Algebra 4
 Inofficial lecture notes
 for the lecture held by Prof. Bürgisser, SS 2017

Henning Seidler
henning.seidler@mailbox.tu-berlin.de

Contents

1 Representations of Finite Groups 2
1.1 Modules and Representations 2
1.2 Submodules and Reducibility 3
1.3 Morphisms and Schur's Lemma 5
1.4 Characters 6
1.5 Orthogonality relations 7
1.6 Decomposition of the Group Algebra 10
1.7 Tensor Products 12
2 Representations of Algebras 15
2.1 Semi-simple modules 15
2.2 Isotypical Decompositions 16
2.3 Semi-simple Algebras 20
3 Representation of S_{N} and GL(V) 21
3.1 Polarisation and Restitution 21

1 Representations of Finite Groups

Notation. We write $\mathbb{C}^{d \times d}$ for the ring of $d \times d$-matrices over \mathbb{C}. Further $\mathrm{GL}_{d}=\mathrm{GL}_{d}(\mathbb{C})$ is the group of invertible $d \times d$-matrices over \mathbb{C}.

1.1 Modules and Representations

1.1 Definition. A matrix representation of a group G is a homomorphism $M: G \rightarrow \mathrm{GL}_{d}$ for some d. This number d is called the representation degree or dimension of M.

Example. - There always is the trivial representation $G \rightarrow \mathrm{GL}_{1}$ via $g \mapsto 1$.

- From the symmetric group we have the sign $\operatorname{sgn}: S_{n} \rightarrow\{-1,1\} \leq \mathbb{C}$.
- We have the defining representation $D: S_{n} \rightarrow \mathrm{GL}_{n}$ where

$$
D(\pi)_{i j}= \begin{cases}1 & : \pi(j)=i \\ 0 & : \text { else }\end{cases}
$$

- Let $G=C_{n}=\langle g\rangle$. We know $M(g)^{n}=M\left(g^{n}\right)=M(1)=1$, so $M(g)$ is a root of unity and each such choice is a representation.
1.2 Definition. Let G be a group, V some (finite dimensional) \mathbb{C}-vector-space. A representation of G on V is a group morphism $D: G \rightarrow \mathrm{GL}(V) . D$ is called faithful if it is injective.
1.3 Definition. A (finite dimensional) G-module is a (finite dimensional) \mathbb{C}-vector-space V together with an operation of G on V (i.e. $g .(h . v)=(g h) . v, 1 . v=v)$ such that $v \mapsto g . v$ is linear for all $g \in G$.
1.4 Remark. If D is a representation of G on V, we define the operation $g . v:=D(g)(v)$, which yields a G-module. Conversely any operation defines a representation via $D(g)(v):=$ g.v.

Let G operate on some finite set X. Put

$$
V=\operatorname{span}_{\mathbb{C}}(X)=\left\{\sum_{x \in X} \lambda_{x} \cdot x: \lambda_{x} \in \mathbb{C}\right\}
$$

as formal linear combinations. We extend the operation of G linearly onto V. Then V is a G-module.

Example. Take the natural operation of S_{n} on $[n]=\{1, \ldots, n\}$. The S_{n}-module is given by

$$
\pi\left(\sum_{i=1}^{n} \lambda_{i} \cdot i\right)=\sum_{i=1}^{n} \lambda_{i} \cdot \pi(i)
$$

If we identify i with e_{i}, then the corresponding matrix is the permutation matrix.
1.5 Definition. Let G be some finite group. The group algebra is the set

$$
\mathbb{C}[G]:=\left\{\sum_{g \in G} \lambda_{g} \cdot g: \lambda_{g} \in \mathbb{C}\right\}
$$

together with the multiplication

$$
\left(\sum_{g \in G} \lambda_{g} \cdot g\right) \cdot\left(\sum_{h \in G} \mu_{h} \cdot h\right)=\sum_{g, h \in G} \lambda_{g} \mu_{h} \cdot(g h)
$$

1.2 Submodules and Reducibility

1.6 Definition. Let V be some G-module. A submodule of V is a G-stable subspace, i.e. $\forall g \in$ $G, u \in U . g . u \in U$.
1.7 Remark. U inherits G-module structure from V. We always have the trivial submodules 0 and V.

Example. Consider \mathbb{C}^{n} as S_{n} module. Then $U:=\operatorname{span}\left(e_{1}+\ldots+e_{n}\right)$ is a 1-dimensional submodule. S_{n} operates trivially on U, since it just permutes the summands.
1.8 Exercise. Show that U and U^{\perp} are the only non-trivial S_{n}-submodules of \mathbb{C}^{n}.
1.9 Definition. A G-module V is called simple, if $V \neq 0$ and the only submodules are 0 and V itself. The corresponding representation is called irreducible.
1.10 Lemma. Every simple C_{n}-module is 1-dimensional.

Proof. Let $C_{n}=\langle g\rangle$ and v be an eigenvector of $D(g) \in \operatorname{GL}(V)$. Then $g . v=\lambda v$, and therefore $g^{j} . v=\lambda^{j} v$. Hence $\mathbb{C} v$ is a non-empty C_{n}-submodule. If V is simple, we must have $V=\operatorname{span}(v)$, which is 1 -dimensional.
1.11 Definition. Let V be a G-module and $U \leq V$. A module-complement is a submodule W with $V=U \oplus W$.

Let $V=U \oplus W$ with basis $U=\left\langle u_{1}, \ldots, u_{m}\right\rangle$ and $W=\left\langle w_{1}, \ldots, w_{n}\right\rangle$. For $g \in G$ let $M(g)$ be the matrix of $D(g) \in \mathrm{GL}(V)$. Then U, W are submodules iff $M(g)$ has block-form for all $g \in G$. So we look for a simultaneous block decomposition.
1.12 Notation. We fix the following notation, unless states otherwise.

