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Abstract— Applications to be executed in Grid computing
environments become more and more complex and usually consist
of multiple interdependent tasks. The coordinated execution of
such tightly or loosely coupled tasks often requires simultaneous
access to different Grid resources. This leads to the problem of
resource co-allocation. Efficient and robust scheduling algorithms
have to be developed that can cope with the Grid’s large-
scale distribution, a high number of competing and demand-
ing applications, the inherent resource heterogeneity and the
often limited view on resource availability. In this paper, we
present two heuristic scheduling algorithms that are based on
a well-known list scheduling algorithm and both support co-
allocation and advance resource reservation. Our first algorithm
preserves the run-time efficiency of Greedy list schedulers while
the second approach incorporates more sophisticated search
techniques in order to achieve better results with respect to the
performance metrics. Both algorithms have been implemented
within a Grid simulation framework. An extensive simulation
study was conducted to evaluate and compare the performance
of both algorithms. It showed the general suitability of our
enhanced list scheduling heuristics within heterogeneous Grid
environments.

I. INTRODUCTION

Today’s Grid resource management systems (Grid RMS)
provide uniform and transparent access to large pools of
heterogeneous resources. Earlier systems allowed users to
request and reserve resources manually. The usage models
of newer Grid management systems support the automated
execution of complex applications consisting of multiple in-
terdependent parts. Hence, Grid users do not have to directly
specify their resource demands. Instead, they submit a high-
level description of the application. Fig. 1 shows an example
of such a so-called Grid workflow.

Descriptions of Grid workflows are abstract in the sense
that low level details of the concrete resources are hidden.
The actual structure of the Grid is transparent to the user
and the mapping of the workflow elements to appropriate
Grid resources is the task of the Grid RMS. The user’s task
is to model the workflow activities to be carried out, to
define dependencies between them and to specify additional
information, e.g. temporal constraints such as deadlines that
must be considered during workflow execution.

Regarding Grid resource management, the support for ser-
vice level agreements (SLAs) became a crucial concept. Using
SLAs, resource providers and resource users are able to
negotiate binding contracts that define certain service levels.
For time-critical workflows, e.g. workflows annotated with
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Fig. 1: Example Grid workflow: A complex Grid application
with time-dependent tasks.

deadlines, a user might want to insist of SLAs that contain
guaranteed execution finish times.

Advance reservation has been identified as a key technology
in order to be able to guarantee that enough resources are
available for time-critical workflow execution [1]. For each
part of the workflow, the necessary resources will be reserved
in advance. Furthermore, to ensure that all input data is
available prior the execution of the activities that depend on
it, network bandwidth for the transmission has to be reserved.

Some parts of common Grid workflows might have to be
executed simultaneously. While advance reservation is a means
to book resources for coordinated executions, the Grid RMS
has to be able to find common start times and durations for
such co-allocations.

Another issue that makes the resource reservation complex
is that heterogeneous Grids are federations of resources of
different types and capabilities, e.g., varying CPU speeds.
Hence, the actual execution time of the workflow activities
are determined by the capabilities of the target resources. This
influences the start times of dependent activities and thus the
duration of the whole workflow.

Generally, the problem of finding feasible workflow sched-
ules and reserving appropriate resources while satisfying all
constraints is complex. With an increasing number of work-
flow elements, the already multi-dimensional search space
becomes even larger and efficient algorithms are needed for
fast admission. The heuristic algorithms we developed in this
work are based on the following semantics of the admission
of user requests: The user gets a positive answer, if and
only if a valid schedule was found. The resources will be



reserved according to the schedule. Subsequently, the user
will be informed about the guaranteed access. A rejection of
the request does not necessarily mean that there is no valid
schedule. Though, it is the objective of the Grid RMS to reduce
the number of unnecessarily rejected workflows.

We analyzed existing scheduling algorithms for heteroge-
neous environments and extended the well-known list sched-
uler HEFT [2] in order to support advance reservations and co-
allocation. We developed two algorithms. The first preserves
the time efficient greedy structure. The second incorporates
more elaborated search techniques to achieve better results
w.r.t. our optimization goals.

