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1 Representations of Finite Groups

Notation. We write Cd×d for the ring of d × d-matrices over C. Further GLd = GLd(C) is the
group of invertible d× d-matrices over C.

1.1 Modules and Representations

1.1 De�nition. A matrix representation of a group G is a homomorphismM : G→ GLd for some
d. This number d is called the representation degree or dimension of M .

Example. • There always is the trivial representation G→ GL1 via g 7→ 1.

• From the symmetric group we have the sign sgn : Sn → {−1, 1} ≤ C.

• We have the de�ning representation D : Sn → GLn where

D(π)ij =

{
1 : π(j) = i

0 : else

• Let G = Cn = 〈g〉. We know M(g)n = M(gn) = M(1) = 1, so M(g) is a root of unity and
each such choice is a representation.

1.2 De�nition. Let G be a group, V some (�nite dimensional) C-vector-space. A representation
of G on V is a group morphism D : G→ GL(V ). D is called faithful if it is injective.

1.3 De�nition. A (�nite dimensional) G-module is a (�nite dimensional) C-vector-space V to-
gether with an operation of G on V (i.e. g.(h.v) = (gh).v, 1.v = v) such that v 7→ g.v is linear for
all g ∈ G.

1.4 Remark. If D is a representation of G on V , we de�ne the operation g.v := D(g)(v), which
yields a G-module. Conversely any operation de�nes a representation via D(g)(v) := g.v.

Let G operate on some �nite set X. Put

V = spanC(X) =

{∑
x∈X

λx · x : λx ∈ C

}

as formal linear combinations. We extend the operation of G linearly onto V . Then V is a
G-module.

Example. Take the natural operation of Sn on [n] = {1, . . . , n}. The Sn-module is given by

π

(
n∑
i=1

λi · i

)
=

n∑
i=1

λi · π(i)

If we identify i with ei, then the corresponding matrix is the permutation matrix.

1.5 De�nition. Let G be some �nite group. The group algebra is the set

C[G] :=

{∑
g∈G

λg · g : λg ∈ C

}
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together with the multiplication(∑
g∈G

λg · g

)
·

(∑
h∈G

µh · h

)
=
∑
g,h∈G

λgµh · (gh)

1.2 Submodules and Reducibility

1.6 De�nition. Let V be some G-module. A submodule of V is a G-stable subspace, i.e. ∀g ∈
G, u ∈ U.g.u ∈ U .

1.7 Remark. U inherits G-module structure from V . We always have the trivial submodules 0
and V .

Example. Consider Cn as Sn module. Then U := span(e1+. . .+en) is a 1-dimensional submodule.
Sn operates trivially on U , since it just permutes the summands.

1.8 Exercise. Show that U and U⊥ are the only non-trivial Sn-submodules of Cn.

1.9 De�nition. A G-module V is called simple, if V 6= 0 and the only submodules are 0 and V
itself. The corresponding representation is called irreducible.

1.10 Lemma. Every simple Cn-module is 1-dimensional.

Proof. Let Cn = 〈g〉 and v be an eigenvector of D(g) ∈ GL(V ). Then g.v = λv, and therefore
gj.v = λjv. Hence Cv is a non-empty Cn-submodule. If V is simple, we must have V = span(v),
which is 1-dimensional.

1.11 De�nition. Let V be a G-module and U ≤ V . A module-complement is a submodule W
with V = U ⊕W .

Let V = U ⊕W with basis U = 〈u1, . . . , um〉 and W = 〈w1, . . . , wn〉. For g ∈ G let M(g) be the
matrix of D(g) ∈ GL(V ). Then U,W are submodules i� M(g) has block-form for all g ∈ G. So
we look for a simultaneous block decomposition.

1.12 Notation. We �x the following notation, unless states otherwise.

• From now on let G be some group, V be some (�nite dimensional) C-vector-space.

• A G-module is a map G× V : (g, v) 7→ g.v.

• A representation is a morphism D : G→ GL(V ).

• A submodule U ⊆ V is a G-invariant subspace.

• Let 〈·, ·〉 be some hermitian inner product on V :

〈λ1u1 + λ2u2, v〉 = λ1〈u1, v〉+ λ2〈u2, v〉
〈v, u〉 = 〈u, v〉

1.13 Lemma. Every G-module has a G-invariant inner product, i.e. ∀g ∈ G, u, v ∈ V.〈gu, gv〉 =
〈u, v〉.
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Proof. Let 〈·, ·〉 be any inner product. Then we de�ne

〈v, w〉G :=
1

|G|
∑
g∈G

〈gv, gw〉

By construction this is a G-invariant inner product.

1.14 Lemma. Let 〈·, ·〉 be G-invariant and U ⊆ V be some G-submodule. Then

U⊥ := {v ∈ V : ∀u ∈ U.〈u, v〉 = 0}

is a submodule.

Proof. Let g ∈ G, v ∈ U⊥. It remains to show gv ∈ U⊥. But for any u ∈ U we have 〈gv, u〉 =
〈v, g−1u〉 = 0, since g−1u ∈ U .

1.15 Theorem (Maschke). There are simple submodules U1, . . . , Ut of V with V = U1⊕ . . .⊕Ut.

Proof. By induction on d := dimV . For d = 0 it is clear, so let d > 0.
If V is simple, we are done. Otherwise there is a submodule 0 6= U1 ⊂ V . By a previous lemma which?which?
V = U1 ⊕ V ′ for some V ′. Then we apply induction on U1 and V

′.

1.16 Corollary. Let M : G→ GLd be the matrix representation. Then there exists some T ∈ GLd
and a decomposition d = d1 + . . .+ dt such that for all g ∈ G we have

TM(g)T−1 =


M1(g) 0

M2(g)
. . .

Mt(g)


where Mi : G→ GLdi are irreducible matrix representations.

Example. Take G = Cn = 〈g〉. Then Cn-module V is simple i� dimV = 1. The 1-dimensional
Cn-modules are given by the group morphisms

Mk : Cn → C∗ : gj 7→ ζkj

where ζ is an n-th root of unity. For al matrix representation M : Cn → GLd there exist integers
k1, . . . , kt and there is some T ∈ GLd such that

TM(g)T−1 = diag(Mk1(g), . . . ,Mkt(g)) = diag(ζk1 , . . . , ζkt)

1.17 Remark. (i) Maschke's Theorem still holds if C is replaced by a �eld K with charK - |G|
(because we computer |G|−1 when averaging over the group).

(ii) For in�nite groups Maschke's theorem does not hold. Take G = (R,+) with

M : R→ GL2 M(r) =

(
1 r
0 1

)
It is in fact a representation since M(r1)M(r2) = M(r1 + r2). Now take the submodule
U = R(1, 0)T . We claim that this is the only proper submodule: Assume v2 6= 0,so v /∈ U .
Then M(1)v = (v1 + v2, v2), which is linearly independent of v. So with any of these v we
span all of V . Thus U does not have a module complement.
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1.3 Morphisms and Schur's Lemma

1.18 De�nition. Let V,W be G-modules. A G-module morphism is a linear map

ϕ : V → W ∀g ∈ G, v ∈ V.ϕ(g.v) = g.ϕ(v). (1)

In matrix language: Choose some basis of V and W with m = dimV and n = dimW . Let
M : G → GLm, N : G → GLn be the corresponding matrix representations. Let T be the
representation matrix of ϕ. Then eq. (1) means: ∀g ∈ G.TM(g) = N(g)T .

