SWIFT++
Speedy Walking via Improved Feature Testing for Non-Convex Objects
http://www.cs.unc.edu/~geom/SWIFT ++/

Decomposer Manual

Stephen A. Ehmann

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

ehmann@cs.unc.edu
http://www.cs.unc.edu/~ehmann/

Introduction

SWIFT++ is a collision detection package capable of detecting intersection, performing tolerance
verification, computing approximate and exact distance, or determining the contacts between pairs
of objects in a scene composed of general rigid polyhedral models.

It is a robust and efficient library shown to be substantially faster than currently available
packages. It is a powerful package from its input interface to its query interface providing a
rich feature set. There are many settings available but the basic principles are rather simple and
straightforward.

In order for models to be used by the SWIFT++ library, they must first be preprocessed. The
decomposer program, for which this document is the manual, is the program that does most of
the preprocessing. It takes a basic model description and converts it into a format that SWIFT++
can use efficiently. Please refer to the application manual for information on using the SWIFT++
library in an application.



Contents

License Agreement

Build, Installation, and Execution
Overview

Preprocessing Pipeline

Command Line Syntax and Options
Graphical User Interface
Decomposition Algorithms

Hierarchy Construction Algorithms

© © N oo g M W NP

Decomposer Failure and “What to do about it”

[EEN
©

Decomposer Model Input File Formats

1 License Agreement

The decomposer program and the SWIFT++ library are Copyright 2001 The University of North
Carolina at Chapel Hill. The decomposer program uses a slight modification of the RAPID system
(included in the distribution) that is Copyright 1995 The University of North Carolina at Chapel
Hill. The LICENSE file that accompanies the distribution gives in detail what this means along
with the restrictions on any executable that the library is linked with. It also covers redistribution
and code modifications. All the source code is C++ and is included in the distribution.

2 Build, Installation, and Execution

Assuming that the distribution has been unpacked into the directory SWIFT++/, follow these steps
to get a built decomposer:

e If compiling using VC++ 6.0 use decomp.dsw found in the SWIFT++/decomposer/ direc-
tory.

e Else if compiling for some Unix, do the following:

— Look through SWIFT++/Makefile and set CC to point to the proper compiler and
CFLAGS to the desired compile flags.

— Make sure that the Qhull library exists somewhere on the system. Make sure that the
QHULL _DIR variable in SWIFT++/Makefile points to its location (the Qhull include
files as well as the compiled library should be in the same place).

2



— Type “make decomposer” in the SWIFT++/ directory. This will cause a couple of li-
braries to be compiled as well as the source for the decomposer program. The decom-
poser is then created by linking. The default decomposer is the command line-only one.
A graphical one may be created by typing “make decomposer_g” in the SWIFT++/ di-
rectory. The graphical decomposer must link to the OpenGL and TCL/TK libraries
(modify the LIBDIRS_G and LIBS_G variables in decomposer/src/Makefile). It may
also be used in command line mode (by giving the -g command line option). There
may be a few warnings throughout the process which can be safely ignored. The de-
composer program will be placed in the SWIFT++/bin/ directory and must be run from
there if a graphical decomposer was created (SWIFT++/bin/ must be the current work-
ing directory).

e Else you will have to create your own compiler configuration.

To understand how to run the decomposer program give the command line option “-h” or read the
rest of this manual.

3 Overview

SWIFT++ takes model descriptions as input in order to query proximity information about them.
In order to make SWIFT++ perform efficiently, some preprocessing is performed on the models.
This includes decomposing their surface into convex pieces followed by constructing a hierarchy
on the pieces. Both of these types of preprocessing are done by the decomposer.

Models to be used by SWIFT++ must first be run through the decomposition program if they
are non-convex. If there are no errors, the resulting file can be loaded into the SWIFT++ library
(by passing the filename of the file resulting from the preprocessing).

The preprocessing usually works on the first try but sometimes it fails. Various reasons for
this, as well as how to get around problems are discussed further in section 9. Next, a description
of the preprocessing pipeline is given, followed by a discussion of the command line options.

4 Preprocessing Pipeline

There are four stages to the preprocessing. The first two are optional and are mainly used for
getting around geometric problems and for optimization. The intermediate results may be saved
to files after any of the last three. The input to the pipeline is a model file in the TRI or the
POLY format, a decomposition (.dcp) file that was previously saved, a hierarchy (.chr) file that
was previously saved, or a user defined file format that is read by means of a plug-in file reader
(see section 10.2). If the input is a decomposition file, then the first three stages are not performed.
If the input is a hierarchy file, then neither is the fourth. In the other cases, the fourth stage is only
performed if it is enabled. The stages are:

1. Jitter: The coordinates of all of the vertices in the input model are jittered randomly with
an amplitude (up to an amount) that is specified by the user. This is useful if there are a lot

3



of flat edges in the model and the decomposer is giving errors. Usually a small perturbation
of the vertex positions will allow the preprocessing to go through.