In the following section we describe the application en-
vironment and define the problem. After presenting related
work, we introduce the enhanced scheduling algorithms. In
section V, we discuss the results of our extensive simulation
study based on which we evaluate the performance of our
algorithms.

II. PROBLEM DEFINITION

In this chapter, we present the modeling framework which
we use to design and develop the scheduling algorithms. It
basically consists of the workflow model, the Grid resource
model and the model for advance reservation. Furthermore,
we introduce the scheduling problem to be solved.

A. Workflow Model

Our approach to modeling workflows is based on graphs.
In fact, our model is similar to the traditional task graph
models commonly used in the scheduling literature [3], [4],
[5]. Essentially, a task graph is a directed acyclic graph (DAG)
consisting of interdependent tasks or nodes. In the following,
we define our workflow model and introduce the way we
describe resource co-allocation for parallel activities.

In analogy to the workflow definitions of the Workflow
Management Coalition (WfMC) [6], the elements of our
workflow models are also termed activities. An activity might
be any working package or task that needs resources during
workflow execution. In the vast cases, the activities correspond
to computational tasks to be executed on compute resources.

Formally, a workflow can be defined as a pair W = (A, D)
where A is a set of activities, and D ⊆ {(u, v)|u, v ∈ A} is a
set of dependencies between the activities.

1) Activity Weights: Activities and dependencies are
weighted. As in the task graph model, activities are assigned
a load weight. Based on the load weights, the Grid RMS can
determine the execution time of an activity. The execution
time may depend on the capabilities of the target resource.
E.g., a compute activity takes load

resource speed time units to
finish, where load is an estimate of the amount of instructions
of a program. There might be cases in which the execution
time does not depend on the resource speed or other resource
specific factors. Then, the weight of an activity can be a fixed
time value.

The temporal requirement of an activity determines how
long a resource is needed. Additionally, there must be an ac-
tivity weight that expresses how much of the resource it claims.

This is important in case the resource is space-shared [7]. A
Grid resource can be associated with a fixed capacity value
and a corresponding capacity value of the activities is used
to quantify activity requirements. The speed and the capacity
of a resource, e.g., CPU speed and amount of CPUs, and
the load and required capacity of an activity, e.g., number
of instructions and number of parallel processes, are fixed.
Modable activities [8] with a flexible capacity requirement are
not considered.

A compute activity for instance might require two execution
hosts each of which has four CPUs, which makes a total
required capacity value of eight.

2) Dependency Weights: The compute activities carry out
their work using one or more input data items. Therefore,
data must be transferred from its current location, e.g., central
repositories or the hosts where it was produced, to the target
host of the applications’ activities that rely on it. In our
framework, data dependencies are modeled as directed edges
between two activities. An activity can produce an arbitrary
number of data items and each data item has an estimated
size. The number of activities depending on each data item
is not limited. It is also possible that an activity depends
on more than one data item produced by a single particular
activity. Note also that the data dependency model stays the
same in case the activities have other synchronous activities
as introduced in the next section.

3) Co-Allocation Model: The classical DAG model is
extended such that co-allocation of resources for parallel
activities can be modeled. For modeling parallel activities, we
introduce the notion of synchronous activities. A synchronous
dependency is represented by a hyperedge and is a connection
between any number of activities in the workflow. Formally,
sync edges are sets of activities, defined as Sync ⊆ 2A

with 2A being the power set of all activities. A workflow
that contains synchronous activities automatically becomes a
hypergraph W = (A, D, Sync).

With the invention of synchronous activities, the Grid user
is able to define an additional temporal constraint. All syn-
chronous activities have to be executed simultaneously within
the same time window, the co-allocation window. For the Grid
RMS, this means that resources have to be allocated for all
synchronous activities across the same time span.

The synchronous activities communicate during their exe-
cution with each other. Therefore, enough network bandwidth
has to be allocated. The network requirements of sync activi-
ties are represented by channel dependencies in our model.