- From now on let G be some group, V be some (finite dimensional) \mathbb{C}-vector-space.
- A G-module is a map $G \times V:(g, v) \mapsto g . v$.
- A representation is a morphism $D: G \rightarrow \mathrm{GL}(V)$.
- A submodule $U \subseteq V$ is a G-invariant subspace.
- Let $\langle\cdot, \cdot\rangle$ be some hermitian inner product on V :

$$
\begin{aligned}
\left\langle\lambda_{1} u_{1}+\lambda_{2} u_{2}, v\right\rangle & =\lambda_{1}\left\langle u_{1}, v\right\rangle+\lambda_{2}\left\langle u_{2}, v\right\rangle \\
\overline{\langle v, u\rangle} & =\langle u, v\rangle
\end{aligned}
$$

1.13 Lemma. Every G-module has a G-invariant inner product, i.e. $\forall g \in G, u, v \in V .\langle g u, g v\rangle=$ $\langle u, v\rangle$.

Proof. Let $\langle\cdot, \cdot\rangle$ be any inner product. Then we define

$$
\langle v, w\rangle_{G}:=\frac{1}{|G|} \sum_{g \in G}\langle g v, g w\rangle
$$

By construction this is a G-invariant inner product.
1.14 Lemma. Let $\langle\cdot, \cdot\rangle$ be G-invariant and $U \subseteq V$ be some G-submodule. Then

$$
U^{\perp}:=\{v \in V: \forall u \in U .\langle u, v\rangle=0\}
$$

is a submodule.
Proof. Let $g \in G, v \in U^{\perp}$. It remains to show $g v \in U^{\perp}$. But for any $u \in U$ we have $\langle g v, u\rangle=$ $\left\langle v, g^{-1} u\right\rangle=0$, since $g^{-1} u \in U$.
1.15 Theorem (Maschke). There are simple submodules U_{1}, \ldots, U_{t} of V with $V=U_{1} \oplus \ldots \oplus U_{t}$.

Proof. By induction on $d:=\operatorname{dim} V$. For $d=0$ it is clear, so let $d>0$.
If V is simple, we are done. Otherwise there is a submodule $0 \neq U_{1} \subset V$. By a previous lemma which $V=U_{1} \oplus V^{\prime}$ for some V^{\prime}. Then we apply induction on U_{1} and V^{\prime}.
1.16 Corollary. Let $M: G \rightarrow \mathrm{GL}_{d}$ be the matrix representation. Then there exists some $T \in \mathrm{GL}_{d}$ and a decomposition $d=d_{1}+\ldots+d_{t}$ such that for all $g \in G$ we have

$$
T M(g) T^{-1}=\left(\begin{array}{cccc}
M_{1}(g) & & 0 & \\
& M_{2}(g) & & \\
& & \ddots & \\
& & & M_{t}(g)
\end{array}\right)
$$

where $M_{i}: G \rightarrow \mathrm{GL}_{d_{i}}$ are irreducible matrix representations.
Example. Take $G=C_{n}=\langle g\rangle$. Then C_{n}-module V is simple iff $\operatorname{dim} V=1$. The 1-dimensional C_{n}-modules are given by the group morphisms

$$
M_{k}: C_{n} \rightarrow C^{*}: g^{j} \mapsto \zeta^{k j}
$$

where ζ is an n-th root of unity. For al matrix representation $M: C_{n} \rightarrow \mathrm{GL}_{d}$ there exist integers k_{1}, \ldots, k_{t} and there is some $T \in \mathrm{GL}_{d}$ such that

$$
T M(g) T^{-1}=\operatorname{diag}\left(M_{k_{1}}(g), \ldots, M_{k_{t}}(g)\right)=\operatorname{diag}\left(\zeta^{k_{1}}, \ldots, \zeta^{k_{t}}\right)
$$

1.17 Remark. (i) Maschke's Theorem still holds if \mathbb{C} is replaced by a field K with char $K \nmid|G|$ (because we computer $|G|^{-1}$ when averaging over the group).
(ii) For infinite groups Maschke's theorem does not hold. Take $G=(\mathbb{R},+)$ with

$$
M: \mathbb{R} \rightarrow \mathrm{GL}_{2} \quad M(r)=\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right)
$$

It is in fact a representation since $M\left(r_{1}\right) M\left(r_{2}\right)=M\left(r_{1}+r_{2}\right)$. Now take the submodule $U=\mathbb{R}(1,0)^{T}$. We claim that this is the only proper submodule: Assume $v_{2} \neq 0$,so $v \notin U$. Then $M(1) v=\left(v_{1}+v_{2}, v_{2}\right)$, which is linearly independent of v. So with any of these v we span all of V. Thus U does not have a module complement.

1.3 Morphisms and Schur's Lemma

1.18 Definition. Let V, W be G-modules. A G-module morphism is a linear map

$$
\begin{equation*}
\varphi: V \rightarrow W \quad \forall g \in G, v \in V \cdot \varphi(g \cdot v)=g \cdot \varphi(v) . \tag{1}
\end{equation*}
$$

In matrix language: Choose some basis of V and W with $m=\operatorname{dim} V$ and $n=\operatorname{dim} W$. Let $M: G \rightarrow \mathrm{GL}_{m}, N: G \rightarrow \mathrm{GL}_{n}$ be the corresponding matrix representations. Let T be the representation matrix of φ. Then eq. (1) means: $\forall g \in G \cdot T M(g)=N(g) T$.

That's a natural transformation

1.19 Definition. A G-module isomorphism $\varphi: V \rightarrow W$ is a bijective module morphism. If there exists such an isomorphism, we say V and W are isomorphic, written $V \cong W$.

Now we have a special case of the above scenario. The corresponding modules are isomorphic iff there exists some $T \in \mathrm{GL}_{d}$ with $\forall g \in G . N(g)=T M(g) T^{-1}$, which means they are conjugate.

Notation. - Denote $\operatorname{Hom}_{G}(V, W):=\{\varphi: V \rightarrow W: G$-module morphism $\} \leq \operatorname{Hom}(V, W)$.

- $\operatorname{End}_{G}(V):=\operatorname{Hom}_{G}(V, V) \leq \operatorname{End}(V)$, is a subalgebra.

Lemma. Let $\varphi: V \rightarrow W$ be some G-module morphism. Then $\operatorname{ker} \varphi \leq V$ and $\operatorname{im} \varphi \leq W$ are submodules.