2. Edge Flip: Sometimes there are a lot of nearly flat edges in the model which are non-
convex. Edge flipping may be used to introduce a small amount of user defined absolute
error in exchange for a “more convex” model which may yield a smaller number of pieces
when decomposed. By reducing the number of pieces, the memory requirements and the
query time are both reduced. The results after edge flipping may be saved to a TRI file.
Usually these files are given the extension .tri.

3. Decompose: The surface decomposition must be done by this program. SWIFT++ will
function incorrectly if you try to give it a non-convex model that has not been decomposed.
There are three decomposition variations available. The output of the decomposition may
be saved to a file. The file is binary and is usually given the extension .dcp. Decomposition
files may be read into SWIFT++.

4. Build Hierarchy: A hierarchy is built and may be saved to a binary file that is usually given
the extension .chr. There are four splitting methods to choose from. Hierarchy files may be
read into SWIFT++ and are the most efficient to use since the SWIFT++ system will simply
have to read the file rather than compute the entire hierarchy when it starts.

Statistics and status information is printed out after each stage. Refer to section 5 for the details
about how the user specifies the parameters to the above process. Some brief descriptions of the
algorithms that are used in the decomposer are given in sections 7 and 8.

The features (vertices, edges, and faces) present in the input TRI file, POLY file, or in the
arrays produced by a plug-in file reader, are the ones that the feature reporting mechanism in the
SWIFT++ query functions is based upon. If edge flipping is done and the application wishes to
have SWIFT++ report features, the user should make the decomposer save the edge flipped file so
that the application can see which features SWIFT++ is referring to. In any case, the application
may wish to have their own copy of the data so that features can be identified. SWIFT++ currently
does not provide interaction with its internal data structures.

5 Command Line Syntax and Options

The decomposer program is run according to the following syntax:
decomposer [options] input_filename

The input filename may refer to a file of type TRI or POLY, to a decomposition file, or to a
hierarchy file. The options that can be given to the program on the command line are:

-h or -help Print help information including these options and their descriptions

-g If a graphical decomposer has been built, it will run in command line mode (no graphics)



-j ampl Jitter the input at the given amplitude (stage 1)
-e err Edge flip using the given absolute error (stage 2)
-ef filename Save edge flip results to a file

-1 Decompose the model into only 1 piece. This is useful for forcing the decomposition to yield
a single piece. An example where this might be useful is in decomposing a cube composed
of triangles. The decomposer may create more than a single piece due to flat edges. When
using this option, the user is responsible for ensuring that the model is in fact convex.

-dfs Run the plain DFS decomposition (stage3)

-bfs Run the plain BFS decomposition (stage3)

-cbfs Run the cresting BFS decomposition (default stage3)

-df filename Save decomposition to a file

-hier Build hierarchy (stage 4)

-hf filename Save the hierarchy to a file. This option builds the hierarchy if needed.

-s split Type of splitting when building the hierarchy. Can be one of “MED”, “MID”, “MEAN”,
or “GAP”. See section 8 for the meaning of these.

The default behavior of the program is:

e No jittering

No edge flipping

Cresting BFS decomposition is used when decomposing

Hierarchy is not built

Split type is “MID” when building the hierarchy

There is no saving of any results.

6 Graphical User Interface

To be able to visualize either a decomposition or a hierarchy, you must build the graphical decom-
poser. To get a graphical user interface, simply run the program with the file you want to visualize.
It will decompose (if needed) and build the hierarchy (if specified). There are various keystrokes
that perform functions in the main view window. The mouse is used to navigate.

There are two main modes: decomposition and hierarchy. A decomposition of the model is
what is shown first. If the input is not a hierarchy file and the decomposer was not started with

5



either of the -hier or -hf options, the hierarchy mode will not be available. To switch between the
two modes, press the keys ‘d’ or “h’ or choose the mode from the menu on the right panel.

In either mode, navigation is possible by using the mouse. All three buttons can be used. Some-
times holding down <Shift> modifies the action of a mouse button. The functionality associated
with holding each of the three buttons down while moving the mouse is:

1.

Moving the mouse sideways causes the world to rotate around its center and about its Z axis.
Moving the mouse up and down causes the world to tilt. With the <Shift> key depressed,
moving the mouse keeps the viewing direction the same but moves the viewer’s position.