Let sync be true if activity ai and activity aj are syn-
chronous:

sync(ai, aj) := ∃S ∈ Sync : ai ∈ S ∧ aj ∈ S

Then C ⊆ {(u, v)|u, v ∈ A∧sync(u, v)} is the set of channel
dependencies between synchronous activities. Using the set of
channel dependencies, we can extend our workflow model to
W = (A, D, Sync, C).

The weights of the channel dependencies characterize the
required communication channel. The type of weights used
here depends on how detailed the network resources are
modeled. Some models neglect the latency while almost all



incorporate the bandwidth of the network link. In our model
the required bandwidth will be used to characterize the chan-
nels.

B. Grid Resource Model

Generally, the Grid consists of an arbitrary number of
resources. The intention is that the model description is not
limited to one resource type. Many types of resources could be
part of a Grid, e.g., scientific instruments, storage resources,
visualization devices, etc. The most common ones though
found in today’s Grid infrastructures are compute resources
RC and network resources RN . The network resources deter-
mine the structure of a Grid since they connect resources of
other types, e.g., a network resource might be a communica-
tion link between a compute and a storage resource.

A Grid can be described by a graph, where the network
resources RN represent the edges between the other resources
R

This way, arbitrary networks can be modeled. The links
characterize the whole communication path between two re-
sources as point-to-point link.

Different types of resources may have different attributes.
E.g., compute resources are characterized by the number of
CPUs, the CPU speed, whereas network resources are charac-
terized by their bandwidth, respectively their latency.amount
of storage capacity.

C. Advance Reservation Model

We use an advance reservation approach for managing the
resources. Advance reservations are resource requests made
for time periods in the future. During admission, the absolute
start time as well as the end time will be fixed. Therefore and
in contrast to immediate reservations which are usually made
without specifying the duration, advance reservations require
the definition of the expected duration or the expected load
for a given request. This is necessary to perform reliable ad-
mission control, i.e., to determine whether sufficient resources
can be guaranteed for the requested period.

Our advance reservation system needs to maintain allocation
information in two dimensions, space (resource) and time. We
use a slotted time model which means that the time line is
divided into fixed-size slots T and all absolute time values are
multitudes of the slot length. The advantages of a slotted time
model over an arbitrary time model is the easier management
and the less external fragmentation.

The time between the request and the actual start time is
called reservation time. A book-ahead interval is specified to
limit the reservation time to reasonable small values.

D. Scheduling Problem

We have defined the workflow model and the Grid model.
In this section, we use these models to define the scheduling
problem.

We basically intend to develop an on-line algorithm which
treats the workflows one by one and does not reject already
admitted workflows. The mapping of one workflow means

mapping the workflow elements (activities and dependencies,
A∪D∪C) to Grid resources. The mapping can be defined as

Φ : {A ∪ D ∪ C} → {R ∪ RN} × T

Note that the mappings of two workflow elements might not
be disjoint, meaning that multiple activities for instance can
be mapped on the same resource if there is enough capacity
available. Generally, the assumption is that one workflow
element cannot be mapped on more than one resource, e.g.
compute activity ai is mapped on one compute resource rj .
Furthermore, the resource types, a workflow element can be
mapped to, might be restricted.

We have stated that costs for data transfers are taken
into account. Though, the data transfers are not explicitly
defined, e.g. transfer 10 Gigabytes byte from host A to host
B. Instead, the data dependencies will lead to data transfers
during the scheduling process when it is clear which resources
are allocated for activities that have data dependencies in
between them. Data dependency d01 connecting activity a0

and a1 can only be mapped to network resources that connect
the target resources of a0 and a1. Channel dependencies have
to be handled alike.

Our system allows the reservation of resources in space
and time. In the above equations, the spatial dimension of
the problem (the question of where to map an activity)
is represented by the target resource sets R and RN . For
regarding the temporal dimension, each resource allocation
must be attributed with a time slot. This means that each
scheduled activity has an associated start time start(ai). The
finish time end(ai) of the activity is estimated by its duration
duration(ai), which could be explicitly given or determined
by its load and the resource speed.

Basically, the problem is to find appropriate resources for
all activities and schedule them over time.

