
A Generic Framework for Connector

Architectures based on Components and

Transformations

H. Ehrig, J. Padberg, B. Braatz, M. Klein1

Institute for Communication and Software Technology
Technical University Berlin, Germany

F. Orejas, S. Perez, E. Pino2

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politécnica de Catalunya, Barcelona, Spain

Abstract

The intention of this paper is to extend our generic component framework presented at FASE
2002 [4] to a specific kind of connector architectures similar to architectural connections in the
sense of Allen and Garlan [1]. In our generic component framework we have considered compo-
nents with explicit import, export and body parts connected by embeddings and transformations
and composition of components with a compositional transformation semantics. Our framework,
however, was restricted to components with a single import and export interface. Here we study
architectures based on connectors with multiple imports and components with multiple exports.
Architectures studied in this paper are built up from components and connectors in a noncircular
way. The semantics of an architecture is defined by reduction step sequences in the sense of graph
reductions. The main result shows existence and uniqueness of the semantics of an architecture
as a normal form of reduction step sequences. Our generic framework is instantiated on one hand
to connector architectures based on CSP as the formal specification technique in the approach
by Allen and Garlan. On the other hand it is instantiated to connector architectures based on
high-level-replacement systems in general and Petri nets in particular. A running example using
Petri nets as modeling technique illustrates all concepts and results.

Keywords: Components, connector architecture, Petri net transformations

1 Email:{ehrig,padberg,bbraatz,klein}@cs.tu-berlin.de
2 Email:{orejas,sperezl,pino}@lsi.upc.es

Electronic Notes in Theoretical Computer Science 108 (2004) 53–67

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.012

http://www.elsevier.com/locate/entcs


1 Introduction

The importance of architecture descriptions has become most obvious over the
last decade (see e.g. [17,18,7,10,6]). Various formalisms have been proposed to
deal with the complexity of large software systems. In order to build up large
software systems from smaller parts, a flexible component concept for soft-
ware systems and infrastructures are a useful and widely accepted abstraction
mechanism (see e.g. [19,12,8]). Although there are many approaches available,
only few are general enough to be used for different specification techniques.
To achieve a generic concept the focus has to be on the fundamental issues
of components and component-based systems. These are the interfaces, the
compositionality of components and its embedding into the environment.

In our FASE 2002 paper [4] we have presented a generic component framework
for system modeling that can be used for a large class of semi-formal and for-
mal modeling techniques. According to this concept a component consists of
a body, an import, and an export interface, and connections between import
and body as well as export and body. These connections are again generic to
allow a great variety of instantiations. We only require having suitable notions
of embeddings, called inclusions in [4], and transformations (e.g. refinements)
between specifications, such that the import connection of a component defines
an embedding and the export connection a transformation. The connection
between import and export interfaces of different components are also repre-
sented by transformations. In fact, one of the key concepts of our framework
is a generic notion of transformations of specifications, especially motivated
by - but not limited to - rule-based transformations in the sense of graph
transformation and high-level replacement systems [5,2,16]. In this paper we
extend our generic component framework discussed above to a specific kind
of connector architectures motivated by architectural connections in the sense
of Allen and Garlan [1]. In fact, our generic framework in [4] is restricted to
components with a single import and export interface. We consider architec-
tures using connectors with multiple imports and components with multiple
exports that allow connecting one connector to several different components.
The key concept for the corresponding composition of a connector with com-
ponents is a parallel extension diagram for transformations. This generalizes
the notion of an extension diagram in [4] which is the key concept to define
transformation semantics for components and to prove compositionality. Ar-
chitectures studied in this paper are built up from components and connectors
in a noncircular way. The semantics of an architecture is defined by reduction
step sequences, where in each reduction step one connector is composed with
all adjacent components. The main result shows existence and uniqueness of
the semantics as a normal form of reduction step sequences.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6754



This paper continues with the construction of the connector architecture in
Section 2. In this and the following sections we have an ongoing example
using Petri nets. In Section 3 we show the composition of components with
connectors. Subsequently we show the existence of a unique semantics for
architectures in Section 4. In Section 5 we give a concrete instantiation to CSP
and a more abstract instantiation to high-level replacement systems including
Petri nets as a concrete case. In Section 6 we conclude with a brief discussion
of related work and an outlook to future research.