That's a natural transformation

1.19 De�nition. A G-module isomorphism ϕ : V → W is a bijective module morphism. If there
exists such an isomorphism, we say V and W are isomorphic, written V ∼= W .

Now we have a special case of the above scenario. The corresponding modules are isomorphic i�
there exists some T ∈ GLd with ∀g ∈ G.N(g) = TM(g)T−1, which means they are conjugate.

Notation. • Denote HomG(V,W ) := {ϕ : V → W : G-module morphism} ≤ Hom(V,W ).

• EndG(V ) := HomG(V, V ) ≤ End(V ), is a subalgebra.

Lemma. Let ϕ : V → W be some G-module morphism. Then kerϕ ≤ V and imϕ ≤ W are
submodules.

Theorem (Schur's Lemma). Let V,W be simple G-modules.

(i) If V � W then HomG(V,W ) = 0.

(ii) If V ∼= W then dim HomG(V,W ) = 1.

Proof. Let V � W and assume 0 6= ϕ ∈ HomG(V,W ). Then ker < V , but since V is simple, we
get kerϕ = 0. So ϕ is injective. Additionally 0 6= imϕ ≤ W , so imϕ = W since W is simple.
Thus ϕ is surjective, hence bijective, so ϕ is an isomorphism.  
Next we show EndG(V ) = C idV (so we have the case W = V ).
Let ϕ ∈ EndG(V ). Let v 6= 0 be an eigenvector of ϕ, with ϕ(v) = λv. Then

ϕ− λ idV ∈ EndG(V ) v ∈ ker(ϕ− λ idV ) 6= 0

Since V is simple, we get ker(ϕ− λ idV ) = V , so ϕ = λ idV .
Now let α : V → W be an isomorphism and ϕ ∈ HomG(V,W ). Then α−1 ◦ϕ ∈ EndG(V ). So there
is some λ ∈ C with α−1 ◦ ϕ = λ idV , which means ϕ = λα.

Remark. In the proof we didn't use that G is �nite.

Corollary. Let V = U1 ⊕ . . .⊕ Ut be a direct sum of simple modules. Take any simple G-module
W . Then

|{i : Ui ∼= W}| = dim HomG(V,W ).

This number is called multiplicity of W in V , written multW (V ).

Proof. We regard the map

t⊕
i=1

Hom(W,Ui)→ Hom(W,V ) (ϕ1, . . . , ϕt) 7→ (w 7→ ϕ1(w) + . . .+ ϕt(w))
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By taking projections ϕi := πi ◦ ϕ, we get an inverse map, so this is an isomorphism. Restriction
onto G-invariant maps yields an isomorphism

t⊕
i=1

HomG(W,Ui)→ Homg(W,V )

By Schur's Lemma we have

dim HomG(W,Ui) =

{
1 W ∼= Ui

0 else

Thus dim HomG(W,V ) = |{i : W ∼= Ui}|.

Corollary. Let V be some G-module and Ui, U
′
j be simple submodules such that

V = U1 ⊕ . . .⊕ Ut = U ′1 ⊕ . . .⊕ U ′s

Then s = t and there is some π ∈ St with Ui ∼= U ′π(i) for all i.

Let M = M(g) be some matrix representation. Now we are looking at polynomial functions
f : Cd×d → C with f(TMT−1) = f(M) for all T ∈ GLd. We can use every elementary symmetric
polynomial in the eigenvalues (e.g. trace, determinant).

1.4 Characters

Let α : V → V be linear, and a = [aij] a matrix representation with respect to some basis.
The function tr(a) =

∑
i aii is called the trace. It is independent of the basis. In fact tr(α) is a

coe�cient of the characteristic polynomial

det(T − α) = T d − tr(α)T d−1 + . . .+ (−1)d det(α)

In particular tr(gαg−1) = tr(α) for all g ∈ GL(V ).

De�nition. Let D be a representation of G. The function χD : G→ C via g 7→ tr(D(g)) is called
a character of D. If V is the module corresponding to D, we write χV .

Proposition. Isomorphic modules have the same characters.

Proof. Let U, V be G-modules with representations D,F and isomorphism α : U → V . Then by
de�nition α ·D(g) = F (g) · α, or rather F (g) = αD(g)α−1. Thus

χF (g) = tr(F (g)) = tr(D(g)) = χD(g)

Remark. (i) χV (1) = dimV .

(ii) χV is a class function, i.e. constant on conjugacy classes.

(iii) χU⊕V = χU + χV

Example. (i) Suppose X is some �nite set and G acts on X. Let V := spanC(X) with repre-
sentation D. Then χV (g) = tr(D(g)) is the number of �xed points of g.
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(ii) Let G = Sn acting on X = [n]. We regard Cn as Sn-module. We put 1 = C (
∑
ei) and

U := 1⊥ = {x ∈ Cn :
∑
xi = 0}. Then U is a simple module (exercise). χU(π) =

#(�xed points of π)− 1, due to the previous remark.

(iii) Take the regular representation: X = G and G acts on the left. In this case, we have a �xed
point i� g = 1. Hence

χ(g) =

{
0 g 6= 1

|G| g = 1

Lemma. χV (g−1) = χG(g)

Proof. Take H = 〈g〉, say H ∼= Cn. With a suitable basis, V has a representation of the form
M(g) = diag(ζk1 , . . . , ζkd), for ζn = 1. But since ζ−1 = zeta we have

χV (g) = tr(M(g−1)) =
d∑
i=1

ζ−ki =
d∑
i=1

ζ
ki

= χV (g)

1.5 Orthogonality relations

G acts on Hom(U, V ) via (g.α)(u) := g.α(g−1.u). This way, Hom(U, V ) becomes a G-module.
Recall HomG(U, V ) ≤ Hom(U, V ). In fact α ∈ HomG(U, V )⇔ ∀g ∈ G.g.α = α.

Corollary (From Schur's Lemma). Let ϕ : V → U be some linear map. We de�ne

ϕ̃ := |G|−1 ·
∑
g∈G

DV (g) ◦ ϕ ◦DU(g−1).

Then we have

(i) If U � V then ϕ̃ = 0.

(ii) If U ∼= V then ϕ̃ = 1
n

tr(ϕ) · idV , where n = dimV .

Proof. Due to the averaging ϕ̃ ∈ HomG(U, V ), so we can apply Schur's Lemma. This immediately
yields the �rst part. For the second, we know ϕ̃ = λ idV , so just have to compute λ.

λn = tr(ϕ̃) =
1

|G|
∑
g∈G

tr(DV (g)ϕDV (g)−1) = tr(ϕ)

Corollary. Let U, V be simple G-modules with representations R, S.

(i) If U � V , then |G|−1
∑

g∈G Sij(g)Rkl(g
−1) = 0.

(ii) If U ∼= V , then |G|−1
∑

g∈G Sij(g)Rkl(g
−1) = 1

n
δilδjk.