Fig. 2: Illustration of Mapping Workflow Elements to Grid
Resources

1) Scheduling Example: Figure 2 illustrates the mapping
of a workflow to Grid resources. The simple workflow in the
upper left corner consists of four activities and data dependen-
cies between them. Activity a1 and a2 are synchronous. The
corresponding synchronous dependency is drawn as rounded



box. An arrow between a1 and a2 (channel dependency ch-
2-1) indicates that network resources might need to be co-
allocated. The horizontal arrows from the left to the right
show an example mapping for the workflow elements to Grid
resources. We can see that activities are mapped to compute
resources and data dependencies are mapped to network re-
sources.

The lower half of the figure shows a bar chart. The map-
ping is extended to the temporal dimension. The chart also
illustrates that the precedence order in the workflow DAG
is preserved and resources are co-allocated for synchronous
dependencies.

III. RELATED WORK

Advance reservation is an important allocation strategy that
provides simple means for reliable planning and co-allocation
of heterogeneous resources. Besides flexible support for co-
allocations advance reservations also have other advantages
such as an increased admission probability when reserving
sufficiently early and reliable planning for users and operators.
In contrast to the independent usage of several different
resources, where also queuing approaches are conceivable,
advance reservations have a particular advantage when time-
dependent co-allocation is necessary, as shown in Fig. 1
and 2. Advance reservation support has been proposed for
several management systems for distributed and parallel com-
puting [1], [9], [10]. In [1], advance reservations have been
identified as being essential for a number of higher level
services such as the support of SLA.

Complex applications requiring multiple resources are be-
coming a major application of the Grid [11]. Such Grid
workflows increase the complexity of the allocation process
and efficient scheduling and allocation schemes have to be
developed.

A. DAG Scheduling Algorithms

As we have stated above, the workflows are described in
form of weighted DAGs. The problem of scheduling DAGs
on a set of resources, e.g., processors, cluster nodes, has been
studied extensively by many research groups. In its general
form, the scheduling problem is NP-complete [12]. Besides
some special cases, e.g. for restricted graphs [13], [14], the
problem cannot be solved in polynomial time and hence many
heuristic algorithms have been developed.

Earlier algorithms focused on homogeneous environments,
such as dedicated parallel computers that have hundreds of
equally fast CPUs [15], [16]. Later research efforts aimed
at finding algorithms for heterogeneous computing environ-
ments [17], [18].

If communication costs are taken into account, the network
topology becomes important. Some algorithms assume a fully-
connected network, others allow arbitrary topologies of links
having an arbitrary bandwidth. Another significant question is
whether network contention is regarded [19], [20].

B. List Scheduling Heuristics

Most DAG scheduling heuristics are based on classical list
scheduling techniques [21], which basically are Greedy Best-
First methods without Backtracking capabilities. In general,
the three steps of static list scheduling algorithms [22] are

1) activity priorities computation, whereas the activity pri-
orities should characterize the overall behavior of an
activity, e.g. the hierarchical order, its dependencies,
whether it is communication or computational inten-
sive [23].

2) activity selection according to priorities
3) resource selection. Selecting the ”best” resource for the

previously selected activity. Continue with step 2 until
all activities are scheduled.

The activities to be scheduled are stored in a sorted list. The
list is either static if it is constructed once or dynamic if the
priorities of the activities may change during scheduling.

List scheduling heuristics vary in the way, the priorities
are assigned to the activities. Two commonly used activity
priorities are the so-called t-levels and b-levels, which are both
calculated recursively. T-level calculation starts at the top, b-
levels are generated starting from the bottom level of the graph.

The t-level of an activity ai is the length of the longest path
from a activity that has no predecessor (entry node) to ai, ai

not taken into account. The length of a path is determined by
all node and edge weights, i.e., execution and communication
costs, along the path. Since all weights are summed up
recursively, the t-level value corresponds qualitatively to the
earliest starting time of activity ai. The b-level of an activity
ai is the length of the longest path from ai to an exit node, ai’s
weights included. In [16], the authors state that scheduling in
ascending order of t-levels tends to account for the topological
order of the DAG while scheduling in descending order of b-
levels tends to prioritize critical path activities.