Theorem (Schur's Lemma). Let V, W be simple G-modules.
(i) If $V \nsupseteq W$ then $\operatorname{Hom}_{G}(V, W)=0$.
(ii) If $V \cong W$ then $\operatorname{dim} \operatorname{Hom}_{G}(V, W)=1$.

Proof. Let $V \nsupseteq W$ and assume $0 \neq \varphi \in \operatorname{Hom}_{G}(V, W)$. Then ker $<V$, but since V is simple, we get $\operatorname{ker} \varphi=0$. So φ is injective. Additionally $0 \neq \operatorname{im} \varphi \leq W$, so $\operatorname{im} \varphi=W$ since W is simple. Thus φ is surjective, hence bijective, so φ is an isomorphism. $\&$
Next we show $\operatorname{End}_{G}(V)=\mathbb{C i d}_{V}$ (so we have the case $W=V$).
Let $\varphi \in \operatorname{End}_{G}(V)$. Let $v \neq 0$ be an eigenvector of φ, with $\varphi(v)=\lambda v$. Then

$$
\varphi-\lambda \mathrm{id}_{V} \in \operatorname{End}_{G}(V) \quad v \in \operatorname{ker}\left(\varphi-\lambda \operatorname{id}_{V}\right) \neq 0
$$

Since V is simple, we get $\operatorname{ker}\left(\varphi-\lambda \mathrm{id}_{V}\right)=V$, so $\varphi=\lambda \mathrm{id}_{V}$.
Now let $\alpha: V \rightarrow W$ be an isomorphism and $\varphi \in \operatorname{Hom}_{G}(V, W)$. Then $\alpha^{-1} \circ \varphi \in \operatorname{End}_{G}(V)$. So there is some $\lambda \in \mathbb{C}$ with $\alpha^{-1} \circ \varphi=\lambda \operatorname{id}_{V}$, which means $\varphi=\lambda \alpha$.

Remark. In the proof we didn't use that G is finite.
Corollary. Let $V=U_{1} \oplus \ldots \oplus U_{t}$ be a direct sum of simple modules. Take any simple G-module W. Then

$$
\left|\left\{i: U_{i} \cong W\right\}\right|=\operatorname{dim} \operatorname{Hom}_{G}(V, W) .
$$

This number is called multiplicity of W in V, written $^{m_{u l t}}(W)$.
Proof. We regard the map

$$
\bigoplus_{i=1}^{t} \operatorname{Hom}\left(W, U_{i}\right) \rightarrow \operatorname{Hom}(W, V) \quad\left(\varphi_{1}, \ldots, \varphi_{t}\right) \mapsto\left(w \mapsto \varphi_{1}(w)+\ldots+\varphi_{t}(w)\right)
$$

By taking projections $\varphi_{i}:=\pi_{i} \circ \varphi$, we get an inverse map, so this is an isomorphism. Restriction onto G-invariant maps yields an isomorphism

$$
\bigoplus_{i=1}^{t} \operatorname{Hom}_{G}\left(W, U_{i}\right) \rightarrow \operatorname{Hom}_{g}(W, V)
$$

By Schur's Lemma we have

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(W, U_{i}\right)= \begin{cases}1 & W \cong U_{i} \\ 0 & \text { else }\end{cases}
$$

Thus $\operatorname{dim} \operatorname{Hom}_{G}(W, V)=\left|\left\{i: W \cong U_{i}\right\}\right|$.
Corollary. Let V be some G-module and U_{i}, U_{j}^{\prime} be simple submodules such that

$$
V=U_{1} \oplus \ldots \oplus U_{t}=U_{1}^{\prime} \oplus \ldots \oplus U_{s}^{\prime}
$$

Then $s=t$ and there is some $\pi \in S_{t}$ with $U_{i} \cong U_{\pi(i)}^{\prime}$ for all i.
Let $M=M(g)$ be some matrix representation. Now we are looking at polynomial functions $f: \mathbb{C}^{d \times d} \rightarrow \mathbb{C}$ with $f\left(T M T^{-1}\right)=f(M)$ for all $T \in \mathrm{GL}_{d}$. We can use every elementary symmetric polynomial in the eigenvalues (e.g. trace, determinant).

1.4 Characters

Let $\alpha: V \rightarrow V$ be linear, and $a=\left[a_{i j}\right]$ a matrix representation with respect to some basis. The function $\operatorname{tr}(a)=\sum_{i} a_{i i}$ is called the trace. It is independent of the basis. In fact $\operatorname{tr}(\alpha)$ is a coefficient of the characteristic polynomial

$$
\operatorname{det}(T-\alpha)=T^{d}-\operatorname{tr}(\alpha) T^{d-1}+\ldots+(-1)^{d} \operatorname{det}(\alpha)
$$

In particular $\operatorname{tr}\left(g \alpha g^{-1}\right)=\operatorname{tr}(\alpha)$ for all $g \in \mathrm{GL}(V)$.
Definition. Let D be a representation of G. The function $\chi_{D}: G \rightarrow \mathbb{C}$ via $g \mapsto \operatorname{tr}(D(g))$ is called a character of D. If V is the module corresponding to D, we write χ_{V}.

Proposition. Isomorphic modules have the same characters.
Proof. Let U, V be G-modules with representations D, F and isomorphism $\alpha: U \rightarrow V$. Then by definition $\alpha \cdot D(g)=F(g) \cdot \alpha$, or rather $F(g)=\alpha D(g) \alpha^{-1}$. Thus

$$
\chi_{F}(g)=\operatorname{tr}(F(g))=\operatorname{tr}(D(g))=\chi_{D}(g)
$$

Remark. (i) $\chi_{V}(1)=\operatorname{dim} V$.
(ii) χ_{V} is a class function, i.e. constant on conjugacy classes.
(iii) $\chi_{U \oplus V}=\chi_{U}+\chi_{V}$