Proof. Apply the corollary to ϕ : U → V with matrix Ejk. In the case U � V we get

0 =
1

|G|
∑
g∈G

∑
j′,k′

Sij′(g) (Ejk)j′k′ Rk′l(g
−1) =

1

|G|
∑
g∈G

Sij(g)Rkl(g
−1)

For the case U ∼= V we proceed similarly

1

|G|
∑
g∈G

sij(g)Rkl(g
−1) =

tr(Ejk)

n
δil =

1

n
δjkδil
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Let 〈·, ·〉 be a Hermitian inner product on H. We say x1, . . . , xk form an orthonormal system i�
〈xi, xj〉 = δij. If k = dimH, then this is an orthonormal basis. In this case we have the Fourier
decomposition

x =
k∑
i=1

〈xi, xi〉xi

On our vector space CG we de�ne the Hermitian product

〈ϕ, ψ〉 :=
1

|G|
∑
g∈G

ϕ(g)ψ(g)

Theorem (Orthogonality relations). Let U, V be simple G-modules. Then

〈χU , χV 〉 =

{
1 : U ∼= V

0 : U � V

Proof. Take matrix representations R, S of U, V .

〈χU , χV 〉 =
1

|G|
∑
g∈G

χV (g)χU(g)
Lemma

=
1

|G|
∑
g∈G

χV (g)χU(g−1)

=
1

|G|
∑
g∈G

(∑
i

sii(g)

)(∑
j

Rjj(g)

)
=
∑
i,j

1

|G|
∑
g∈G

Sii(g)Rjj(g
−1)

For U � V , the corollary tells us that the inner sum is zero. So in this case 〈χV , χU〉 = 0.
Let U ∼= V , so wlog U = V . By the corollary we get

1

|G|
∑
g∈G

Sii(g)Rjj(g
−1) =

1

n
δij

Thus 〈χV , χU〉 = 1
n

∑
i,j δij = 1.

Corollary. Let W be simple. Then

multW (V ) = dim HomG(W,V ) = 〈χV , χW 〉

Proof. We decompose V = U1 ⊕ . . .⊕ Ut, with Ui simple. Thus χV =
∑
χUi . By linearity

〈χV , χW 〉 =
∑
i

〈χUi , χW 〉 = #{i : Ui ∼= W} = multW (V )

Note that this also shows that the multiplicity in independent of the decomposition.

Theorem. There are only �nitely many isomorphism types of simple G-modules. If they are
represented by W1, . . . ,Wk, then

∑
(dimWi)

2 = |G|. Moreover k is upper bounded by the number
of conjugacy classes of G.

Proof. Characters lie in the subspace of class functions

R(G) := {f ∈ CG : f constant on conjugacy classes}
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Moreover dimR(G) = #conjugacy classes. But χW1 , . . . , χWk
are orthogonal, in particular linearly

independent. Hence k ≤ dimR(G).
Let V denote the G-module of the regular representation, i.e. V = C[G]. Then

multWj
(V ) = 〈χV , χWj

〉 =
1

|G|
∑
g∈G

χV (g)χWj
(g) =

1

|G|
· χV (1)χWj

(1) = χWj
(g) = dimWj =: dj

Thus we get the decomposition

V ∼=
k⊕
j=1

dj⊕
∗=1

Wj

which leads to |G| = dimV =
∑k

j=1 d
2
j .

Remark. In fact, k is the number of conjugacy classes.

Theorem. We have U ∼= V ⇔ χU = χV .

Proof. We have already done one direction. So assume χU = χV . Let U ∼=
⊕k

i=1miWi and

V ∼=
⊕k

i=1 niWi with ni,mi ∈ N. Thus we get χU =
∑

imiχWi
and χV =

∑
i niχWi

. But since the
characters are linearly independent (orthogonal system), this decomposition is unique. So ni = mi

and U ∼= V .

Proposition. Let χ be some character of a G-module. Then

(i) χ is 1-dimensional i� χ : G→ C∗ is a group morphism.

(ii) χ is irreducible i� 〈χ, χ〉 = 1.

Proof. (i) ⇒: Let χ = χV with representation D : G→ GL1 = GL(C) = C∗. But then χ = D.

⇐: De�ne a 1-dimensional module on C by g.x = χ(g)x. This has character χ.

(ii) Let χ = χV with decomposition V ∼=
⊕

miWi. Then χV =
∑
miχWi

. For the inner product
we get

〈χV , χV 〉 =
∑

m2
i 〈χWi

, χWi
〉 =

∑
m2
i

The latter is a sum of non-negative squares, which can only be one i� there is a single
contribution, which means there is a single W1.

Example. Take G = S3. We have the following simple representations.

• C ∼= W1: trivial representation, χ1 = 1

• C ∼= W2: sign, χ2 = sgn

• C2 ∼= W3: Consider C
3 = C(1, 1, 1)⊕U , then U is our simple S3-module: We know χU(π) =

fixG(π)− 1. Then

〈χU , χu〉 =
1

6

∑
π∈S3

χU(π)2 =
22 + 3 · 02 + 2 · (−1)2

6
= 1

As a short notation we have the character table:
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id (ij) (ijk)
χ1 = 1 1 1 1
χ2 = sgn 1 −1 1
χ3 2 0 −1

Example. Take G = S4. The number of conjugacy classes is the number of partitions of 4, which
is 5. As before we have W1,W2 and W3 = (1, 1, 1)⊥ (check that it is simple). For the remaining
ones we get 13 = dim(W4)

2 + dim(W5)
2, so dimW4 = 3 and dimW5 = 2.

De�ne the module U by (π, u) 7→ sgn(π)π.u, so χ4 = χ2 · χ3. This module is simple as well and
χ3 6= χ4, so it is a new module. To �nd W5, we take a map ϕ : S4 � S3 with kernel Klein Four. Let
D2 : S3 → GL(W3) be the irreducible representation. Then ϕ ◦D2 is an irreducible representation
of S4. When checking the orthogonality we get

id (ij) (ijk) (ijkl) (ij)(kl)
χ1 = 1 1 1 1 1 1
χ2 = sgn 1 −1 1 −1 1
χ3 3 1 0 −1 −1
χ4 = sgn ·χ3 3 −1 0 1 −1
χ5 2 0 −1 0 2

1

24
=
∑
π∈S4

χi(π)χj(π) =
1

24

∑
K∈conj. class

|K| · χi(K)χj(K)

Thus the 5 × 5-matrix

[√
|K|
24
χi(K)

]
i,K

is orthogonal in the rows and thus also in the columns.

This means the columns of the character table are orthogonal.

1.6 Decomposition of the Group Algebra

Let G be some �nite group. Recall that we have the group algebra

C[G] =

{∑
g∈G

λgg : λg ∈ C

}
dimC[G] = |G|

Example. Take G = Cn = 〈g〉. Starting with the polynomial ring C[X], we have the surjective
map ϕ : C[X] → C[Cn] induced by X 7→ g. We have ϕ(Xn) = gn = 1, so Xn − 1 ∈ kerϕ, and in
fact this generates the kernel. So C[X]/(Xn − 1) ∼= C[G].
Let ζ be some n-th root of unity. Then Xn− 1 =

∏
(X − ζj). By the Chinese Remainder Theorem

we have C[X]/(Xn − 1) ∼= Cn via the map [F ] 7→ (F (ζ0), . . . , F (ζn−1). This map is the Discrete
Fourier Transform.