An issue during rank calculation is that the costs can often
only be estimated. E.g., in a heterogeneous environment the
time it takes to execute a computation strongly depends on
the speed of the resource it is eventually scheduled on. Here,
the rank calculation is mostly based on estimated values,
e.g., average CPU speeds, worst case bandwidth values, etc.
Though, the way the so-called rank functions estimate the costs
has a strong impact on whether the optimization goals will
met [24].

The HEFT (Heterogeneous Earliest-Finish-Time) algorithm
is a well-known list scheduling heuristic with good perfor-
mance [2]. It is frequently used as a benchmark for new
algorithms. The objective of the HEFT algorithm is to find a
mapping of activities to resources that minimizes the schedule
length (makespan). The rank is the b-level adapted for the
heterogeneous environment. The execution time of an activity
is calculated using the average speed of all resources the
activity can generally use and the communication costs are
approximated with the average bandwidth of all links in the
network. Furthermore, the activity selected by the rank is
mapped on the resource that leads to the earliest finish time
(EFT) for this activity. The EFT is calculated based on the
finish times of the already scheduled predecessors and the



actual communication and execution cost for the selected
resource.

IV. WORKFLOW SCHEDULING ALGORITHMS

The algorithms presented here are based on the HEFT
algorithm introduced in the previous section. The extension
is required because of the extended application model em-
ployed. One main difference to the classical task graph model
used in the original HEFT algorithm is the introduction of
co-allocation modeled as synchronous dependencies and the
ability to specify (data) channel requirements between two
activities.

A. HEFT’s Incompleteness

The HEFT algorithm was not explicitly designed for an
advance reservation environment. Though, since it is an
insertion-based heuristic that greedily searches for available
Grid resources while picking the one that leads to the earliest
finish time, it can be applied in an advance reservation
environment without modifications. However, it becomes clear
that such a Greedy search technique may not find a feasible
schedule for the workflow.

Situations that lead to an unsuccessful scheduling process
and the rejection of the incoming workflow may arise:

• no feasible resources satisfying the activity requirements
are available for the activity to be scheduled,

• no free slots are available before the workflow deadline,
respectively within the book-ahead interval

• co-allocation: no resource can be found within the given
time window, the co-allocation window.

In the original HEFT algorithm, the book-ahead interval is
assumed to be infinity and no deadlines are specified for the
task graphs. This implies that temporal constraints do not lead
to an unsuccessful scheduling procedure, even though it is a
Greedy algorithm with no Backtracking abilities.

The HEFT resource model is heterogeneous in terms of the
resource speeds. Though, no different types of resources can
be specified. Hence, each task’s requirement is limited to a
certain amount of processing power expressed as amount of
instructions. This means that, during the scheduling process,
there are always feasible resources available, at least in the far
future. In our case, situations may well arise in which activity
requirements cannot be satisfied.

B. The HEFTSync Algorithm

As an extension of the HEFT algorithm we propose
the HEFTSync algorithm, which additionally supports co-
allocation.

1) Rank Calculation: The recursive rank calculation of
HEFTSync is done slightly different compared to the rank
calculation of HEFT. The extended approach originates from
the definition of synchronous activities and dependencies.

Let Sync be the set of synchronous dependencies of work-
flow W = (A, D, Sync, C), S ∈ Sync being a synchronous
dependency, i.e., one set of synchronous activities (cp. sec-
tion II-A.3). The resource requirements of all activities of

a synchronous dependency are treated as one requirement
set. For each of these requirements, resources are allocated
simultaneously (co-allocated) stretching across the same time
interval, the co-allocation window. This means that ∀ai ∈ S :
start(ai) = start(S) ∧ end(ai) = end(S). The activity of S
that consumes the most time determines the duration of the
co-allocation window, duration(S) = end(S) − start(S).
This implies that all activities of the synchronous dependency
have the same priority and are all taken into account when
calculating recursively. The set of successors of activity ai,
succ(ai), is extended such that it includes not only the imme-
diate successors but also all successors of all other activities
in the synchronous dependency.

succSync(ai) = succ(ai)∪{ak|ak ∈ succ(aj)∧sync(ai, aj)}
Furthermore, an activity without direct predecessors is not

regarded as an entry node if it is member of a synchronous
dependency with activities that do have predecessors.