Moving the mouse sideways causes the viewpoint to translate sideways. Moving the mouse
up causes the viewer to move closer to the world. Moving the mouse down causes the viewer
to move further from the world. With the <Shift> key depressed, moving the mouse is like
driving a car. If you move up, the “car” goes forward, while moving down makes it go
backwards. Moving side to side is like steering.

Moving the mouse sideways causes the viewpoint to translate sideways. Moving the mouse
up or down causes the viewpoint to translate up or down. With the <Shift> key depressed,
you are in “trackball” mode and moving the mouse causes the model to rotate about its
center in whatever direction the mouse is being moved in.

There are various settings in the Display section of the panel to the right. They are:

Backface Culling: Draw backfacing triangles. If what you are looking at is not composed
of solids you can turn this on to see more. This is on by default.

Wireframe: Draw the geometry in wireframe. This is off by default.
Color: Draw the wireframe in color. This is on by default.

Axes: Turn on or off the axes. The world axes are the green ones and the axes at the center
of the model are the blue ones. This is on by default.

Center World: Centers view on the world center. This is also accomplished by keystroke
‘C’. This is useful if you get “lost” in the scene. The program starts off showing this view.

Set Center: Save the current view as the user’s center. This is also accomplished by
keystroke ‘s’. The saved view can be recalled later by the Center User command.

Center User: Centers view on the user’s center. This is also accomplished by keystroke ‘c’.

The settings in the Visualize section that are common to both modes are:

Explode: Toggle moving the shown convex polyhedra outwards from the object’s center to
be able to more clearly see the structure. This is off by default.

Virtual Faces: Draw the faces that were introduced by the decomposition or hierarchy
building process (i.e. non original model faces). This is off by default in decomposition
mode but on by default in hierarchy mode.

6



e Three Color: Draw the triangles in one of three colors depending on their classification
(ORIGINAL in green, CONTAINED in yellow, and FREE in red). Original faces are
normally assigned a random color to sort of show what piece they belong to while non-
original faces are drawn in gray. This is off by default.

If in decomposition mode, there are two additional items in this section. The edge convexity
toggle will turn on or off drawing of a wireframe mesh over the model showing the edge convex-
ity. Green edges are convex edges and red edges are non-convex edges. The text field shows the
pieces currently being shown. If the text field starts with the letter ‘A’ then all the pieces are shown
(this can quickly be done by pressing ‘a’ without clicking on the text field). Otherwise, the text
field is parsed and the specified pieces are shown. After typing the entry, press <Enter> to cause
the entry to take effect. An example entry like “0,2-9,200” would cause the pieces with indices
0,2,3,4,5,6,7,8,9, and 200 to be drawn.

In hierarchy mode the only additional item in the Visualization section is the upper leaves toggle.
If turned on, it will force the leaves at levels above the current level to be drawn. This may be
useful if one wishes to see all the leaves when at the lowest level of the hierarchy.

Various keystrokes can change the visualization. They are:

a In decomposition mode, show all the pieces (all are shown initially).
b Toggle backface culling.

c Center the view on the user’s center.

C Center the view on the world center.

d Change to decomposition mode.

h Change to hierarchy mode.

j or - If in decomposition mode, cycles through the pieces (showing one at a time) in descending
order. The piece index is shown in the text field in the Visualize section. In hierarchy mode,
descends the hierarchy (towards the leaves) showing entire levels at a time.

k or + Same as the previous set of keystrokes, but functioning in the opposite direction.
g Quit.

s Save the current view as the user’s center.

t Toggle three color mode.

v Toggle drawing of virtual faces.

w Toggle wireframe mode.

x Toggle exploding the pieces out from the center of the object.



7 Decomposition Algorithms

The decomposer program implements three variations of the same basic algorithm. A graph search
(either DFS or BFS) is done over the dual graph of the model. Faces are included in a convex
patch if they meet certain criteria. Basically, a convex hull is maintained which is never allowed
to intersect the original model’s surface in any place other than the faces that belong to the patch.
When no more faces can be included during a search, the patch is complete. The convex hull
that is maintained is called the convex piece. It will become a leaf in the convex hull hierarchy.
The graph search starts off with a face that is not yet included in any other patch (faces can only
belong to a single patch). Choosing the first face is where the cresting BFS method differs from
the other variations. It attempts to choose a starting face that is distant from non-convex edges to
give the patch as much opportunity as possible to become large. For more details on this and other
possible decomposition algorithms, refer to the publications that go with SWIFT++ (available at
the website).

8 Hierarchy Construction Algorithms

A hierarchy is built from the set of convex polyhedra which are the convex pieces produced by the
decomposition. They become the leaves of the hierarchy.