Next we take a look at the centre of group algebra, which is given by

Z(C[G]) := {a ∈ C[G] : ∀b ∈ C[G].ab = ba}

The centre is a sub-algebra.
For some a =

∑
λgg conjugation can be written as

hah−1 =
∑
g∈G

λghgh
−1 =

∑
g′∈G

λh−1g′hg
′
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So all that happens is a reordering of the coe�cients. Then we have a ∈ Z(C[G]) i� ∀g.λh−1gh = λg
i� λ : G → C is constant on conjugacy classes. As a consequence, dimZ(C[G]) is the number of
conjugacy classes.

Remark. Let D : G → GL(V ) be some group representation. We extend this to a C-algebra
morphism D′ : C[G] → End(V ) via

∑
λgg 7→

∑
λgD(g). This is called a representation of the

algebra C[G].

Theorem (Wedderburn). Let G be �nite and W1, . . . ,Wk the isomorphism types of simple G-
modules (recall that there are only �nitely many), with corresponding representations Di : G →
GL(Wi), extended to algebra morphisms Di : C[G] → End(Wi). Then ϕ : C[G] →

∏
End(Wi)

via a 7→ (D1(a), . . . , Dk(a)) is a C-algebra isomorphism. After choosing bases for the Wi, we get
C[G] ∼= Cn1×n1 × . . .× Cnk×nk .

Proof. • First note that by construction ϕ is a C-algebra morphism.

• Let a ∈ kerϕ. This means Di(a) = 0 or aWi = {aw : w ∈ Wi} = 0 for all i. So a annihilates
each Wi. But any G-module is a direct sum of these Wi, so a annihilates every G-module.
In particular a annihilates C[G], which means a.1 = 0, so a = 0. Thus ϕ is injective.

• Both sides have the same dimension

dimC[G] = |G| =
∑

(dimWi)
2 = dim

(∏
End(Wi)

)
Therefore ϕ is an isomorphism.

Example. • Wedderburn's Theorem generalises our above observation on the Discrete Fourier
Transform: C[Cn] = C× . . .× C.

• Take G = S3. Then C[G] ∼= C× C× C2×2, from previous parts.

• Similarly C[S4] ∼= C× C× C3×3 × C3×3 × C2×2.

Corollary. The number of isomorphism classes of simple G-modules is the number of conjugacy
classes (before we had �≤�).

Proof. First observe that Z (Cn×n) = CIn, which is 1-dimensional. Furthermore

Z
(
Cn1×n1 × . . .× Cnk×nk

)
= Z

(
Cn1×n1

)
× . . .× Z

(
Cnk×nk

) ∼= C× . . .× C ∼= Ck

So we have Z(C[G]) ∼= Ck. Finally

#(iso-classes) = k = dimZ(C[G]) = #(conjugacy classes)

Corollary. Let |G| = n, G abelian. The simple G-modules are the 1-dimensional modules. There
are exactly n pairwise non.isomorphic 1-dimensional G-modules. The group algebra is C[G] ∼= Cn.

Proof. We have n conjugacy classes, so n isomorphism classes. Further n = |G| =
∑n

i=1(dimWi)
2.

Hence each Wi needs to have dimension 1.

Corollary.

#(iso classes of Sn) = #(conjugacy classes of Sn) = P (n) := #(partitions of n)
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Example. Take the dihedral group Dn for n odd. We denote the elements by

Dn = {1, d, . . . , dn−1, s, sd, . . . , sdn−1}

It is generated by the relations dn = s2 = 1 and sds = d−1.
We have Cn = 〈d〉 E Dn, as normal subgroup of index 2. Thus Dn/Cn = 〈s〉 ∼= C2

∼= {1,−1}. So
we get the 1-dimensional representation χ1 : Dn → Dn/Cn → {1,−1}. There are 2 + n−1

2
further

conjugacy classes {1}, {dj, d−j} and {sdj : j < n}. For 1 ≤ l ≤ n−1
2

we have the Cn-representation
Dl : Cn → GL2 by Dl(d) = diag(ζ l, ζ−l). We extend this onto Dn by

Dl(s) =

(
0 1
1 0

)
Dl(sd

j) =

(
0 ζ−lj

ζ lj 0

)
which gives rise to character χl with χl(d

j) = ζ lj + ζ−lj and χl(sd
j) = 0.

〈χl, χl〉 =
1

2n

(
|χl(1)|2 +

n−1∑
j=1

|χl(dj)|2 + 0

)
=

22 + (2n− 4)

2n
= 1

Hence the χl are irreducible. Moreover χl 6= χr for l 6= r.

1.7 Tensor Products

Let k be some �eld and U, V �nite dimensional k-vector-spaces. For U ∼= km and V ∼= kn we will
get U ⊗ V ∼= km×n, although it will not be de�ned this way.

1.20 De�nition. A tensor product of U and V is a k-vector-spaceW together with a bilinear map
ϕ : U × V → W , written (u, v) 7→ u ⊗ v which satis�es the following universal property: For all
k-spans W ′ and ϕ′ : U ×V → W ′, which is k-linear, there is exactly one k-linear map γ : W → W ′

such that the following diagram commutes

U × V W

W ′

ϕ

ϕ′
γ

1.21 Theorem. (i) The tensor product exists and it is unique up to �canonical isomorphism�.

(ii) Let ϕ : U × V → W be k-linear, ei be some basis of U and fj basis of V . Then (W,ϕ) is a
tensor product of U and V i� (ϕ(ei, fj) : i, j) is a basis of W .

Proof. (i) Existence follows from the second part. Taking W = W ′ we get that there only is

the identity map. In the general case, swap W and W ′, to get W
γ−−→W ′ γ′−−→ W . Therefore

γ ◦ γ′ = id, so it is an isomorphism.

(ii) If we have the basis, then the map is uniquely de�ned.

Notation. We write U × V → U ⊗k V via (x, y) 7→ x ⊗ y for the tensor product. Every tensor
w ∈ U ⊗ V can be written as w =

∑
ui ⊗ vj but this is not unique.

12



Example. The map into matrices given by (ξ, η) 7→ (ξi · ηj)ij is a tensor product.

1.22 Remark. (i) dim(U ⊗ V ) = (dimU) · (dimV )

(ii) U
∼−−→ U ⊗ k via u 7→ u ⊗ 1, which is a k-isomorphism. There is exactly one isomorphism

U ⊗ V ∼−−→ V ⊗ U mapping all u⊗ v to v ⊗ u.

U × V

V ⊗ U U ⊗ V
γ

γ′

(iii) The tensor product is associative in the sense that (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ). There is
exactly one such isomorphism and it maps (u⊗ V )⊗ w 7→ u⊗ (v ⊗ w).

1.23 Proposition. Let α : U → U ′ and β : V → V ′ be k-linear maps. Then there is exactly one
k-linear map α ⊗ β : U ⊗ V → U ′ ⊗ V ′ such that (α ⊗ β)(x⊗ y) = α(x)⊗ β(y). One calls α ⊗ β
the tensor product of α and β, also called Kronecker product.