2) Resource Selection: As a static list scheduler, the HEFT-
Sync algorithm goes through the sorted list of ranked activ-
ities and tries to schedule them selecting appropriate Grid
resources. Since b-level rank calculation is used, each activity
is scheduled before all activities that depend on it.

The determination of the earliest finish time (EFT) of an
activity is adapted to the advance reservation environment.
First, for each Grid resource of a matching type, the earliest
start time is calculated based on the finish time of the prede-
cessors of the activity, the data dependencies and the actual
available bandwidth on the links leading to this resource. The
Grid information system or the local resource manager is then
queried for the earliest possible reservation after the earliest
start time. The actual start time and thus also the finish time
depends not only on other activities of this workflow assigned
to this Grid resource but is also influenced by other Grid
workflows and locally submitted jobs. The activity will be
assigned to the Grid resource which offers the earliest finish
time.

3) Co-Allocation: Synchronous dependencies have to be
handled differently to guarantee that all activities have the
same start and finish times.

In order to calculate the earliest start time, the maximum
of all finish times of the activities’ predecessors has to be
calculated. The worst case communication costs for any data
transfers to any of the activities in the synchronous dependency
is estimated based on data transfer size and the minimum
bandwidth. The sum of the maximum finish times and the
worst case communication costs mark the first time slot to
search for a co-allocation window.

The activities will be processed subsequently in the decreas-
ing order of their load. The first activity is processed like a
single activity: The Grid resource giving the lowest EFT is
determined and the start and finish time of this allocation mark
the initial co-allocation window. For the following activities,
an allocation with the same start and finish time is searched.
If multiple Grid resources are available, the one which would
lead to the earliest EFT for this activity is selected.

If, for a given activity, the available Grid resources are
too slow, the current co-allocation window limit might be



exceeded. In this case, the window is adjusted increasing
the duration and all reservations made for other activities in
the synchronous dependency S are canceled and rescheduled
using the new co-allocation window.

After all activities have been scheduled, the co-allocation
window is fixed. Eventually, the algorithm tries to allocate all
necessary communication channels between the activities. If
successful, the scheduler tackles the rest of the workflow. If
not, all reservations are canceled and the whole workflow is
rejected.

C. HEFTSyncBT: Backtracking Extension

The evaluation of the HEFTSync algorithm showed (see
Sec. V) that most workflows were rejected because no co-
allocation could be found which covered all activities of a
synchronous dependency or because there was not enough
bandwidth available for the data channels. Therefore, we pro-
pose an algorithm that combines the efficient greedy algorithm
for single activities and a backtracking-based approach to
resource co-allocation for synchronous activities.

Not only the earliest feasible allocation slot for each activity
that is part of the synchronous dependency but all possible
allocation ranges are taken into account. Furthermore, the
bandwidth requirement of the channel dependencies is handled
together with the other activities.

To reduce the search effort, synchronous activities are
handled again in decreasing order of their load. A search tree
is built up and many partial solutions are expanded, pruned and
dismissed. The first level contains all feasible reservations for
the first activity. Initial feasible ranges lay between the latest
finish time of the activities part of the predecessor set of the
synchronous dependency and the workflow deadline.

Each subsequent synchronous activity produces new partial
solutions based on the Grid resources available during the co-
allocation window. A partial solution is dismissed as soon as
there are no expansions for the current synchronous activity.
Then, the second best solution will be further investigated
whereas the “best” means the solution that leads to the earliest
finish time.

The allocation of the channel dependencies are treated as
equally important elements of the synchronous dependency.
Though, they are dynamically added to the set of elements
to be mapped right after both communicating synchronous
activities have been allocated. If no network resources can
be found within the current co-allocation window, the search
tree can be pruned at this point.