First, all the leaves have their centers of mass (COMs) computed. The hierarchy is built recur-
sively starting at the root. The convex hull of all of the leaf COMs is computed and its direction
of maximal spread is computed. This direction is the axis along which the splitting of the leaves
into two groups occurs. The COMs are projected onto this axis and sorted along it. The four
available splitting methods come in at this point. The “MED” method will split the leaves into
two equal-sized groups such that one group is entirely to one side of the other along the axis. The
“MID” method will compute the midpoint of the spread of values along the axis and use that as
the split point. The “MEAN” method computes the average of the values along the axis and uses
that as the split point. The “GAP” method is a little more involved and basically tries to look for a
large gap in the values which is then used to split them.

The convex hull of each group of leaves is computed. These convex hulls become the children
of the root. The next level is built from the subsets of leaves. This continues recursively until the
groups have only one leaf.

9 Decomposer Failure and “What to do about it”

Sometimes the geometric algorithms in the decomposer will fail. This is a problem inherent in
using floating point computation to process geometry. There are several errors that are checked
for by the decomposer. It will report them when they are found. When you get an error, it is not
the end of the world. You can retry the process and it will likely work. Here are some tips:

e Try giving a small jitter value to the decomposer. This will cause the vertices to move
slightly which may perturb the input away from a bad condition. This will change the model



so it does introduce some error.

e Try edge flipping by giving a small absolute error to the decomposer. The program will
report how many edges were flipped.

e Try using a different decomposition variation.

o |f the decomposer is failing in the hierarchy stage, try using a different splitting method.

Sometimes the input model is corrupt in terms of its geometry or connectivity. There is only so
much the decomposer program can do with these models.

10 Decomposer Model Input File Formats

As stated in section 4, if the application desires feature reporting, the features that SWIFT++ re-
ports are based on the original TRI files, POLY files, or plug-in reader arrays that were given to the
decomposer as input. First, the SWIFT++ file formats are described, followed by the description
of a mechanism whereby the user can read in files in any format.

10.1 SWIFT++ file formats

The decomposer provides two file formats in order to import ordinary geometry. It can also handle
decomposition and hierarchy files, but the user is not expected to create these on their own. This
section gives a description of the formats’ simple syntax and semantics. The first file format is
for triangular models and is called the TRI file format. The other provided format is for general
polyhedral models (with faces not necessarily triangular). It is called the POLY file format. White
space is ignored in both file formats. They are both ascii.

10.1.1 TRI format

The TRI format is a file format for triangular models. It supports arbitrary triangular models.
Following are the syntax and the semantics:

TRI

nv<i nt > = nunber of vertices

nf <i nt > = nunber of faces

coordi nates<real > = list of the vertex position coordinates as reals.
There are 3*nv coordi nat es.

face indices<int> = |list of the vertex indices given in CCWorientation

for each face. There are 3*nf indices.

First the magic number “TRI” is given. Then the number of vertices, then the number of faces, then
the vertex coordinates, and finally the face indices which index into the vertex list by identifying
the vertex position (not the coordinate position). Vertex indices start at 0. An example of a TRI
file is included in the distribution in the example/ directory.

9



10.1.2 POLY format

The POLY format is a file format for arbitrary polyhedral models. Following are the syntax and
the semantics:

POLY

nv<i nt> = nunber of vertices

nf <i nt > = nunber of faces

coordi nates<real > = list of the vertex position coordinates as real

There are 3*nv coordi nat es.

-- for each face

nfv<i nt> = nunber of vertices in the face

face indices<int> = list of the vertex indices given in CCWorientation.
-- end for

First the magic number “POLY” is given. Then the number of vertices, then the number of faces,
then the vertex coordinates. Following are the faces. Each face consists of an integer specifying
the number of vertices in the faces followed by the indices of that many vertices. The face indices
are used to index the vertex list by identifying the vertex position (not the coordinate position).
Vertex indices start at 0. An example of a POLY file is included in the distribution in the example/
directory.

10.2 User-Defined File Formats

The SWIFT++ library provides a file reader extension where the application can create its own
file reader, register it with SWIFT++, and use it to access application specific file types. The
decomposer can make use of this.

The header file SWIFT++/include/SWIFT fileio.h includes the abstract base class from which
to derive new file readers. An example is given by the SMFT _Basic_File_ Reader class (see also
SWIFT++/src/fileio.cpp). A method that does reading is all the code that must be provided. In
order to read files not in a SWIFT++ format, edit main.cpp in the SWIFT++/decomposer/src/

directory and put the new code there.
The second thing to do is to register your file reader with SWIFT++. Look for the following
comment in main.cpp:

/1 Insert plug-in file reader registration here

and insert the instantiation and registration of your file reader. The decomposer will have to be
built after this.

10