Proof. We have a bilinear map

U × V ϕ−−→ U ′ ⊗ V ′ (u, v) 7→ α(u)⊗ β(v)

By universal property there exists exactly one map such that the following commutes:

U × V U ⊗ V

U ′ ⊗ V ′

ϕ

ϕ′
γ

So γ(u⊗ v) = α(u)⊗ β(v).

More concrete let α : km → km
′
and β : kn → kn

′
be given by matrices A ∈ km′×m and B ∈ kn′×n.

Then we use km ⊗ kn = km×n and km
′ ⊗ kn′ = km

′×n′ . Then

α⊗ β : km×n → km
′×n′

has the representation matrix

A⊗B = [aijbol](i,o),(j,l) (i, o) ∈ [m′]× [n′]

(j, l) ∈ [m]× [n]

Choose lexicographic order for (i, o), similarly for (j, l). Then A⊗B ∈ km′n′×mn looks like a11B . . . a1mB
...

. . .
...

am′1B . . . am′mB


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1.24 Lemma. Let m = m′ and n = n′ in the above scenario. Then tr(A⊗B) = tr(A) · tr(B).

Proof. Using the above writing, we obtain

tr(A⊗B) =
∑
i

(aii tr(B)) =

(∑
i

aii

)
· tr(B) = tr(A) · tr(B)

1.25 De�nition. On U ⊗ V we de�ne by g(u⊗ v) = (gu)⊗ (gv) a G-module structure, which is
called the tensor product of the G-modules U and V .
Note that for g ∈ G we have a well-de�ned linear map

U ⊗ V → U ⊗ V u⊗ v 7→ (gu)⊗ (gv)

If DU and DV are the corresponding representations, then the representation D of U ⊗ V satis�es
D(g) = DU(g)⊗DV (g) (Kronecker product).

1.26 Remark. For G-modules we also have

• U ⊗ V ∼= V ⊗ U

• (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W )

• U ⊗ k ∼= U

1.27 Proposition. For U, V ∈ modG we have χU⊗V (g) = χU(g) · χV (g), by Lemma 1.24.

Example. Let W be some simple Sn-module; Csgn the 1-dimensional Sn module given by the sign.
Then Csgn ⊗ W is an Sn-module. As a vector space Csgn ⊗ W ∼= C ⊗ W ∼= W , however, this
isomorphism might not respect the operation. The Sn-operation is (π,w) 7→ sgn(π) · π(w). This
module is also simple.
We furthermore have Csgn ⊗W ∼= W as Sn-modules i�

sgn ·χw = χw ⇔ ∀π ∈ Sn \ An.χw(π)

Example. Some further examples of tensors:

• V ∗ ⊗W ∼= Hom(V,W ) via the map

(ϕ⊗ w) 7→ (v 7→ ϕ(v) · w)

• (Cn)∗ ⊗ Cm ∼= Cn×m via

((ϕ1, . . . , ϕn), w) 7→ w · ϕT

which is a rank 1 matrix. Every matrix can be written as a sum of rank 1 matrices, and the
same holds for tensor elements. But the converse is not true (usually matrices don't have
rank 1, also a tensor element usually is just a sum of these terms.)

• Let's think about the Kronecker-product again. Let A ∈ GL(Cn) and B ∈ GL(Cm). Then on
rank 1 matrices it acts the following way:

(A⊗B)(wvT ) = B(w) · A(v)T = BwvTAT

14



which we write as BCAT . So

(A⊗B)(Eij) = (A⊗B)(eie
T
j ) = (Bei)(e

T
j A

T ) = bi · aTj =
∑
k,l

(
bikajl(eke

T
l )
)

if we use the vectors for the columns of the matrices. Now we regard the operation on matrices
as operation on vectors (concatenating all columns), then we get the Kronecker product of
matrices for the operation.

Maybe we have to transpose some terms. Jesko is not sure.

2 Representations of Algebras

Let k be a �eld and A some �nite-dimensional algebra.

2.1 De�nition. • A representation of A is an algebra-morphism D : A → End(M) where M
is a k-vector-space.

• An A-module is a k-vector-space M together with a map A×M →M which satis�es

∀a ∈ A.ϕa : M →M x 7→ ax is k-linear

∀x ∈M.ϕx : A→M a 7→ ax is k-linear

∀a, b ∈ A, x ∈M.(ab)x = a(bx)

∀x ∈M.1x = x

2.1 Semi-simple modules

2.2 Remark. A k-module is the same as a k-vector-space.

(i) If D : A → End(M) is a representation of A, then ax := D(a)(x) de�nes an A-module and
vice-versa.

(ii) Let G be a �nite group, A = k[G]. Every representation D : G→ GL(M) of G extends to a

representation D̃ : k[G]→ End(M).

Example. Let A = End(V ) for some k-vector-space and M := V . Then the representation is
D = id. So the action is the evaluation (a, v) 7→ a(v).

2.3 De�nition. Let M be an A-module. A submodule of M is a linear subspace N ≤ M such
that ∀a ∈ A, x ∈M.ϕ(a.x) = a.ϕ(x).

HomA(M,N) is a linear subspace of Homk(M,N) and EndA(M) is a subalgebra of Endk(M).

2.4 De�nition. An A-module M is called simple if M 6= 0 and M does not have a proper
submodule.

Example. V as End(V )-module is simple.

2.5 Lemma (Schur's Lemma). If M and N are simple A-modules and ϕ : HomA(M,N) then
either ϕ = 0 or ϕ is an isomorphism.

2.6 Theorem. Let M be an A-module. The following are equivalent

15



(i) M is a direct sum of simple modules.

(ii) M is a sum of simple submodules.

(iii) Every submodule of M has a module complement.

Proof. (i) ⇒ (ii): is clear.

(ii) ⇒ (iii): Let N ≤ M be a submodule. Let L ≤ M be a maximal submodule such that
N ∩ L = 0 (exists since �nite-dimensional). Then it su�ces to show N + L = M . By
assumption M = M1 + . . . + Mr with Mi simple submodules. If N + L 6= M there is
some i with Mi * N + L. Thus Mi ∩ (N + L) = 0, since Mi is simple. This also implies
N ∩ (Mi + L) = 0, which contradicts the maximality of L.

(iii) ⇒ (i): induction on the dimension

cref for item

2.7 De�nition. An A-module is called semi-simple if it satis�es the conditions of Theorem 2.6.

2.8 Remark. (i) Any C[G]-module is semi-simple (by Maschke, Theorem 1.15).

(ii) Any k[G]-module is semi-simple if char k - |G|.

2.9 De�nition. If M is an A-module and N ≤ M , then we de�ne an A-module structure on the
k-vector-space M/N by a.(x+N) = a.x+N . This is called the factor-module.

2.10 Proposition. Submodules and homomorphic images of semi-simple modules are semi-simple.

Proof. Let M = M1 + . . . + Mr, Mi ≤ M simple subodules. Let ϕ : M → P be a surjective
morphism of A-modules. Then

P = ϕ(M) = ϕ(M1) + . . .+ ϕ(Mr)

By Schur (Lemma 2.5) either ϕ(Mi) = 0 or ϕ(Mi) = Mi which is simple. So P is semi-simple.
Let N ≤ M be some submodule and L ≤ M a module-complement. Then M = N ⊕ L. Let
π : M → N be the projection along L. Then by the �rst part N = π(M) is semi-simple.