2 Construction of Connector Architectures

In this section we present the main syntactical concepts of our general frame-
work for connector architectures. The framework in [4] as well as the frame-
work in this paper is generic not only concerning the underlying concept
of semi-formal or formal specifications, but also concerning the concept of
transformations in order to model abstraction and refinement between inter-
faces and body of one component, or between import and export interfaces
between different components. In this section we only require that trans-
formations are closed under composition and that we have a special kind
of transformations, called embeddings, which intuitively model inclusion of
specifications, and a notion of independence of embeddings explained below.
Motivated by architectural connections in the sense of Allan and Garlan [1]
we distinguish in this paper components and connectors with multiple in-
terfaces, while we have considered only components with single interfaces in
[4]. Now a component COMP = (B, e1 : E1 =⇒ B, ..., en : En =⇒ B)
for n ≥ 0 is given by the body B and a family of export interfaces Ei

with export transformations ei : Ei =⇒ B for i ∈ {1, ..., n}. A connector
CON = (B, b1 : I1 → B, ..., bn : In → B) for n ≥ 2 is given by the body B
and a family of import interfaces Ii with body embeddings bi : Ii → B for
i ∈ {1, ..., n}. We assume that the family of embeddings bi : Ii → B for each
connector is independent. This means intuitively that the import interfaces
Ii of B are pairwise disjoint. Now we can define formally how a connector con-
nects different components. Given a connector CON = (B, b1, ..., bn) of arity
n, and n components COMPi = (Bi, ei1 , ..., eimi

) of arity mi with connector
transformations coni : Ii =⇒ Eik with 1 ≤ k ≤ mi for i ∈ {1, ..., n} then we
obtain the connector diagram in Figure 1 and the connector graph in
Figure 2:

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 55



Ii
bi ��

coni

��

B

Eik

eik

��

i∈{1,...,n}

Eij
eij �� Bi j∈{1,...,mi}\{k}

Fig. 1. Connector Diagram

CON
con1

�� ����������

����������
conn

������������

����������

COMP1
... COMPn

Fig. 2. Connector graph

Remarks:

• A connector diagram consists of n import interface nodes Ii of n + 1 body
nodes Bi and B, and of

∑n
i=1 mi export interface nodes Eij , even if some of

the specifications may be equal, e.g. B1 = B2

• Circular connections as in (2) are forbidden, unless we duplicate the body
as in (1) of Figure 3. Otherwise the semantics of such a circular architecture
is not defined, as it would cause the identification of the export interfaces
E11 and E12 of component COMP1 or other kinds of unwanted side effects.

I1
b1 ��

con1

��

B I2b2
��

con2

��
E11

��

(1) E12

��
E1j

�� B1 B1 E1j
��

I1
b1 ��

con1

��

B I2b2
��

con2

��
E11

��
��

��
��

��

��
��

��
��

(2) E12

		 ��
��

��
��

��
��

��
��

E1j
�� B1

Fig. 3. Noncircular and circular connector diagrams

• A well-known result from graph theory for undirected graphs (i.e. forget-
ting the direction of the arcs) is that in a connected, noncircular graph
the number of nodes exceeds the number of edges by one: #nodes(G) =
#edges(G) + 1. In Figure 3 we have #nodes(1) = 9 = #edges(1) + 1, but
#nodes(2) = 7 �= 8 = #edges(2) + 1

Now, we introduce the architecture based on connectors and components.
Similarly to connectors we obtain an architecture diagram and an architecture
graph. The first describes the architecture at the level of specifications and
the second as a graph, where nodes are connectors or components.

An architecture A of arity (k, l) consists of k components and l connectors,
an architecture diagram DA and an architecture graph GA: The architecture
diagram DA is a diagram built up from the l connector diagrams and the
connection transformations satisfying the following conditions

(i) Connector Condition: Each import interface I of a connector is con-
nected by an arrow, labeled with a connection transformation con : I =⇒

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6756



E, to exactly one export interface E of one component.

(ii) Component Condition: Each export interface E of a component is
connected at most to one import interface I of a connector by an arrow
from I to E, labeled with a connection transformation con : I =⇒ E.