V. EVALUATION

The proposed algorithms have been studied using extensive
simulations. In the next section, we introduce the simulation
environment employed. In subsequent sections, we introduce
performance metrics and discuss the results.

A. Simulation Environment

A discrete event simulation of a Grid management system
similar to our VRM architecture [1] was used. The simulations

were made assuming an infrastructure of seven cluster and
parallel computers with homogeneous node equipment, i.e.,
each job is capable of running on any of the machines
involved. Though, the infrastructure was heterogeneous in term
of processing speed. The speed ratings of the computer ranged
uniformly between 500 and 1100. All resources were fully
connected with equal network links.

The simulations serve the purpose of showing the overall
performance of the algorithms. Since according to [25] the
actual distributions of job sizes, job durations etc. do not
impact the general quality of the evaluation results, even when
simple models are used, the simulations were made using a
simple synthetic workflow generation model. Each workflow
was assumed to be reserved in advance with the book-
ahead time being exponentially distributed. The workflows
were created randomly with following uniformly distributed
parameters: number of activities, number of dependencies,
number of synchronous activities, number of channels, and
shape factor. The shape factor influences the workflow width:
the amount of concurrent and synchronous activities on the
same level.

B. Request Rejection Ratio and Grid Utilization

As discussed before, the scheduling process may be unsuc-
cessful. Since heuristic algorithms are used, workflow requests
might also be unnecessarily rejected. To measure such effects
we used the Request Rejection Ratio:

Request Rejection Ratio :=
|W|
|W|

W denotes the set of rejected workflow reservation requests
and W denotes the set of all incoming requests.

Another important statistical value is the average utilization
of the system. Since network resources are always reserved
in the context of compute resource reservations, the average
utilization value is computed only for the compute resources.

We varied the mean inter-arrival times in order to simulate
different load situations. In Fig. 3a the request rejection ratio as
well as the utilization is shown for different mean inter-arrival
times. If workflows arrive at a high frequency due to short
inter-arrival times, both algorithms utilize almost all resources
and a lot of requests have to be rejected.

Basically three phases can be observed in Fig. 3a. For inter-
arrival times smaller than 0.5 time slots, the simulated Grid
is nearly fully loaded. Each additional incoming workflow is
rejected as the linear progression of the rejection ratio shows.
In the following phase, the utilization drops because less
workflows arrive. Though, not all workflows can be accepted.
This phase lasts until about 0.7 time slots. For higher inter-
arrival times, the rejection ratio is nearly zero in case of
HEFTSyncBT. Using the HEFTSync, there are still a small
number of rejected workflows during this lower loaded third
phase.

During the first phase, both algorithms perform quite equal.
In subsequent phases, HEFTSync shows acceptable low re-
jections ratios but it is always significantly worse than the
enhanced HEFTSyncBT.
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Fig. 3: Performance of both algorithms depending on the incoming load.

C. Schedule Length Ratio

In the vast amount of articles in the scheduling literature,
the schedule length or makespan is used as performance metric
and the objective of the proposed algorithms is to minimize
the makespan.

Since the workflows that are used for performance evalua-
tion are all generated randomly, the absolute makespan greatly
varies from workflow to workflow. Hence, in order to get
meaningful results, we normalized the makespan to an esti-
mated average-case schedule length. In [2], this concept was
introduced as the schedule length ratio (SLR). The difference
between the original definition and ours is that, for the estima-
tion, we use the average speed of the Grid resources and not
the lowest. Furthermore, we integrate average communication
costs. The SLR of a given successfully scheduled workflow is
defined as

SLR :=
makespan

∑

critical path

average case exec. and comm. costs

The curves in Fig. 3b show that the intensive search of the
backtracking version leads to longer schedules, on average.
The SLRs are definitely higher in overloaded and highly
loaded systems than in lower loaded systems. Disregarding the
peaks for the moment, the fluctuations are not extreme. All val-
ues are within 75% and 125% of the estimated schedule length,
a fact that justifies the estimation method employed. Though,
there are two remarkable peaks in the previously identified
second phase. In this phase many workflows could only be
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Fig. 4: The run-time of both algorithms for different workflow
sizes.

accepted by significantly increasing their makespan. In higher
load scenarios (lower inter-arrival time), these workflows are
rejected because they miss the deadline.