2.11 Theorem (Uniqueness of decomposition). Assume M is an A-module and

M = S1 ⊕ . . .⊕ Sm = T1 ⊕ . . .⊕ Tn

with Si, Tj ≤Msimple. Then n = m and there is some π with Si ∼= Tπ(j).

Again we have a well-de�ned notion of multiplicity multW (M) of a simple module W in M .

continue

2.2 Isotypical Decompositions

2.12 De�nition. AnA-moduleM is calledW -isotypical if it is a (direct) sum of simple submodules
∼= W .
Let M be semi-simple. We call MW :=

∑
N≤M,N∼=W N the W -isotypical component of M , if

MW 6= 0.

16



Although MW is de�ned by a possibly in�nite sum, it is well-de�ned, since only �nitely many
summands actually contribute.

2.13 Lemma. Let M = M1 ⊕ . . .⊕Mr, with Mi simple. Then MW =
⊕

mi∼=W Mi.

Proof. Let l = multW (M). Wlog Mi
∼= W for exactly i ≤ l. Clearly MW ⊇M1 ⊕ . . .⊕Ml.

Suppose W ∼= L ≤ M , but L * M1 ⊕ . . .⊕Ml. Then L ∩ (M1 ⊕ . . .⊕Ml) = 0 since L is simple.
Put N := (M1⊕ . . .⊕Ml)⊕L. Take the complement of N , i.e. M = N ⊕T with T = S1⊕ . . .⊕m
and Si simple. This yields a decomposition

M = M1 ⊕ . . .⊕Ml ⊕ L⊕ S1 ⊕ . . .⊕ Sm
so multW (M) ≥ l + 1, which is a contradiction.

2.14 Corollary. Let M be semi-simple.

(i) We have M =
⊕r

i=1MWi
is W1, . . . ,Wr is an isomorphism list of simple modules occurring

in M . This is called an isotypical decomposition.

(ii) Let ϕ : M → P be a module morphism. Then ϕ(MW ) ≤ PW with equality if ϕ is surjective.

(iii) If N ≤M is a submodule, then NW = MW ∩N .

Proof. (i) follows directly from Lemma 2.13

(ii) ϕ(MW ) ≤ PW by Schur (Lemma 2.5). If ϕ is surjective, then by item (i) we have

ϕ(M) =
r∑
i=1

ϕ (MWi
) ≤

r⊕
i=1

PWi
= P = ϕ(M)

(iii) Apply item (ii) to a projection π : M → N along a module complement.

Now consider the special case A = C[G].

2.15 Remark. The isotypical component of the trivial module χ = 1 is the submodule of G-
invariants V G = {v ∈ V : ∀g ∈ G.g.v = v}.

Let W ∈ modG simple, χ := χW . Consider

a :=
dimW

|G|
∑
g∈G

χ(g)g ∈ C[G]

Since χ is a class function, we even have a ∈ Z(C[G]). Let V ∈ modG with corresponding
representation D : C[G]→ End(V ). Then D(a) ∈ EndG(V ).
Now suppose V is simple. By Schur there is some λ ∈ C such that D(a) = λ · idV . Then

λ · dimV = tr(D(a)) =
dimW

|G|
∑
g∈G

χ(g) tr(D(g))︸ ︷︷ ︸
χV (g)

= dimW · 〈χV , χ〉 =⇒ λ =

{
0 : V � W

1 : V ∼= W

Now suppose V = V1 ⊕ . . .⊕ Vr is the isotypical decomposition and Vi is W -isotypical. Then the
representation D of V satis�es

D(a)|Vi = id

∀j 6= i.D(a)|Vj = 0

Therefore D(a)is the projection of V onto Vi along
⊕

j 6=i Vj. Furthermore we have an explicit
description of this projection in terms of characters.
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Example. For the trivial character the projection V → V G is given by

a =
1

|G|
∑
g∈G

g

Now we return to the general situation of A-modules; let W ∈ modA simple. Let M be some
W -isotypical modules. We investigate the submodules of M and EndA(M). We decompose M =
M1 ⊕ . . .⊕Mm with isomorphisms σi : W →Mi, so multW (M) = m. We regard km as the trivial
A-module and form the A-module W ⊗ km. So a(w ⊗ x) = (aw) ⊗ x for a ∈ A,w ∈ W,x ∈ km.
Our k-linear map is D(a)⊗ idkm : W ⊗ km → W ⊗ km.

2.16 Lemma. The map τ : W ⊗ km → M induced by w ⊗ x 7→
∑
xiσi(w) is an A-module

isomorphism.

Proof. • τ is well-de�ned. The map (w, x) 7→
∑
xiσi(w) is bilinear, then use universal property.

• τ is an A-module morphism a.(w ⊗ x) = (a.w)⊗ x because

τ(a(w ⊗ x)) =
∑
i

xiσi(a.w) = a.σixiσi(w) = a.τ(w ⊗ x)

• im τ =
∑
Mi, so τ is surjective.

• τ is an isomorphism since

dim(W ⊗ km) = m · dimW = dimM

2.17 Lemma. Assume k is algebraically closed. The map ρ : km×m → EndA(W ⊗ km) induced by
b 7→ idW ⊗b is an algebra-isomorphism.

Proof. • ρ(b) is an A-module-isomorphism since

ρ(b)(a.(w ⊗ x)) = ρ(b)(a.w ⊗ x) = (a.w)⊗ (b.x) = . . . = a.ρ(b)(w ⊗ x)

• ρ is k-linear,ρ(Im) = id.

ρ(bc)(w ⊗ x) = w ⊗ (bc.x) = ρ(b).(w ⊗ c.x) = ρ(b)ρ(c).(w ⊗ x)

So it is an algebra-morphism.

• For ϕ ∈ EndA(
⊕m

1 W ) there exist ϕij ∈ Endk(W ) such that

ϕ(w1 ⊕ . . .⊕ wm) =
m⊕
i=1

(ϕi1(w1)⊕ . . .⊕ ϕim(wm))

We view (ϕij) as the �representation matrix� of ϕ. The map ϕ 7→ [ϕij] (as matrix) is a
k-linear isomorphism. Moreover

ϕ ∈ EndA

(
m⊕
1

W

)
⇔ ∀i, j.ϕij ∈ EndA(W )
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By Schur there exist bij ∈ k such that ϕij = bij idW . Then we get a linear isomorphism

km×m → EndA

(
m⊕
1

W

)
b = [bij] 7→

(
w1 ⊕ . . .⊕ wm 7→

⊕
(bi1w1 ⊕ . . .⊕ bimwm)

)
This is clearly an algebra-isomorphism. We get an algebra-isomorphism

km×m
∼−−→ EndA

(
m⊕
1

W

)
∼−−→ EndA(W ⊗ km)

The image of b ∈ km×m is indeed (w ⊗ x 7→ w ⊗ (b.x)).