(iii) Noncircularity: The architecture diagram DA is connected and noncir-
cular aside from the arrows’ direction.

The architecture graph GA of architecture A is obtained from the archi-
tecture diagram DA by shrinking each connector diagram in DA to the corre-
sponding connector graph. Hence, it consists of nodes labeled by the connec-
tors and components and arrows in between labeled with the corresponding
connection transformations.

Petri Net Example for a Connector Architecture: Preparing a Party

To provide a concrete example for a connector architecture we have chosen
place/transition nets as the underlying specification technique. In Section 5
we discuss the instantiation of connector architectures to Petri nets. The main
focus of this simple and small example is to illustrate the introduced concepts,
using a scenario from everybody’s life: preparing a party. In order to show
the Petri nets explicitly, a component is drawn as a rectangular, including
one or more rectangulars in the first row, where each contains one export net.
The rectangular in the second row contains the body net and the component
name. A connector is drawn as a rectangular as well. In the first row we have
exactly one rectangular, containing the body. The second row comprises at
least two rectangulars, each containing one import net.

The components comprise the following activities: Comp invite in Figure 4
the invitation of guests and the management of cancellations. The component
has merely one export interface Ei. The places of the export net are preserved
under the transformation, but the transition is replaced by the whole subnet in
between the places. In Figure 5 we give the usual diagram for the component
Comp invite, but without the explicit Petri nets.

invite

guest listguests

guests guest listguest list

cancelation

finished

Comp_invite

invite
Ei

Fig. 4. Component Comp invite

Ei Comp_invite

Fig. 5. Classical Diagram

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 57



1. list shop basics

basics

2. list

shop

fresh food

shop

2. list shop fresh foodbasics

Es1 Es2

1. list

Comp_shop

Fig. 6. Component Comp shop

foodingredients cook

ingredients prepare food

repeat garnish

put buffet
readybake

broil

fry

food prepare buffet buffet
ready

Comp_cook

Ec1 Ec2

Fig. 7. Component Comp cook

The component Comp shop models the shopping, where we assume that the
party requires shopping two times sequentially, once for the basics (beverages,
potato crisps, olives, etc.) and once for the fresh food (bread, cheese, fruits,
etc.). So we have two export nets Es1, Es2 that are transformed into the body
net. These transformations keep the places and replace the transition by the
subnet in between. The last component Comp cook comprises the cooking
and preparations of the buffet, and provides therefore two export interfaces
Ec1 and Ec2.

The connector Con week in Figure 8 connects the activities that concern the
preparations of the week before the party and provides two import nets Iw1
and Iw2. These are mapped by inclusion into the body net. In Figure 9 we
give the usual diagram for the connector Con week, but without the nets.

get beverages

get beveragesinvite

Con_week

Iw1

 do shopping listinvite

Iw2

Fig. 8. Connector Con week

Con_week

Iw2

Iw1

Fig. 9. Classical Diagram

The connector Con day in Figure 10 connects the preparations on the day of
the party, and provides two imports as well.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6758



prepare foodbasicsbasics

basics

shoppinglist

shoppinglist
Id2

Con_day shop fresh food

prepare food

shop fresh food
Id1

Fig. 10. Connector Con day

The architecture diagram DA is given in Figure 11, where the transformations
between the import nets and the corresponding export nets merely rename
places or transitions. In Figure 11 we use the names of connectors and com-
ponents for the corresponding bodies.

Con week Con day

Iw1



���������

��

Iw2

��������

��

Id1

��������

��

Id2

�������

��
Ei

��

Es1

��			
			

			
			