Again, both algorithms have the same characteristic, but the
HEFTSyncBT has a significant better performance.

D. Algorithm Run-time

As outlined, HEFTSyncBT is effective in finding resources
for complex workflows. The remaining question is how effi-
cient HEFTSyncBT is.

First we analyze the performance of both algorithms for
different load situations. A rough estimation of the algorithm
performance is the average run-time of a successful scheduling
of a single workflow. The Fig. 3c shows that, on average,
HEFTSyncBT needs more time to schedule the workflows but
has the same characteristic.

Another important aspect is the scalability of a scheduling
algorithm. Kwok and Ahmad have conducted a comprehensive
study in which they compare many task graph scheduling
heuristics [16]. In their article, they state that most algorithms
are evaluated using small problem sizes, and it is not very clear
how the algorithms scale with the problem size. The authors
see a need for a performance measure being an indicative
parameter of an algorithm’s scalability as well as of the trade-
off between its solution quality and running time.

When we developed the backtracking heuristic, we were
aware of the exponential worst-case performance of back-
tracking algorithms. What becomes clear is the fact that the
effective algorithm HEFTSyncBT might not be as efficient as
required. The plot in Fig. 4 illustrates the durations of different
experiments with respect to different workflow sizes (up to 60
activities on average). In the experiment, 5000 randomized
workflows were generated and scheduled. The times are only
estimations since the overall duration of the whole experiment
is measured and not only the time needed for scheduling.
But the exponential complexity of the backtracking variant
is highly visible, even though backtracking is only used for
co-allocations.

VI. CONCLUSION AND OUTLOOK

We developed a framework for modeling Grid Workflows
and Grid resources. Our workflow model is based on the



classical task graph model used in the scheduling literature.
We introduced the concept of synchronous activities to be able
to model parallel activities. Communication requirements can
be specified between such synchronous activities in the form
of channel dependencies.

Basically, our workflow description is abstract meaning that
precedence constraints of activities and data dependencies can
be defined. The concrete Grid resources that are allocated
by the Grid Management System are hidden from the user.
For data transfers and inter-task communication, network
resources need to be reserved. This requires effective and
efficient mapping and scheduling algorithms that can cope
with the NP-complete combinatorial problem given. Addi-
tionally, the workflow execution is restricted by user-given
temporal constraints. This imposes the additional issue that
during scheduling, workflow deadlines must be met.

After reviewing multiple scheduling approaches, we decided
to use list scheduling heuristics as a basis for our algorithms.
We extended and modified the well-known HEFT [2] algo-
rithm according to our requirements, the support of advance
reservation and coping with deadlines and co-allocation.

The two proposed extended algorithms HEFTSync and
HEFTSyncBT are able to allocate and reserve resources for
complex Grid Workflows. During the performance analysis of
our first approach (HEFTSync), we saw that a pure Greedy
approach to scheduling synchronous activities still leads to
satisfying results. Its scalability is definitely better than more
complex search techniques. Though, we have seen that we get
worse results with respect to our major performance metric,
the requests rejection ratio.

The second algorithm (HEFTSyncBT) uses Backtracking in
order to find resources for co-allocation. The major drawback
of Backtracking algorithms is their worst-case performance
leading to exponential complexities. Though, compared to the
Greedy approach, the Backtracking version of our algorithm
significantly improves the ratio of accepted workflows.

We have seen that the two algorithms have their weaknesses
and strengths. Which algorithm eventually suits better depends
on the structure and capacity of the Grid as well as on the
average and worst-case complexity of the Grid Workflows.

Additional work might be needed to improve the HEFTSync
algorithm to cope better with overloaded systems, e.g. it might
be useful not to stop searching for free parallel slots after the
first unsuccessful try but to continue the search along the time
axis. In order to optimize the performance of HEFTSyncBT
with respect to its scalability, it might be promising to earlier
detect and reject worst-case requests, e.g. workflows having
many synchronous activities that exceed the system capacity.
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