W ⊗ km ∼−−→
m⊕
1

W →
m⊕
1

W → W ⊗ km

w ⊗ x 7→ x1w ⊕ . . .⊕ xmw →
⊕
i

(∑
j

bijxj

)
w 7→ w ⊗ (b.x)

Let V be a W -isotypical module V ∼= W ⊕ . . .⊕W ∼= W ⊗ km. Take w ⊗ x ∈ V and some a ∈ A.
Then a(w ⊗ x) = (aw)⊗ x.

2.18 Lemma. Let X ⊆ kn be some linear subspace. Then U := W ⊗ X is a submodule of
W ⊗km and all submodules are obtained this way. Moreover X is uniquely determined by the space
U := W ⊗X.

Proof. (i) It is clear that W ⊗ X is a submodule, because a ∈ A operates only on the �rst
component.

(ii) Let U ≤ W ⊗ km be a submodule and p ∈ EndA(W ⊗ km) be a projection onto U . By
Lemma 2.17 there exists some b ∈ km×m such that p = idW ⊗p. Then U = im p = W ⊗ im b.
So we just take X = nimb.

(iii) Let W⊗X1 = W ⊗X2. Then we have X1 = X2 for subspaces X1, X2 ⊆ km. [Exercise]

2.19 Theorem. Let M be a semi-simple A-module and M = M1 ⊕ . . .⊕Mr by isotypical decom-
position. Let Mi

∼= Wi ⊗ kmi for simple A-modules Wi.

(i) For subspaces Xi ≤ kmi we have that
⊕r

i=1Wi · ⊗Xi is a submodule of M . Every submodule
of M is obtained this way (with unique Xi).

(ii) We have an algebra-isomorphism

r∏
i=1

kmi×mi
∼−−→ EndA(M)

(b1, . . . , br) 7→

(
r⊕
i=1

wi ⊗ ri 7→
r∑
i=1

wi ⊗ biri

)

Proof. (i) Let U ≤M be some submodule. Then we have the isotypical decomposition

U =
r⊕
i=1

(Mi ∩ U)

and use Lemma 2.18.
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(ii) For ϕ ∈ EndA(M) there exist (unique) ϕij ∈ HomA(Mj,Mi) such that

ϕ(v1 ⊕ . . .⊕ vr) =
r⊕
i=1

(ϕi1(v1)⊕ . . .⊕ ϕir(vr)) =
r⊕
i=1

ϕii(vi)

because by Schur ϕij = 0 if i 6= j. So ϕii ∈ EndA(Mi). By Lemma 2.17 we have kmi×mi →
EndA(Mi). Hence there exist bi ∈ kmi×mi such that

ϕii = idWi
⊗bi ϕii(wi ⊗ xi) = wi ⊗ bixi

2.3 Semi-simple Algebras

2.20 De�nition. A k-algebra A is called semi-simple if every A-module is semi-simple.

Example. Let G be a �nite group and k = C (in fact char k = 0 su�ces). Then k[G] is semi-
simple.

2.21 Remark. Let L ≤ A be a subspace. L is a submodule of A-module A i�

∀a ∈ A.∀x ∈ L.ax ∈ L

Such L is called a left-ideal of A. L is called a minimal left-ideal if L 6= {0} and L does not contain
a proper left-ideal.

This means L is a simple A-module. Hence A is semi-simple i� there exist minimal left-ideals
L1, . . . , Lr such that A = L1 ⊕ . . .⊕ Lr.

2.22 Theorem. (i) If A-module A is semi-simple then algebra A is semi-simple.

(ii) Assume A = L1 ⊕ . . .⊕ Lr for minimal left-ideals. Every simple A-module is isomorphic to
some Li.

Proof. (i) Let M be an A-module and (f1, . . . , fn) a k-basis of M . Consider ϕnA → M via
(a1, . . . , an) 7→

∑
aifi, which is a surjective module morphism. If A-module A is semisimple,

then A-module An is semisimple, so M is semisimple.

(ii) Take M and ϕ as before. Next we regard

An = A⊕ . . .⊕ A = (L1 ⊕ . . .⊕ Lr)⊕ . . .⊕ (L1 ⊕ . . .⊕ Lr)

as A-module. Assume M is simple. We know 0 6= M = ϕ(An), so at least one of the Li is
not mapped to 0. By Schur's Lemma Li ∼= M .

Example. (i) Let A = k, then k is the only minimal left ideal, k is semisimple. There is up to
isomorphy only the simple k-module k (see Linear Algebra). Every k-module is isomorphic
to some kn, with n ∈ N.

second example

2.23 De�nition. Let M be an A-module. Then we de�ne the annihilator

annA(M) := {a ∈ A : ∀x ∈M.ax = 0}
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2.24 Remark. (i) annA(M) is an ideal of A.

(ii) If M
∼−−→ N then annA(M) = annA(N).

2.25 Lemma. (i) If A and B are semisimple algebras then so is A×B.

(ii) If A =
⊕r

i=1 Li and B =
⊕s

j=1 Λj are decompositions into minimal left ideals then

A×B = (L1 × 0)⊕ . . .⊕ (Lr × 0)⊕ (0× Λ1)⊕ . . .⊕ (0× Λs)

is a decomposition into minimal left ideals. Moreover Li × 0 � 0× Λj as A×B-modules.

Proof. • Li × 0 and 0× Λj are minimal left-ideals: clear

• decomposition of A×B is clear. Thus A×B is semisimple. For the annihilators we have

annA×B(Li × 0) = annA(Li)×B
annA×B(0× Λi) = A× annA(Λi)

Moreover annA(Li) 6= A, since Li 6= 0. Therefore the annihilators are di�erent, which means
Li × 0 � 0× Λj.

2.26 Theorem. A := kn1×n1 × . . .× knr×nr is a semisimple algebra. There are exactly r isomor-
phism classes of simple A -modules, which are given by kn1 , . . . , knr , where A operates on kni by
(a1, . . . , ar).v = aiv.

Proof. For simplicity we just show this for r = 2 and use A = kn×n and B = km×m. For these we
have the decomposition A = L1⊕ . . .⊕Ln and B = Λ1⊕ . . .⊕Λm, where Li ∼= kn as A-module and
Λj
∼= km as B-module. Applying Lemma 2.25 we get that A×B is semisimple and the isomorphism

list is given by kn × 0 ∼= kn and 0× km ∼= km:
A×B opertaes on kn by (a, b).v = av and similarly on B.

2.27 Theorem. Let k be algebraically closed. Any semisimple k-algebra A is isomorphic to an
algebra kn1×n1 × . . .× knr×nr .

Example. Let k = R, consider �eld C as R-algebra. The only non-zero ideal is C itself, so C is
semisimple.
Can we write C =

∏
Rni×ni? We must have ni = 1, since C is commutative, but C � R×R. So

Wedderburn does not hold over the reals.

2.28 De�nition. An A-module M is claled faithful if the corresponding representation D : A →
End(M) is injective.

2.29 Corollary. Suppose A = kn1×n1 × . . .× knr×nr and M is an A-module. Suppose in M there
occur exactly the simple A-modules kn1 , . . . , kns, s ≤ r. Then

annA(M) = 0× . . .× 0︸ ︷︷ ︸
s

×kns+1×ns+1 × . . .× knr×nr

In particular M is faithful ⇔ annA(M) = 0iffs = r ⇔ all types of simple A-modules occur in M .