Es2

�� 















Ec1

��

Ec2

�� ���
������
���

Comp invite Comp shop Comp cook
Fig. 11. Architecture diagram DA

3 Composition of Components

In this section we present our concept for the composition of components by
a connector, which is the basic step for the construction of the semantics
of architectures in the next section. For this purpose we have to require in
our generic framework an essential property for embeddings and transforma-
tions: The parallel extension property is a key concept which generalizes
the extension property in [4] from single (sequential) to multiple (parallel)
transformations. The intuitive idea is that each family of transformations
(ti : SPECi ⇒ SPEC ′

i)i∈I can be extended to a parallel transformation
t : SPEC ⇒ SPEC ′, provided that we have independent embeddings bi :
SPECi ⇒ SPEC ′. More precisely, the parallel extension property means
the following: For each family (bi : SPECi → SPEC)i∈I of independent em-
beddings and for each family of transformations (ti : SPECi =⇒ SPEC ′

i)i∈I

there is a canonical (parallel) transfor-
mation t : SPEC =⇒ SPEC ′ together
with the independent embeddings
(b′i : SPEC ′

i → SPEC)i∈I leading to
the parallel extension diagram (1)

SPECi

ti
��

bi ��

(1)

SPEC

t

��
SPEC ′

i

b′i �� SPEC ′
Fig. 12. Parallel extension diagram

in Figure 12. Moreover, parallel extension diagrams are required to be closed

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 59



under vertical composition and to include the (classical) extension
diagram in the sense of [4] as a special case where all but one of the trans-
formations ti are identical transformations. Now we are able to define the
composition of components.
The composition of n components by a con-
nector of arity n is defined as follows: Given the
corresponding connector diagram (see Figure 1) we
construct the corresponding parallel extension di-
agram (1) in Figure 13. The result of the compo-
sition of the components COMP1, ..., COMPn by
the connector CON with the connection transfor-
mations con1, ..., conn is again a component

Ii

ti=eik
◦coni

��

bi ��

(1)

B

t

��
Bi

b′i �� B′
Fig. 13. Composition

COMP = (B′, (e′ij : Eij =⇒ B′)ij∈I×J) with
e′ij := b′i ◦ eij : Eij =⇒ B′ for each ij ∈ {1, ..., n}× ({1, ..., mi} \ {k}) = I × J .
In this case we say that e′ij are extensions of eij .

In case of binary components and binary connectors we use the following
nice infix notation COMP = COMP1 +CON COMP2. Otherwise we use
the notation COMP = CON(COMP1, ..., COMPn, con1, ...conn). The result
below can be extended to the composition of connectors with multiple import
interfaces.

Theorem 3.1 (Associativity of Binary Component Composition)
Given an architecture A with
binary components and binary
connectors with the architec-
ture graph GA in Figure 14,
then we have the following as-
sociativity law:

CON1

�� �����
�����

�������
����� CON3

�� �����
�����

�������
�����

COMP1 COMP2 COMP3

Fig. 14. Binary connectors and components

(COMP1 +CON1 COMP2) +CON2 COMP3 = COMP1 +CON1 (COMP2 +CON2 COMP3)

Proof idea: Each side of the equation can be shown to be equal to a parallel
composition of COMP1, COMP2, and COMP3 via CON1 and CON2 using
the parallel extension property.

Composition for the Petri Net Example

Composing first the components Comp invite and Comp shop using the
connector Con week we obtain the new component Comp invshop illus-
trated in Figure 15.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6760



inviteguests

 do shopping list

basics

2. list

shop

fresh food

shop

2. listbasics

guest list

cancelation

finished guest list

1. list

shop fresh foodEs2

Comp_invshop

Fig. 15. Comp invshop

The corresponding parallel extension
diagram for the construction of the
body B′ of Comp invshop is de-
picted in Figure 16, where we again
use the names of components or con-
nectors also for their bodies.

Iw1 ��

��

Con week

��

Iw2��

��
Ei

��

Es1

��
Comp invite �� B′ Comp shop��

Fig. 16. Parallel Extension diagram

Connecting this component via the connector Con day with the components
Comp cook we obtain the component Comp invshopcook in Figure 17.
But we can also change the order in which we compose.

inviteguests

 do shopping list

2. list

shopshop

food prepare buffet buffet
ready

buffet
ready

food

repeat garnish

basics

guest list

cancelation

finished guest list

1. list

Ec2

bake

broil

fry

prepare

Comp_invshopcook

put

Fig. 17. Comp invshopcook

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 61



So, using the connector Con day we first compose the components
Comp shop and Comp cook. Connecting this one via the connector
Con week with the component Comp invite we again obtain the compo-
nent Comp invshopcook in Figure 17. This commutativity is ensured by
Theorem 3.1.