Example. (i) Suppose X is some finite set and G acts on X. Let $V:=\operatorname{span}_{\mathbb{C}}(X)$ with representation D. Then $\chi_{V}(g)=\operatorname{tr}(D(g))$ is the number of fixed points of g.
(ii) Let $G=S_{n}$ acting on $X=[n]$. We regard \mathbb{C}^{n} as S_{n}-module. We put $\mathbf{1}=\mathbb{C}\left(\sum e_{i}\right)$ and $U:=\mathbf{1}^{\perp}=\left\{x \in \mathbb{C}^{n}: \sum x_{i}=0\right\}$. Then U is a simple module (exercise). $\chi_{U}(\pi)=$ \#(fixed points of π) -1 , due to the previous remark.
(iii) Take the regular representation: $X=G$ and G acts on the left. In this case, we have a fixed point iff $g=1$. Hence

$$
\chi(g)= \begin{cases}0 & g \neq 1 \\ |G| & g=1\end{cases}
$$

Lemma. $\chi_{V}\left(g^{-1}\right)=\overline{\chi_{G}(g)}$
Proof. Take $H=\langle g\rangle$, say $H \cong C_{n}$. With a suitable basis, V has a representation of the form $M(g)=\operatorname{diag}\left(\zeta^{k_{1}}, \ldots, \zeta^{k_{d}}\right)$, for $\zeta^{n}=1$. But since $\zeta^{-1}=\overline{\text { zeta }}$ we have

$$
\chi_{V}(g)=\operatorname{tr}\left(M\left(g^{-1}\right)\right)=\sum_{i=1}^{d} \zeta^{-k_{i}}=\sum_{i=1}^{d} \bar{\zeta}^{k_{i}}=\overline{\chi_{V}(g)}
$$

1.5 Orthogonality relations

G acts on $\operatorname{Hom}(U, V)$ via $(g \cdot \alpha)(u):=g \cdot \alpha\left(g^{-1} \cdot u\right)$. This way, $\operatorname{Hom}(U, V)$ becomes a G-module. Recall $\operatorname{Hom}_{G}(U, V) \leq \operatorname{Hom}(U, V)$. In fact $\alpha \in \operatorname{Hom}_{G}(U, V) \Leftrightarrow \forall g \in G . g . \alpha=\alpha$.
Corollary (From Schur's Lemma). Let $\varphi: V \rightarrow U$ be some linear map. We define

$$
\widetilde{\varphi}:=|G|^{-1} \cdot \sum_{g \in G} D_{V}(g) \circ \varphi \circ D_{U}\left(g^{-1}\right) .
$$

Then we have
(i) If $U \nexists V$ then $\widetilde{\varphi}=0$.
(ii) If $U \cong V$ then $\widetilde{\varphi}=\frac{1}{n} \operatorname{tr}(\varphi) \cdot \mathrm{id}_{V}$, where $n=\operatorname{dim} V$.

Proof. Due to the averaging $\widetilde{\varphi} \in \operatorname{Hom}_{G}(U, V)$, so we can apply Schur's Lemma. This immediately yields the first part. For the second, we know $\widetilde{\varphi}=\lambda \mathrm{id}_{V}$, so just have to compute λ.

$$
\lambda n=\operatorname{tr}(\widetilde{\varphi})=\frac{1}{|G|} \sum_{g \in G} \operatorname{tr}\left(D_{V}(g) \varphi D_{V}(g)^{-1}\right)=\operatorname{tr}(\varphi)
$$

Corollary. Let U, V be simple G-modules with representations R, S.
(i) If $U \nexists V$, then $|G|^{-1} \sum_{g \in G} S_{i j}(g) R_{k l}\left(g^{-1}\right)=0$.
(ii) If $U \cong V$, then $|G|^{-1} \sum_{g \in G} S_{i j}(g) R_{k l}\left(g^{-1}\right)=\frac{1}{n} \delta_{i l} \delta_{j k}$.

Proof. Apply the corollary to $\varphi: U \rightarrow V$ with matrix $E_{j k}$. In the case $U \not \equiv V$ we get

$$
0=\frac{1}{|G|} \sum_{g \in G} \sum_{j^{\prime}, k^{\prime}} S_{i j^{\prime}}(g)\left(E_{j k}\right)_{j^{\prime} k^{\prime}} R_{k^{\prime} l}\left(g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G} S_{i j}(g) R_{k l}\left(g^{-1}\right)
$$

For the case $U \cong V$ we proceed similarly

$$
\frac{1}{|G|} \sum_{g \in G} s_{i j}(g) R_{k l}\left(g^{-1}\right)=\frac{\overline{\operatorname{tr}}\left(E_{j k}\right)}{n} \delta_{i l}=\frac{1}{n} \delta_{j k} \delta_{i l}
$$

Let $\langle\cdot, \cdot\rangle$ be a Hermitian inner product on H. We say x_{1}, \ldots, x_{k} form an orthonormal system iff $\left\langle x_{i}, x_{j}\right\rangle=\delta_{i j}$. If $k=\operatorname{dim} H$, then this is an orthonormal basis. In this case we have the Fourier decomposition

$$
x=\sum_{i=1}^{k}\left\langle x_{i}, x_{i}\right\rangle x_{i}
$$

On our vector space \mathbb{C}^{G} we define the Hermitian product

$$
\langle\varphi, \psi\rangle:=\frac{1}{|G|} \sum_{g \in G} \varphi(g) \overline{\psi(g)}
$$

Theorem (Orthogonality relations). Let U, V be simple G-modules. Then

$$
\left\langle\chi_{U}, \chi_{V}\right\rangle= \begin{cases}1 & : U \cong V \\ 0 & : U \nsupseteq V\end{cases}
$$

Proof. Take matrix representations R, S of U, V.

$$
\begin{aligned}
\left\langle\chi_{U}, \chi_{V}\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{U}(g)} \stackrel{\text { Lemma }}{=} \frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \chi_{U}\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\sum_{i} s_{i i}(g)\right)\left(\sum_{j} R_{j j}(g)\right)=\sum_{i, j} \frac{1}{|G|} \sum_{g \in G} S_{i i}(g) R_{j j}\left(g^{-1}\right)
\end{aligned}
$$

For $U \nexists V$, the corollary tells us that the inner sum is zero. So in this case $\left\langle\chi_{V}, \chi_{U}\right\rangle=0$. Let $U \cong V$, so wlog $U=V$. By the corollary we get

$$
\frac{1}{|G|} \sum_{g \in G} S_{i i}(g) R_{j j}\left(g^{-1}\right)=\frac{1}{n} \delta_{i j}
$$

