GPU-Accelerated Join Selectivity Estimation using KDE Models

Paper:

Estimating Join Selectivities using Bandwidth-Optimized Kernel Density Models,

Martin Kiefer, Max Heimel, Sebastian Breß, Volker Markl

PVLDB, Volume 10 Issue 13, September 2017
GPU-Accelerated **Kernel Density Estimation** for Join Selectivity Estimation

Background: Kernel Density Estimators

Average... ... over the kernel contributions

\[
\hat{P}_H(\tilde{x}) = \frac{1}{|S|} \sum_{i=1}^{\mid S \mid} K_H(s_i, \tilde{x})
\]
Background: Kernel Density Estimators

Average... ... over the kernel contributions

\[
\text{sel}(\Omega) = \frac{1}{|S|} \sum_{i=1}^{|S|} \int_{\Omega} K_H(s_i, \tilde{x}) \, d\tilde{x}
\]
Background: Kernel Density Estimators for Multi-Dimensional Selectivity Estimation [1]

The bandwidth matrix H controls the smoothing applied on the sample

- Range selections over base tables
- Bandwidth optimization based on the estimation error
- Easy model maintenance

The Problem: Multi-Dimensional Join Selectivity Estimation

$$Q = \sigma_{c_1}(R_1) \bowtie_{R_1.A_1=R_2.A_1} \sigma_{c_2}(R_2)$$

- and generalization to multiple joins
- **Databases:** Independence Assumption
 - Often violated
 - Introduce large errors, potentially bad query plans
- **Research:** Various Methods (e.g. Sampling, Sketches)
- **Our Approach:** Kernel Density Estimators
Why KDEs for Join Selectivities?

• Multivariate Estimator
• No independence assumption
• Hybrid between samples and histograms
 • Small bandwidth: Sample evaluation
 • Increasing bandwidth: More smoothing, increasing bucket sizes
 • Bandwidth optimization selects proper bandwidth
The Approach: Join and Base Table Models

\[Q = \sigma_{c_1} (R_1) \bowtie_{R_1.A_1=R_2.A_1} \sigma_{c_2} (R_2) \]

Join KDE Model (P)
- Bandwidth \(H \)
- Sample from \(R_1 \bowtie_{R_1.A_1=R_2.A_1} R_2 \)

Base Table KDE Model (P₁)
- Bandwidth \(H \)
- Sample from \(R_1 \)

Base Table KDE Model (P₂)
- Bandwidth \(H \)
- Sample from \(R_2 \)

Compute: \(P(c_1 \land c_2) \)
- Easy to evaluate, better estimates

Compute: \(\sum_{v \in A} P_1(A_1 = v \land c_1) \cdot P_2(A_2 = v \land c_2) \)
- Support for base table and join selectivities
- Easy to construct and to maintain
Table Model: Computation Components

\[Q = \sigma_{c_1} (R_1) \bowtie_{R_1.A_1 = R_2.A_1} \sigma_{c_2} (R_2) \]

Selectivity:
\[
\frac{1}{s_1 \cdot s_2} \sum_{i=1, j=1}^{s_1, s_2} \hat{p}_1^{(i)} (c_1) \cdot \hat{p}_2^{(j)} (c_2) \cdot \hat{J}_{i,j}
\]

Sum over cross product of two samples

Invariant Contributions:
Contribution of sample points wrt. selection predicate

Cross Contribution:
Distance function on join attributes of sample points
Table Model: Sample Pruning

\[
\frac{1}{s_1 \cdot s_2} \sum_{i=1, j=1}^{s_1, s_2} \hat{p}_1^{(i)} (c_1) \cdot \hat{p}_2^{(j)} (c_2) \cdot \hat{J}_{i,j}
\]

Sample 1

<table>
<thead>
<tr>
<th>$t_1^{(1)}$</th>
<th>$p_1^{(1)}$</th>
<th>$t_1^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1^{(2)}$</td>
<td>$p_1^{(2)}$</td>
<td>$t_1^{(2)}$</td>
</tr>
<tr>
<td>$t_1^{(3)}$</td>
<td>$p_1^{(3)}$</td>
<td>$t_1^{(3)}$</td>
</tr>
<tr>
<td>$t_1^{(4)}$</td>
<td>$p_1^{(4)}$</td>
<td>$t_1^{(4)}$</td>
</tr>
<tr>
<td>$t_1^{(5)}$</td>
<td>$p_1^{(5)}$</td>
<td>$t_1^{(5)}$</td>
</tr>
</tbody>
</table>

Compute

Filter by contribution

<table>
<thead>
<tr>
<th>$p_1^{(1)}$</th>
<th>$t_1^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_1^{(2)}$</td>
<td>$t_1^{(2)}$</td>
</tr>
<tr>
<td>$p_1^{(3)}$</td>
<td>$t_1^{(3)}$</td>
</tr>
<tr>
<td>$p_1^{(4)}$</td>
<td>$t_1^{(4)}$</td>
</tr>
<tr>
<td>$p_1^{(5)}$</td>
<td>$t_1^{(5)}$</td>
</tr>
</tbody>
</table>
Table Model: Cross Pruning

\[
\frac{1}{s_1 \cdot s_2} \sum_{i=1, j=1}^{s_1, s_2} \hat{p}_1(i) (c_1) \cdot \hat{p}_2(j) (c_2) \cdot \hat{J}_{i,j}
\]

Sample 1

<table>
<thead>
<tr>
<th>Sample 2 (Sorted on join attribute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1^{(1)})</td>
</tr>
<tr>
<td>(p_1^{(2)})</td>
</tr>
<tr>
<td>(p_1^{(3)})</td>
</tr>
<tr>
<td>(p_1^{(4)})</td>
</tr>
<tr>
<td>(p_1^{(5)})</td>
</tr>
</tbody>
</table>

\(|t_1^{(i)} A - t_2^{(j)} A| < \theta\)
Evaluation: Scaling the Model Size (Postgres)

Dataset: DMV
Query: Q1U

Evaluation: Scaling the Model Size (Table Sample)

Dataset: DMV
Query: Q1U

Evaluation: Scaling the Model Size (Correlated Sample)

Dataset: DMV
Query: Q1U

Evaluation: Scaling the Model Size (AGMS Sketch)

Dataset: DMV
Query: Q1U

Evaluation: Scaling the Model Size (Join Sample)

Dataset: DMV
Query: Q1U

Evaluation: Scaling the Model Size (Join Sample + KDE)

Dataset: DMV
Query: Q1U

Evaluation: Scaling the Model Size (Table Sample + KDE)

Dataset: DMV
Query: Q1U

Runtime: CPU vs GPU

Dataset: IMDB
Workload: Q1U
GPU: Tesla V100
CPU: Intel Xeon Gold 5115

Conclusion

• KDE models for join selectivity estimation
• “Getting most out of your sample”
• Based on join or base table KDE models
• Learning hybrid between histograms and samples
• GPU-acceleration possible
• Experiments, data, and code online

github.com/martinkiefer/join-kde
Estimating Join Selectivities using Bandwidth-Optimized Kernel Density Models

Martin Kiefer, Max Heimel, Sebastian Breß, Volker Markl

Proceedings of the VLDB Endowment, 10(13), 2017

Further Publications on GPU-Accelerated Kernel Density Estimation:

- **Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional Selectivity Estimation**
 SIGMOD 2015

- **Demonstrating Transfer-Efficient Sample Maintenance on Graphics Cards**
 EDBT 2015