4 Semantics of Architectures

In this section we define the semantics of architectures. In fact, we construct a
well-defined single component as semantics, which corresponds to the compo-
sition of all components using all connectors of the given architecture. More
precisely, for an architecture there are reduction rules that visualize step by
step the composition of components via connectors. Both reduction rules are
productions p = (L ← K → R) in the sense of the

algebraic approach to graph transformation [5]. A
derivation step in this approach is given by two pushout
diagrams (1) and (2) in Figure 18, written G =⇒ H via
(p, m), where m : L → G is a graph morphism, that
represents the match of L in G. Intuitively, we remove

L

m

��
(1)

K

��

�� ��

(2)

R

��
G D�� �� H

Fig. 18. G =⇒ H
(L − K) from G in step 1 leading to the context graph D in (1). And then
we add (R − K) leading to the result H in (2). The pushout property of (1)
and (2) means intuitively that G is the gluing of D and L along K in (1),
respectively H is the gluing of D and R along K in (2).
Given an architecture A with the architecture diagram DA and the archi-
tecture graph GA there is for each connector CON the following diagram
reduction rule COND:

COND:

Ii
bi ��

coni

��

B

Eik

eik

��

i∈{1,...,n}

Eij

eij �� Bi j∈{1,...,mi}\{k}

lD��

Eij

rD ��

Eij

e′ij �� B′

Fig. 19. Diagram reduction rule

where B′ and e′ij = eij ◦ b′i is defined by the composition:
COMP = CON(COMP1, ..., COMPn, con1, ...conn)

= (B′, (e′ij : Eij =⇒ B′)ij∈I×J)
for each ij ∈ {1, ..., n} × ({1, ..., mi} \ {k}) = I × J .

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6762



The corresponding graph reduction rule CONG is given in Figure 20 where
COMP1, ..., COMPn are mapped to COMP . So, a reduction step COND :
DA =⇒ DA′, respectively CONG : GA =⇒ GA′ is given by a derivation step
at the level of architecture diagrams, respectively architecture graphs.

For both derivation steps we have inclusions for the matches. Note that rG

is neither injective nor label-preserving, nevertheless for the reduction rule
CONG : GA =⇒ GA′ the labels of G′

A are well-defined by GA and COMP .

CONG:

CON
con1

�� ��
��

��

��
��

�� conn

��













COMP1
... COMPn

lG��

COMP1...COMPn

rG ��

COMP

Fig. 20. Graph reduction rule

We can show by an Architecture Reduction Lemma that an architecture
reduction rule CON = (COND, CONG) reduces an architecture A to a
well-defined smaller architecture A′ with DA′ and GA′ as defined above. The

application of CON is denoted by A
CON
=⇒ A′. A′ is smaller than A in the

following sense: If A is of arity (k, l) we can show that A′ is of arity (k − n +
1, l− 1), if CON has arity n. This means: Given an architecture A consisting
of k components and l connectors we obtain the architecture A′ with k−n+1
components and l − 1 connectors.

Now we can give the semantics of an architecture as the result of as
many reduction rules as possible. The semantics of an architecture A is any
component COMP obtained by a sequence of architecture reduction steps
A

∗
=⇒ COMP from A to COMP . The main result given in Theorem 4.1

shows that this semantics always exists and is unique. The main reason there-
fore is given by the Church-Rosser property, stating that any two architecture
reduction steps are locally confluent.

Theorem 4.1 (Existence and uniqueness of architecture semantics)
For each architecture A there is a unique component COMP which is the
semantics of A. COMP is obtained by any reduction sequence, where
connectors of A are reduced in arbitrary order:

A
∗

=⇒ COMP

Proof idea: The architecture reduction step sequences have unique normal
forms, as they satisfy the Church-Rosser property due to the following rea-
soning: If the matches of CON1 and CON2 in the architecture diagram DA0

of A0 are disjoint, then they are independent and we obtain the result by the
Church-Rosser Theorem for graph transformations. Otherwise, due to non-
circularity of DA0 , the matches can overlap at most in one component which
allows applying Theorem 3.1, respectively an extension with multiple import

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 63



interfaces. So, each maximal sequence has length n, where n is the number of
connectors in A.