Thus $\left\langle\chi_{V}, \chi_{U}\right\rangle=\frac{1}{n} \sum_{i, j} \delta_{i j}=1$.
Corollary. Let W be simple. Then

$$
\operatorname{mult}_{W}(V)=\operatorname{dim} \operatorname{Hom}_{G}(W, V)=\left\langle\chi_{V}, \chi_{W}\right\rangle
$$

Proof. We decompose $V=U_{1} \oplus \ldots \oplus U_{t}$, with U_{i} simple. Thus $\chi_{V}=\sum \chi_{U_{i}}$. By linearity

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle=\sum_{i}\left\langle\chi_{U_{i}}, \chi_{W}\right\rangle=\#\left\{i: U_{i} \cong W\right\}=\operatorname{mult}_{W}(V)
$$

Note that this also shows that the multiplicity in independent of the decomposition.
Theorem. There are only finitely many isomorphism types of simple G-modules. If they are represented by W_{1}, \ldots, W_{k}, then $\sum\left(\operatorname{dim} W_{i}\right)^{2}=|G|$. Moreover k is upper bounded by the number of conjugacy classes of G.

Proof. Characters lie in the subspace of class functions

$$
R(G):=\left\{f \in \mathbb{C}^{G}: f \text { constant on conjugacy classes }\right\}
$$

Moreover $\operatorname{dim} R(G)=$ \#conjugacy classes. But $\chi_{W_{1}}, \ldots, \chi_{W_{k}}$ are orthogonal, in particular linearly independent. Hence $k \leq \operatorname{dim} R(G)$.
Let V denote the G-module of the regular representation, i.e. $V=\mathbb{C}[G]$. Then

$$
\operatorname{mult}_{W_{j}}(V)=\left\langle\chi_{V}, \chi_{W_{j}}\right\rangle=\frac{1}{|G|} \sum_{g \in G} \chi_{V}(g) \overline{\chi_{W_{j}}(g)}=\frac{1}{|G|} \cdot \chi_{V}(1) \overline{\chi_{W_{j}}(1)}=\overline{\chi_{W_{j}}(g)}=\operatorname{dim} W_{j}=: d_{j}
$$

Thus we get the decomposition

$$
V \cong \bigoplus_{j=1}^{k} \bigoplus_{*=1}^{d_{j}} W_{j}
$$

which leads to $|G|=\operatorname{dim} V=\sum_{j=1}^{k} d_{j}^{2}$.
Remark. In fact, k is the number of conjugacy classes.
Theorem. We have $U \cong V \Leftrightarrow \chi_{U}=\chi_{V}$.
Proof. We have already done one direction. So assume $\chi_{U}=\chi_{V}$. Let $U \cong \bigoplus_{i=1}^{k} m_{i} W_{i}$ and $V \cong \bigoplus_{i=1}^{k} n_{i} W_{i}$ with $n_{i}, m_{i} \in \mathbb{N}$. Thus we get $\chi_{U}=\sum_{i} m_{i} \chi_{W_{i}}$ and $\chi_{V}=\sum_{i} n_{i} \chi_{W_{i}}$. But since the characters are linearly independent (orthogonal system), this decomposition is unique. So $n_{i}=m_{i}$ and $U \cong V$.

Proposition. Let χ be some character of a G-module. Then
(i) χ is 1-dimensional iff $\chi: G \rightarrow \mathbb{C}^{*}$ is a group morphism.
(ii) χ is irreducible iff $\langle\chi, \chi\rangle=1$.

Proof. (i) \Rightarrow : Let $\chi=\chi_{V}$ with representation $D: G \rightarrow \mathrm{GL}_{1}=\mathrm{GL}(\mathbb{C})=\mathbb{C}^{*}$. But then $\chi=D$. \Leftarrow : Define a 1-dimensional module on \mathbb{C} by $g . x=\chi(g) x$. This has character χ.
(ii) Let $\chi=\chi_{V}$ with decomposition $V \cong \bigoplus m_{i} W_{i}$. Then $\chi_{V}=\sum m_{i} \chi_{W_{i}}$. For the inner product we get

$$
\left\langle\chi_{V}, \chi_{V}\right\rangle=\sum m_{i}^{2}\left\langle\chi_{W_{i}}, \chi_{W_{i}}\right\rangle=\sum m_{i}^{2}
$$

The latter is a sum of non-negative squares, which can only be one iff there is a single contribution, which means there is a single W_{1}.

Example. Take $G=S_{3}$. We have the following simple representations.

- $\mathbb{C} \cong W_{1}$: trivial representation, $\chi_{1}=1$
- $\mathbb{C} \cong W_{2}:$ sign, $\chi_{2}=\operatorname{sgn}$
- $\mathbb{C}^{2} \cong W_{3}$: Consider $\mathbb{C}^{3}=\mathbb{C}(1,1,1) \oplus U$, then U is our simple S_{3}-module: We know $\chi_{U}(\pi)=$ $\mathrm{fix}_{G}(\pi)-1$. Then

$$
\left\langle\chi_{U}, \chi_{u}\right\rangle=\frac{1}{6} \sum_{\pi \in S_{3}} \chi_{U}(\pi)^{2}=\frac{2^{2}+3 \cdot 0^{2}+2 \cdot(-1)^{2}}{6}=1
$$

As a short notation we have the character table:

	id	$(i j)$	$(i j k)$
$\chi_{1}=1$	1	1	1
$\chi_{2}=\operatorname{sgn}$	1	-1	1
χ_{3}	2	0	-1