2.30 Theorem. Assume k is algebraically closed. Let V be a semisimple A-module. Then EndA(V )
is a semisimple algebra.
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Proof. If V = V1 ⊕ . . .⊕ Vr is the isotypical decomposition, then

EndA(V ) ∼= kn1×n1 × . . .× knr×nr

where Vi ∼= wi ⊗ kmi with Wi simple.

2.4 Endomorphism algebras

large gap

3 Representation of SN and GL(V )

3.1 Polarisation and Restitution

3.4 De�nition. Let dimk V = m, where char k = 0, and N ≥ 1. Then we de�ne V ⊗N :=
V ⊗ . . .⊗ V . Note that V ⊗N is an SN -module.

3.5 Remark. Further we put SN(V ) :=
{
t ∈ V ⊗N : ∀π ∈ Sn : π.t = t

}
the subspace of sym-

metric tensors. We have a projection onto isotpical components with respect to the trivial Sn-
representation.

ϕ : V ⊗N → SN(V ) t 7→ 1

N !

∑
π∈SN

π.t

This also gives another map

V N → SN(V ) (v1, . . . , vN) 7→ ϕ(v1 ⊗ . . .⊗ vN)

This is a multilinear SN -invariant map.

3.6 Proposition. Let {e1, . . . , em} be a basis of V .

(i)
{
eλ11 . . . eλmm :

∑
λi = N

}
is a basis of SN(V ).

(ii) dimSN(V ) =
(
N+m−1
m−1

)
We can interpret SN(V ) as the space of homogeneous polynomial of degree N in m variables.

3.7 De�nition. An element t ∈ V ⊗N is called alternating if

∀π ∈ SN : π.t = sgn(π) · t

We put ΛN(V ) :=
{
t ∈ V ⊗N : t alternating

}
.

3.8 Remark. The map

ψ : V ⊗N → ΛN(V ) t 7→ 1

N !

∑
π∈SN

sgn(π)π.t

is a projection onto the isotypical components of the sgn-module.
This yields the alternating product (wedge product)

V N → ΛNV ) (v1, . . . , vN) 7→ ψ(v1 ⊗ . . .⊗ vN) =: v1 ∧ . . . ∧ vN

which is multilinear, but antisymmetric.
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3.9 Proposition. (i) {ei1 ∧ . . . ∧ eiN : 1 ≤ i1 < . . . < iN ≤ m} is a basis of ΛN(V ).

(ii) For the dimension we have

dim ΛN(V ) =

{(
m
N

)
: N ≤ m

0 : else

Proof. We only need to check linear independence.

0 =
∑

αi1...iN ei1 ∧ . . . ∧ eiN =
∑

αi1...iN
1

N !

∑
π∈SN

eiπ(1) ⊗ . . .⊗ eiπ(N)

Then the coe�cient of ej1 ⊗ . . .⊗ ejN equals ±αj1...jN
N !

, hence αj1...jN = 0, since the tensor products
of the ei form a basis of V ⊗N .

Example. Let N = 2, and {e1, . . . , em} basis of V . Then V ⊗2 = V⊗V has basis {ei⊗ej : i, j ≤ m}.
Then we have the linear isomorphism

V ⊗ V → km×m t :=
∑
i,j

αi,jei ⊗ ej 7→ (αi,j)1≤i,j≤m =: A

For example (12)t 7→ AT , so we just transpose. Furthermore t symmetric i� A symmetric and t
alternating i� A skew-symmetric (i.e. At = −A).
When observing the dimension we get

dimS2(V ) =

(
m+ 1

2

)
dim Λ2(V ) =

(
m

2

)
dimS2(V ) + dim Λ2(V ) = m2 = dim(V ⊗ V )

In particular V ⊗ V = S2(V )⊕ Λ2(V ).
In the more general setting N > 2 we still have SN(V ) ∩ΛN(V ) = 0 but SN(V )⊕ΛN(V ) ⊂ V ⊗N .

3.10 Theorem. SN(V ) is generated by {vN : v ∈ V } (symmetric product).

Proof.(
m∑
i=1

ξiei

)N

=
∑

i1<...<iN

ξi1 . . . ξiN ei1 . . . eiN

=
∑
|λ|1=N

#{(i1, . . . , iN) : j occurs λj times in (i1, . . . , iN)}ξλ11 . . . ξλmm eλ11 . . . eλmm

Next we claim that the coe�cient vectors the following vector space

k(N+m−1
m−1 ) =

〈(
N !

λ1! · . . . · λm!
ξλ11 . . . ξλmm

)
λ

〉
Otherwise there is some 0 6= αλ1...λm ∈ k(N+m−1

m−1 ) such that

∀ξ :
∑
λ

αλ1...λm
N !

λ1! . . . λm!
ξλ11 . . . ξλmm = 0

Regarding this as a multivariate polynomial, we get ∀λ : αλ = 0.  
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3.11 De�nition. A map f : V → k is called polynomial map if

∃F ∈ k[Z1, . . . , Zm] : ∀ξ ∈ km : f

(∑
i=1

ξiei

)
= F (ξ)

3.12 Remark. (i) The concept of a polynomial map is independent of the basis.

(ii) k[V ] := {f : V → k, polynomial} is a subalgebra of the algebra of maps V → k. With
respect to the chosen basis e1, . . . , em we have the algebra isomorphism

C[Z1, . . . , Zm]
∼−−→ C[V ] Zi 7→ e∗i

k[V ] is generated by V ∗ as a k-algebra (this is possible, since we have a coordinate-free
de�nition).

(iii) The notion of homogeneous polynomial functions if well-de�ned (basis-independent), so we
have to show

∀t ∈ k : ∀v ∈ V : f(tv) = tM · f(v)

To this end we write

k[V ](M) := {f ∈ k[V ] : f homogeneous of degree M}

Then we have the decomposition

k[V ] =
⊕

k[V ](M) k[V ](0) = k k[V ](1) = V ∗

3.13 Lemma. We have the isomorphism

(V ∗)⊗N
∼−−→
(
V ⊗N

)∗
l1 ⊗ . . .⊗ lN 7→ (x1 ⊗ . . .⊗ xN 7→ l1(x1)⊗ . . .⊗ lN(xN))

Take f ∈
(
V ⊗N

)∗
. De�ne φf : V → k by φf(x) := f(x⊗N). Then φf ∈ k[V ](N). Thus we obtain

a linear map

(V ∗)⊗N
∼−−→
(
V ⊗N

)∗ φ−−→ k[V ](N)

For this we claim that the restriction of this map yields a linear isomorphism

φ0 : SN(V ∗)
∼−−→ k[V ](N)

This map φ0 is calledrestitution, its inverse φ
−1
0 is called polarisation.

of claim. It is clear that φ0 is a linear map. Choose basis {e1, . . . , em} of V , so we have its dual
basis {e∗1, . . . , e∗m} of V ∗. A basis of SN(V ∗) then is(

(e∗1)
λ1 . . . (e∗m)λm

)
|λ|=N
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