Semantics of the Petri Net Example

The application of the reduction rule DA
CONWEEK �� DA1 that eliminates the

connector Con week results in the architecture diagram DA1 given in Figure
21. There we have the new component Comp invshop with one export Es2,
that is connected as before to the import Id1 of connector Con day. The

application of DA1

CONDAY �� DA3 that eliminates the connector Con day
yields then the semantics of A. This is the component Comp invshopcook
in Figure 17 with only one export left, namely Ec2. Theorem 4.1 ensures that
this semantics exists uniquely. If we start for example with the application

of DA
CONDAY �� DA2 that eliminates the connector Con day we obtain a

component Comp shopcook with the two exports Es1 and Ec2. The cor-
responding architecture diagram DA2 is given in Figure 22. The subsequent

application of DA2

CONWEEK �� DA3 eliminating the connector Con day yields
then again the component Comp invshopcook.

Con day

Id1

���������

��

Id2

��						

��
Es2

��

Ec1

��

Ec2

�� ��
��

�
��

��
�

Comp invshop Comp cook
Fig. 21. Architecture Diagram DA1

Con week

Iw1

���������

��

Iw2

����������

��
Ei

��

Es1

��

Ec2

�� ���
������
���

Comp invite Comp shopcook

Fig. 22. Architecture Diagram DA2

5 Instantiations
In [1] Allen and Garlan introduced architectural connectors using CSP [9] as
specification formalism. In this section we shall very briefly sketch how CSP
and Petri nets fit into our transformation framework.

CSP can be seen as an instance of our transformation framework as follows.
First, we consider that a CSP specification P = (Σ, Exp) where Σ is a process
signature (the set of symbols that can be used in P ) and Exp is a CSP process
expression built over symbols in Σ. Then, we consider that a process P is
embedded in a process Q if P is a parallel component of Q. More precisely,
P1 = (Σ1, Exp1) is embedded in P2 = (Σ2, Exp2) if Σ1 ⊆ Σ2) and Exp2 ≡
Exp1|Exp′ for some process expression Exp′. P1 and P2 are independently
embedded in P3 iff Exp3 ≡ Exp1|Exp2|Exp′ for some process expression Exp′.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6764



Finally, we consider that transformations are just CSP refinements modulo a
signature embedding. This means that a CSP transformation t : P1 =
(Σ1, Exp1) ⇒ P2 = (Σ2, Exp2) is an injective mapping t : Σ1 → Σ2 such that
the translation of Exp1 through t satisfies that the failures and divergences
of Exp2 are, respectively, a subset of the failures and divergences of t(Exp1),
where t(Exp1) denotes the translation of Exp1 by the renaming of events
defined by t.

Then, CSP can be seen as an instance of our generic approach as a consequence
of the existence of parallel extensions:

If, for i = 1, 2, ti : Pi = (Σi, Expi) ⇒ P ′
i = (Σ′

i, Exp′i) are transfor-
mations and P1, P2 are independently embedded in P3 = (Σ3, Exp3),
then t3 : P ′

3 = (Σ′
3, Exp′3) is a parallel extension of t1 and t2, where

Σ′
3 = Σ3 +(Σ′

1 − t1(Σ1))+(Σ′
2 − t2(Σ2)), where + and − denote disjoint union

and set subtraction, t3 : Σ3 → Σ′
3 is the identity and Exp′3 is the process

expression obtained by substituting Exp1 by Exp′1 and Exp2 by Exp′2 in
Exp3.

High-level replacement systems have been introduced in [2] as a generalization
of the Double Pushout approach for graph transformations from graphs to
several kinds of high-level structures in suitable categories including a large
variety of different kinds of graphs and Petri nets ([4]). A transformation
in the framework of this paper corresponds to a derivation sequence of high-
level structures (e.g. Petri nets). The extension property for transformations
considered in our general framework for components [4] is well-known as the
Embedding Theorem in the theory of high-level replacement systems that
holds if a consistency condition between embeddings and transformations is
required. A similar consistency condition has to be formulated for the parallel
extension property considered in this paper. This property can be shown
for high-level replacement systems by considering the Embedding Theorem
and the Parallelism Theorem shown in [2]. Moreover, we may allow also some
overlapping of the embeddings, provided that the transformations preserve the
overlapping part in the sense of parallel independence. This situation occurs
for the embeddings of the connector Con day in Figure 10 in our running
example.