Example. Take $G=S_{4}$. The number of conjugacy classes is the number of partitions of 4, which is 5. As before we have W_{1}, W_{2} and $W_{3}=(1,1,1)^{\perp}$ (check that it is simple). For the remaining ones we get $13=\operatorname{dim}\left(W_{4}\right)^{2}+\operatorname{dim}\left(W_{5}\right)^{2}$, so $\operatorname{dim} W_{4}=3$ and $\operatorname{dim} W_{5}=2$.
Define the module U by $(\pi, u) \mapsto \operatorname{sgn}(\pi) \pi$.u, so $\chi_{4}=\chi_{2} \cdot \chi_{3}$. This module is simple as well and $\chi_{3} \neq \chi_{4}$, so it is a new module. To find W_{5}, we take a map $\varphi: S_{4} \rightarrow S_{3}$ with kernel Klein Four. Let $D_{2}: S_{3} \rightarrow \mathrm{GL}\left(W_{3}\right)$ be the irreducible representation. Then $\varphi \circ D_{2}$ is an irreducible representation of S_{4}. When checking the orthogonality we get

$$
\begin{array}{l|ccccc}
& \text { id } & (i j) & (i j k) & (i j k l) & (i j)(k l) \\
\hline \chi_{1}=1 & 1 & 1 & 1 & 1 & 1 \\
\chi_{2}=\operatorname{sgn} & 1 & -1 & 1 & -1 & 1 \\
\chi_{3} & 3 & 1 & 0 & -1 & -1 \\
\chi_{4}=\operatorname{sgn} \cdot \chi_{3} & 3 & -1 & 0 & 1 & -1 \\
\chi_{5} & 2 & 0 & -1 & 0 & 2 \\
\frac{1}{24}=\sum_{\pi \in S_{4}} \chi_{i}(\pi) \overline{\chi_{j}(\pi)}=\frac{1}{24} \sum_{K \in \text { conj. class }}|K| \cdot \chi_{i}(K) \chi_{j}(K)
\end{array}
$$

Thus the 5×5-matrix $\left[\sqrt{\frac{|K|}{24}} \chi_{i}(K)\right]_{i, K}$ is orthogonal in the rows and thus also in the columns. This means the columns of the character table are orthogonal.

1.6 Decomposition of the Group Algebra

Let G be some finite group. Recall that we have the group algebra

$$
\mathbb{C}[G]=\left\{\sum_{g \in G} \lambda_{g} g: \lambda_{g} \in \mathbb{C}\right\} \quad \operatorname{dim} \mathbb{C}[G]=|G|
$$

Example. Take $G=C_{n}=\langle g\rangle$. Starting with the polynomial ring $\mathbb{C}[X]$, we have the surjective map $\varphi: \mathbb{C}[X] \rightarrow \mathbb{C}\left[C_{n}\right]$ induced by $X \mapsto g$. We have $\varphi\left(X^{n}\right)=g^{n}=1$, so $X^{n}-1 \in \operatorname{ker} \varphi$, and in fact this generates the kernel. So $\mathbb{C}[X] /\left(X^{n}-1\right) \cong \mathbb{C}[G]$.
Let ζ be some n-th root of unity. Then $X^{n}-1=\Pi\left(X-\zeta^{j}\right)$. By the Chinese Remainder Theorem we have $\mathbb{C}[X] /\left(X^{n}-1\right) \cong \mathbb{C}^{n}$ via the map $[F] \mapsto\left(F\left(\zeta^{0}\right), \ldots, F\left(\zeta^{n-1}\right)\right.$. This map is the Discrete Fourier Transform.

Next we take a look at the centre of group algebra, which is given by

$$
Z(\mathbb{C}[G]):=\{a \in \mathbb{C}[G]: \forall b \in \mathbb{C}[G] \cdot a b=b a\}
$$

The centre is a sub-algebra.
For some $a=\sum \lambda_{g} g$ conjugation can be written as

$$
h a h^{-1}=\sum_{g \in G} \lambda_{g} h g h^{-1}=\sum_{g^{\prime} \in G} \lambda_{h^{-1} g^{\prime} h} g^{\prime}
$$

So all that happens is a reordering of the coefficients. Then we have $a \in Z(\mathbb{C}[G])$ iff $\forall g \cdot \lambda_{h^{-1} g h}=\lambda_{g}$ iff $\lambda: G \rightarrow \mathbb{C}$ is constant on conjugacy classes. As a consequence, $\operatorname{dim} Z(\mathbb{C}[G])$ is the number of conjugacy classes.

Remark. Let $D: G \rightarrow \mathrm{GL}(V)$ be some group representation. We extend this to a \mathbb{C}-algebra morphism $D^{\prime}: \mathbb{C}[G] \rightarrow \operatorname{End}(V)$ via $\sum \lambda_{g} g \mapsto \sum \lambda_{g} D(g)$. This is called a representation of the algebra $\mathbb{C}[G]$.

Theorem (Wedderburn). Let G be finite and W_{1}, \ldots, W_{k} the isomorphism types of simple G modules (recall that there are only finitely many), with corresponding representations $D_{i}: G \rightarrow$ $\mathrm{GL}\left(W_{i}\right)$, extended to algebra morphisms $D_{i}: \mathbb{C}[G] \rightarrow \operatorname{End}\left(W_{i}\right)$. Then $\varphi: \mathbb{C}[G] \rightarrow \prod \operatorname{End}\left(W_{i}\right)$ via $a \mapsto\left(D_{1}(a), \ldots, D_{k}(a)\right)$ is a \mathbb{C}-algebra isomorphism. After choosing bases for the W_{i}, we get $\mathbb{C}[G] \cong \mathbb{C}^{n_{1} \times n_{1}} \times \ldots \times \mathbb{C}^{n_{k} \times n_{k}}$.

Proof. - First note that by construction φ is a \mathbb{C}-algebra morphism.

- Let $a \in \operatorname{ker} \varphi$. This means $D_{i}(a)=0$ or $a W_{i}=\left\{a w: w \in W_{i}\right\}=0$ for all i. So a annihilates each W_{i}. But any G-module is a direct sum of these W_{i}, so a annihilates every G-module. In particular a annihilates $\mathbb{C}[G]$, which means $a .1=0$, so $a=0$. Thus φ is injective.
- Both sides have the same dimension

$$
\operatorname{dim} \mathbb{C}[G]=|G|=\sum\left(\operatorname{dim} W_{i}\right)^{2}=\operatorname{dim}\left(\prod \operatorname{End}\left(W_{i}\right)\right)
$$

Therefore φ is an isomorphism.
Example. - Wedderburn's Theorem generalises our above observation on the Discrete Fourier Transform: $\mathbb{C}\left[C_{n}\right]=\mathbb{C} \times \ldots \times \mathbb{C}$.

