, Jacobians, dynamics etc. We don’t describe
these routines here – the SOC abstraction will pro-
vide a higher-level interface to such quantities which
is closer to the mathematical notation of stochastic
optimal control.

Use the ors editor application to define your own
physical configuration (described later in the user’s
guide). Learning to define a configuration should
also give you sufficient understanding of the Body,
Joint, and Shape data structures.

4 Tools

4.1 ors editor and the ors-file format

• ors editor is a very simple program that helps
editing ors-files. ors-files contain the defi-
nition of a physical configuration. See the
directory test/ors_editor, the binary
program is test / ors editor /x.exe, a symbolic
link bin/ ors editor exists. It works like this:
emacs test.ors &
./ors_editor test.ors &

Then you edit the test.ors file in your standard text
editor (here, emacs). Whenever you like, you press
enter within the OpenGL window to update the dis-
play – when you made mistakes in the syntax, error
messages will be output to the console.

• The general syntax of the ors-file is very
simple: it lists elements in the syntax
elem_type elem_name (list of parents) { key-value list }

(This is a general hypergraph syntax, which I also
use in other contexts (factor graphs), where elements
may connect an arbitrary number of parent elements;
nodes are special case in that they connect no par-
ents, edges are special case in that they connect ex-
actly two parents, etc)

In our case we have three possible types:
body, joint, shape. This is a simple example:
#any comment after a # sign

body base (){
X=<t(0 0 1)> #coordinate system of this body

}

body arm {}

shape some_shape_name (arm) {
rel =<d(10 0 1 0)> #rel . transf . torso -> shape
type=2
size=[0 0 1 .1]

mesh=’filename.tri’ #if you had a mesh file: set type=3
}

joint some_joint_name (base arm){
A=<t(0 0 .5) d(90 0 1 0)> #rel . transf . torso -> joint
B=<t(0 0 .5)> #rel . transf . joint -> arm

}

The attribute list is simply a list of tag=something
declarations. The ‘something’ can be a single dou-
ble number, an array [1 2 3 4] of numbers, a string in
quotes, a transformation < · · · >, or a list of strings
in parenthesis (string1 string2 etc). Generally, you
can set any attributes you like. But only some spe-
cial tags have effects right now – the most important
ones are explained in the example. See the routines
ors::Body::read, ors::Joint::read, ors::
Shape::read for details on which attributes have
actually effects. The routine ors::Graph::read

file:/html/ors_8h-source.html
file:/html/structors_1_1Body.html
file:/html/structors_1_1Joint.html
file:/html/structors_1_1Shape.html
file:/html/structors_1_1Shape.html
file:/html/structors_1_1Graph.html

libORS
Open Robot Simulation Toolkit, Marc Toussaint—September 7, 2011 3

parses a whole ors-file and creates the respective
data structures.

• We need to explain coordinate systems and how to
specify transformations. A transformation is given
as a sequence of primitive transformations enclosed
in brackets <...>. The most important primitive
transformations are a translation t (x y z), a rotation
d(degrees axis x axis y axis z). Concatenating them you
can generate any transformation. See the ors::

Frame::read routine to learn about all primitive
transformations.

Every body has its own coordinate system (position
and rotation in world coordinates), which you can
specify with X=<...>. Also every joint has its own co-
ordinate system – we assume that the x-axis is al-
ways the rotation axis of the joint. One can spec-
ify the coordinate system of a joint directly with
X=<...> (in world coordinates), or the relative trans-
formations from parent→joint→child with A=<...>

and B=<...>, respectively. Specifying all these trans-
formations at the same time is redundant, of course.
Whatever transformations you do not specify (in-
cluding body coordinates), the parser tries to com-
pute from the given absolute or relative transforma-
tions and the tree structure of the kinematics. [[This
doesn’t work fully automatically in the current ver-
sion!]]

4.2 ors fileConverter

To view, convert, resize, and cleanup meshfiles, there is
a little application test/ors_fileConverter/x.exe

(and a symbolic link bin/ ors fileConverter). It simply
provides an application interface to the function-
alities of the ors::Mesh data structure. Please
see the test/ors_fileConverter/main.cpp to
learn about all functionalities. Test something like
./ors_fileConverter filename.obj -view -box
./ors_fileConverter filename.stl -view -box -center -qhull -save

A Thinking in sequences of transfor-
mations

An intuitive way to describe transformations is to spec-
ify a sequence of translations and rotations. The turtle
way to do this is to assume that each transformation is in-
terpreted relative to the “current” carried-along turtle frame.
For instance, if A and B are two rotations. Then the tur-
tle notation 〈A ·B〉 describes the transformation that first
rotates A and then rotates B which is interpreted rela-
tive to the coordinate frame that is the outcome of the
A rotation. Let us compare this to standard math nota-
tion: The matrix expression (AB)x = A(Bx) means to
first apply B on the vector x (both represented in “world

coordinates”) and then apply A on Bx (again both rep-
resented in “world coordinates”). The turtle notation
〈A ·B〉 means to first apply A on x and then ABAT (i.e.,
B interpreted relative to the outcome frame of the A rota-
tion) on Ax. But that is the same as (ABAT)(Ax) = ABx.
In conclusion, the turtle notation 〈A ·B〉 describes exactly
the same transformation as the matrix expression AB –
but the turtle notation interprets this as first applying A

and then applying B (interpreted relative), whereas the
matrix expression means first applying B (intepreted in
global coordinates) and then A. The same also works
for translations: When T is a translation 〈T ·A〉 means
a translation by a vector T followd by a rotation where
A is intepreted as a rotation around the current frame ori-
gin T and not around the world coordinate origin. Thus,
applying 〈T ·A〉 on a vector x we get T + Ax, which in
affine matrix notation is the same as TAx. Again, the tur-
tle interpretation is first applying T then A, whereas the
matrix intepretation is first applying A and then the affine
translation T .

The turtle view on concatenating transformations is
rather intuitive, especially for mechalically linked system
where we think of one body being attached to another. It
also corresponds to the usual OpenGL thinking of stack-
ing transformations, where (in GL PROJECTION mode) we
typically first load the identity matrix (glLoadIdentity), and
then “add” transformations on top (using glTranslate or
glRotate). This procedure directly corresponds to the turtle
notation.

ORS uses the following ascii notation for transforma-
tions

t (x y z) translation by (x, y, z)

q(q0 q1 q2 q3) rotation by a quaternion (q0, q1, q2, q3)

r (r x y z) rotation by r radians around the axis (x, y, z)
d(d x y z) rotation by d degrees around the axis (x, y, z)
v(x y z) addition of linear velocity (x, y, z)

w(x y z) addition of angular velocity (x, y, z)

s(x z y) a scaling (diagonal matrix) with factors (x, y, z)
For instance the notation <t(0 0 1) d(90 1 0 0)> means a
translation along the z-axis followed by a rotation (90
degrees) around the x-axis.

file:/html/structors_1_1Frame.html
file:/html/structors_1_1Frame.html
file:/../test/ors_fileConverter/x.exe
file:/html/structors_1_1Mesh.html
file:/../test/ors_fileConverter/main.cpp

	Installation & testing
	Scope & overview
	Source code guide
	ORS data structures

	Tools
	orseditor and the ors-file format
	orsfileConverter

	Thinking in sequences of transformations