6 Conclusion

In this paper we have presented a general framework for connector architec-
tures, based on our generic framework for components in [4], and motivated
by the architectural connectors approach of Allen and Garlan in [1] which
is shown to be a specific instance. It may be mentioned that the papers

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 65



[11,20] concerning architecture reconfiguration based on graph transformation
techniques can be considered complementary to ours, because graph trans-
formations and high-level replacement play already a fundamental role in our
approach.

Future work comprises further and more concrete instantiations especially
high-level Petri nets and graph transformation systems. Moreover, larger case
studies to evaluate the practical impact are an important task. On the theo-
retical side the instantiations to general high-level replacement systems has to
be worked out in more detail and our framework should be extended to other
aspects studied in [4] and architecture reconfiguration in [11,20].

Acknowledgement

This work is partially supported by the TMR network SEGRAVIS and the
Spanish project MAVERISH (TIC2001-2476-C03-01) and by the CIRIT Grup
de Recerca Consolidat 2001SGR 00254.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Transactions on
Software Engineering and Methodology, 1997.

[2] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concurrency in
high-level replacement systems. Math. Struct. in Comp. Science, 1:361–404, 1991.

[3] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and
Constraints, volume 21 of EATCS Monographs on Theoretical Computer Science. Springer
Verlag, Berlin, 1990.

[4] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A generic component concept for
system modeling. In Proc. FASE ’02, LNCS 2306. Springer, 2002.

[5] H. Ehrig, M. Pfender, and H. Schneider. Graph grammars: an algebraic approach. In 14th
Annual IEEE Symposium on Switching and Automata Theory, pages 167–180. IEEE, 1973.

[6] D. Garlan, R. Monroe, and D. Wile. Acme: An Architecture Description Interchange Language.
In Proc. of CASCON’97, pages 169–183, 1997. http://www.cas.ibm.ca/cascon/cfp.html.

[7] F. Griffel. Componentware – Konzepte und Techniken eines Softwareparadigmas. dpunkt
Verlag, 1998.

[8] V. Gruhn and A. Thiel. Komponentenmodelle: DCOM, JavaBeans, EnterpriseJavaBeans,
CORBA. Addison-Wesley, 2000.

[9] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[10] C. Hofmeister, R. Nord, and D. Soni. Describing Software Architecture in UML, pages 145–159.
Kluwer Academic Publishers, 1999.

[11] M. Löwe. Evolution pattern. postdoctoral thesis, Technical University of Berlin, 1997.

[12] S. Mann, B. Borusan, H. Ehrig, M. Große-Rhode, R. Mackenthun, A. Sünbül, and H. Weber.
Towards a component concept for continuous software engineering. Technical Report 55/00,
FhG-ISST, 2000.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–6766



[13] J. Padberg. Abstract Petri Nets: A Uniform Approach and Rule-Based Refinement. PhD
thesis, Technical University Berlin, 1996. Shaker Verlag.

[14] J. Padberg. Petri net modules. Journal on Integrated Design and Process Technology, 6(4):105–
120, 2002.

[15] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation systems.
Mathematical Structures in Computer Science, 5:217–256, 1995.

[16] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

[17] M. Shaw, R. Deline, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions
for Software Architecture and Tools to Support Them. IEEE Transactions on Software
Engineering, 21(4):314–315, 1995.

[18] M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[19] C. Szyperski. Component Software – Beyond Object-Oriented Programming. Addison-Wesley,
1997.

[20] M. Wermelinger and J. Fiadeiro. A graph transformation approach to software architecture
reconfiguration. Science of Computer Programming, 44(2):133–155, 2002.

H. Ehrig et al. / Electronic Notes in Theoretical Computer Science 108 (2004) 53–67 67


	Introduction
	Construction of Connector Architectures
	Composition of Components
	Semantics of Architectures
	Instantiations
	Conclusion
	Acknowledgement 
	References