- Take $G=S_{3}$. Then $\mathbb{C}[G] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{2 \times 2}$, from previous parts.
- Similarly $\mathbb{C}\left[S_{4}\right] \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{3 \times 3} \times \mathbb{C}^{3 \times 3} \times \mathbb{C}^{2 \times 2}$.

Corollary. The number of isomorphism classes of simple G-modules is the number of conjugacy classes (before we had " \leq ").

Proof. First observe that $Z\left(\mathbb{C}^{n \times n}\right)=\mathbb{C} I_{n}$, which is 1-dimensional. Furthermore

$$
Z\left(\mathbb{C}^{n_{1} \times n_{1}} \times \ldots \times \mathbb{C}^{n_{k} \times n_{k}}\right)=Z\left(\mathbb{C}^{n_{1} \times n_{1}}\right) \times \ldots \times Z\left(\mathbb{C}^{n_{k} \times n_{k}}\right) \cong \mathbb{C} \times \ldots \times \mathbb{C} \cong \mathbb{C}^{k}
$$

So we have $Z(\mathbb{C}[G]) \cong \mathbb{C}^{k}$. Finally

$$
\#(\text { iso-classes })=k=\operatorname{dim} Z(\mathbb{C}[G])=\#(\text { conjugacy classes })
$$

Corollary. Let $|G|=n, G$ abelian. The simple G-modules are the 1-dimensional modules. There are exactly n pairwise non.isomorphic 1-dimensional G-modules. The group algebra is $\mathbb{C}[G] \cong \mathbb{C}^{n}$.

Proof. We have n conjugacy classes, so n isomorphism classes. Further $n=|G|=\sum_{i=1}^{n}\left(\operatorname{dim} W_{i}\right)^{2}$. Hence each W_{i} needs to have dimension 1.

Corollary.

$$
\#\left(\text { iso classes of } S_{n}\right)=\#\left(\text { conjugacy classes of } S_{n}\right)=P(n):=\#(\text { partitions of } n)
$$

Example. Take the dihedral group D_{n} for n odd. We denote the elements by

$$
D_{n}=\left\{1, d, \ldots, d^{n-1}, s, s d, \ldots, s d^{n-1}\right\}
$$

It is generated by the relations $d^{n}=s^{2}=1$ and $s d s=d^{-1}$.
We have $C_{n}=\langle d\rangle \unlhd D_{n}$, as normal subgroup of index 2. Thus $D_{n} / C_{n}=\langle\bar{s}\rangle \cong C_{2} \cong\{1,-1\}$. So we get the 1-dimensional representation $\chi_{1}: D_{n} \rightarrow D_{n} / C_{n} \rightarrow\{1,-1\}$. There are $2+\frac{n-1}{2}$ further conjugacy classes $\{1\},\left\{d^{j}, d^{-j}\right\}$ and $\left\{s d^{j}: j<n\right\}$. For $1 \leq l \leq \frac{n-1}{2}$ we have the C_{n}-representation $D_{l}: C_{n} \rightarrow \mathrm{GL}_{2}$ by $D_{l}(d)=\operatorname{diag}\left(\zeta^{l}, \zeta^{-l}\right)$. We extend this onto D_{n} by

$$
D_{l}(s)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad D_{l}\left(s d^{j}\right)=\left(\begin{array}{cc}
0 & \zeta^{-l j} \\
\zeta^{j j} & 0
\end{array}\right)
$$

which gives rise to character χ_{l} with $\chi_{l}\left(d^{j}\right)=\zeta^{l j}+\zeta^{-l j}$ and $\chi_{l}\left(s d^{j}\right)=0$.

$$
\left\langle\chi_{l}, \chi_{l}\right\rangle=\frac{1}{2 n}\left(\left|\chi_{l}(1)\right|^{2}+\sum_{j=1}^{n-1}\left|\chi_{l}\left(d^{j}\right)\right|^{2}+0\right)=\frac{2^{2}+(2 n-4)}{2 n}=1
$$

Hence the χ_{l} are irreducible. Moreover $\chi_{l} \neq \chi_{r}$ for $l \neq r$.

1.7 Tensor Products

Let k be some field and U, V finite dimensional k-vector-spaces. For $U \cong k^{m}$ and $V \cong k^{n}$ we will get $U \otimes V \cong k^{m \times n}$, although it will not be defined this way.
1.20 Definition. A tensor product of U and V is a k-vector-space W together with a bilinear map $\varphi: U \times V \rightarrow W$, written $(u, v) \mapsto u \otimes v$ which satisfies the following universal property: For all k-spans W^{\prime} and $\varphi^{\prime}: U \times V \rightarrow W^{\prime}$, which is k-linear, there is exactly one k-linear map $\gamma: W \rightarrow W^{\prime}$ such that the following diagram commutes

1.21 Theorem. (i) The tensor product exists and it is unique up to "canonical isomorphism".
(ii) Let $\varphi: U \times V \rightarrow W$ be k-linear, e_{i} be some basis of U and f_{j} basis of V. Then (W, φ) is a tensor product of U and V iff $\left(\varphi\left(e_{i}, f_{j}\right): i, j\right)$ is a basis of W.

Proof. (i) Existence follows from the second part. Taking $W=W^{\prime}$ we get that there only is the identity map. In the general case, swap W and W^{\prime}, to get $W \xrightarrow{\gamma} W^{\prime} \xrightarrow{\gamma^{\prime}} W$. Therefore $\gamma \circ \gamma^{\prime}=\mathrm{id}$, so it is an isomorphism.
(ii) If we have the basis, then the map is uniquely defined.

Notation. We write $U \times V \rightarrow U \otimes_{k} V$ via $(x, y) \mapsto x \otimes y$ for the tensor product. Every tensor $w \in U \otimes V$ can be written as $w=\sum u_{i} \otimes v_{j}$ but this is not unique.

