Scotch: Generating FPGA-Accelerators for Sketching at Line Rate

VLDB 2021, Copenhagen, Denmark
2021-08-18

Martin Kiefer, Ilias Poulakis, Sebastian Breß, Volker Markl
martin.kiefer@tu-berlin.de
Technische Universität Berlin / DFKI
Sketching on FPGAs

Sketching
- Constructing stream summaries
- e.g., Count-Min, AGMS, HLL, ...
- Various applications (e.g., AQP, ML, Network)

FPGAs
- Custom hardware from software
- Circuit-level parallelism
 - Data / Task / Pipeline

Sketching on FPGAs
- High guaranteed throughput
- Lower power consumption
Outline

Challenges & Scotch’s Approach

Scotch

Evaluation

Summary
Challenges & Scotch’s Approach

Challenges:
An FPGA expert is required

• Device-, vendor-, interconnect-specific implementations
• Register-Transfer Level (RTL) programming
• Manual tuning
 • Sketch size vs. resources & timing

Scotch’s Approach:
Abstract and Automate

• Device and I/O agnosticisim
• Lightweight sketch specification
• RTL generation
• Automated tuning
Device and I/O Agnosticism: Accelerator Architecture

I/O Controller (provided)

Sketching Unit (generated and optimized)

FPGA

Data

Sketch
Scotch System Architecture

Device Descriptor (JSON) → Auto-Tune

Sketch Description (ScotchDSL) → RTL Generator

Sketching Unit → FPGA Vendor Toolchain

I/O Controller (Design Project)

Optimal Parameter, Bitstream → Compilation Report, Bitstream
Lightweight Sketch-Specification

Device Descriptor (JSON) → Auto-Tune → Parameters → Sketch Description (ScotchDSL) → Sketching Unit → FPGA Vendor Toolchain

Compilation Report, Bitstream → Optimal Parameter, Bitstream

I/O Controller (Design Project)
Lightweight Sketch Specification: Select-Update

Input Value

State Matrix

\[
\begin{array}{cccc}
 c_{0,0} & c_{0,1} & c_{0,2} & c_{0,3} \\
 c_{1,0} & c_{1,1} & c_{1,2} & c_{1,3} \\
 c_{2,0} & c_{2,1} & c_{2,2} & c_{2,3} \\
 c_{3,0} & c_{3,1} & c_{3,2} & c_{3,3} \\
\end{array}
\]
Lightweight Sketch Specification: Select-Update
Lightweight Sketch Specification: Select-Update
Lightweight Sketch Specification: Select-Update
Lightweight Sketch Specification: ScotchDSL

- DSL for select and update functions
- Bitvectors as first-class citizens
- Logic and arithmetic operations
- Restricted control flow
- Clocks and control signals are not exposed

EH3 Update Function (+1/-1 Updates):

```plaintext
update(seed, v, state, outstate) {
    mask <= '1010101010101010101010101010101';
    h <= parity(v(30 downto 0) | v(31 downto 1) & mask);
    eh3 <= seed(0) ^ parity(seed(32 downto 1) & v) ^ h;

    outstate <= eh3 = '0' ? signed(state) + 1 : signed(state) - 1;
}
```
Automated Tuning

Device Descriptor

Auto-Tune

Parameters

Sketch Description
(ScotchDSL)

RTL Generator

Sketching Unit

I/O Controller
(Design Project)

Compilation Report, Bitstream

Optimal Parameter, Bitstream

FPGA Vendor Toolchain
Automated Tuning: Binary Search in the Parameter Space

\[l (u (l)) u \]
Automated Tuning: Binary Search in the Parameter Space
Evaluation (Count-Min, 400 Mhz)

Data parallelism is crucial for high throughput
Tradeoff between throughput and summary size

Stratix 10 GX 2800 (400 MHz) | GeForce RTX 2080 Ti | Intel Xeon Silver 4214 | 32 Bit State & Input | Uniform Data
Evaluation (AGMS, n=1)

- *Each row is updated for every input value*

- FPGAs fit compute-intensive sketches excellently
Summary

• Generating FPGA-based sketching accelerators
 • ScotchDSL
 • RTL generator
 • Auto-tune

• High guaranteed throughput
• Low power consumption
• No expert in the loop

• But wait, there’s more!
 • Sketching unit
 • Data parallelism strategies
 • Extensive evaluation

GitHub
martinkiefer/scotch
Constant Processing Rate: Sketching Unit Architecture

Device Descriptor (JSON) → Parameters → Sketch Description (ScotchDSL) → Sketching Unit → Compilation Report, Bitstream

Auto-Tune → RTL Generator → FPGA Vendor Toolchain → I/O Controller (Design Project)

Optimal Parameter, Bitstream
Constant Processing Rate: Sketching Unit Architecture

Computed Unit
Row 1

Compute Unit
Row m

Memory

Memory

Memory

State Transfer Controller

Value

Sketch

Request