Example. The map into matrices given by $(\xi, \eta) \mapsto\left(\xi_{i} \cdot \eta_{j}\right)_{i j}$ is a tensor product.
1.22 Remark. (i) $\operatorname{dim}(U \otimes V)=(\operatorname{dim} U) \cdot(\operatorname{dim} V)$
(ii) $U \xrightarrow{\sim} U \otimes k$ via $u \mapsto u \otimes 1$, which is a k-isomorphism. There is exactly one isomorphism $U \otimes V \xrightarrow{\sim} V \otimes U$ mapping all $u \otimes v$ to $v \otimes u$.

(iii) The tensor product is associative in the sense that $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$. There is exactly one such isomorphism and it maps $(u \otimes V) \otimes w \mapsto u \otimes(v \otimes w)$.
1.23 Proposition. Let $\alpha: U \rightarrow U^{\prime}$ and $\beta: V \rightarrow V^{\prime}$ be k-linear maps. Then there is exactly one k-linear map $\alpha \otimes \beta: U \otimes V \rightarrow U^{\prime} \otimes V^{\prime}$ such that $(\alpha \otimes \beta)(x \otimes y)=\alpha(x) \otimes \beta(y)$. One calls $\alpha \otimes \beta$ the tensor product of α and β, also called Kronecker product.

Proof. We have a bilinear map

$$
U \times V \xrightarrow{\varphi} U^{\prime} \otimes V^{\prime} \quad(u, v) \mapsto \alpha(u) \otimes \beta(v)
$$

By universal property there exists exactly one map such that the following commutes:

So $\gamma(u \otimes v)=\alpha(u) \otimes \beta(v)$.
More concrete let $\alpha: k^{m} \rightarrow k^{m^{\prime}}$ and $\beta: k^{n} \rightarrow k^{n^{\prime}}$ be given by matrices $A \in k^{m^{\prime} \times m}$ and $B \in k^{n^{\prime} \times n}$. Then we use $k^{m} \otimes k^{n}=k^{m \times n}$ and $k^{m^{\prime}} \otimes k^{n^{\prime}}=k^{m^{\prime} \times n^{\prime}}$. Then

$$
\alpha \otimes \beta: k^{m \times n} \rightarrow k^{m^{\prime} \times n^{\prime}}
$$

has the representation matrix

$$
\begin{array}{rr}
A \otimes B=\left[a_{i j} b_{o l}\right]_{(i, o),(j, l)} & (i, o) \in\left[m^{\prime}\right] \times\left[n^{\prime}\right] \\
& (j, l) \in[m] \times[n]
\end{array}
$$

Choose lexicographic order for (i, o), similarly for (j, l). Then $A \otimes B \in k^{m^{\prime} n^{\prime} \times m n}$ looks like

$$
\left(\begin{array}{ccc}
a_{11} B & \ldots & a_{1 m} B \\
\vdots & \ddots & \vdots \\
a_{m^{\prime} 1} B & \ldots & a_{m^{\prime} m} B
\end{array}\right)
$$

1.24 Lemma. Let $m=m^{\prime}$ and $n=n^{\prime}$ in the above scenario. Then $\operatorname{tr}(A \otimes B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)$.

Proof. Using the above writing, we obtain

$$
\operatorname{tr}(A \otimes B)=\sum_{i}\left(a_{i i} \operatorname{tr}(B)\right)=\left(\sum_{i} a_{i i}\right) \cdot \operatorname{tr}(B)=\operatorname{tr}(A) \cdot \operatorname{tr}(B)
$$

1.25 Definition. On $U \otimes V$ we define by $g(u \otimes v)=(g u) \otimes(g v)$ a G-module structure, which is called the tensor product of the G-modules U and V.
Note that for $g \in G$ we have a well-defined linear map

$$
U \otimes V \rightarrow U \otimes V \quad u \otimes v \mapsto(g u) \otimes(g v)
$$

If D_{U} and D_{V} are the corresponding representations, then the representation D of $U \otimes V$ satisfies $D(g)=D_{U}(g) \otimes D_{V}(g)$ (Kronecker product).
1.26 Remark. For G-modules we also have

- $U \otimes V \cong V \otimes U$
- $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$
- $U \otimes k \cong U$
1.27 Proposition. For $U, V \in \bmod G$ we have $\chi_{U \otimes V}(g)=\chi_{U}(g) \cdot \chi_{V}(g)$, by Lemma 1.24.

Example. Let W be some simple S_{n}-module; $\mathbb{C}_{\mathrm{sgn}}$ the 1-dimensional S_{n} module given by the sign. Then $\mathbb{C}_{\mathrm{sgn}} \otimes W$ is an S_{n}-module. As a vector space $\mathbb{C}_{\mathrm{sgn}} \otimes W \cong \mathbb{C} \otimes W \cong W$, however, this isomorphism might not respect the operation. The S_{n}-operation is $(\pi, w) \mapsto \operatorname{sgn}(\pi) \cdot \pi(w)$. This module is also simple.
We furthermore have $\mathbb{C}_{\text {sgn }} \otimes W \cong W$ as S_{n}-modules iff

$$
\operatorname{sgn} \cdot \chi_{w}=\chi_{w} \Leftrightarrow \forall \pi \in S_{n} \backslash A_{n} \cdot \chi_{w}(\pi)
$$

Example. Some further examples of tensors:

- $V^{*} \otimes W \cong \operatorname{Hom}(V, W)$ via the map

$$
(\varphi \otimes w) \mapsto(v \mapsto \varphi(v) \cdot w)
$$

- $\left(\mathbb{C}^{n}\right)^{*} \otimes \mathbb{C}^{m} \cong \mathbb{C}^{n \times m}$ via

$$
\left(\left(\varphi_{1}, \ldots, \varphi_{n}\right), w\right) \mapsto w \cdot \varphi^{T}
$$

which is a rank 1 matrix. Every matrix can be written as a sum of rank 1 matrices, and the same holds for tensor elements. But the converse is not true (usually matrices don't have rank 1, also a tensor element usually is just a sum of these terms.)

- Let's think about the Kronecker-product again. Let $A \in \mathrm{GL}\left(\mathbb{C}^{n}\right)$ and $B \in \mathrm{GL}\left(\mathbb{C}^{m}\right)$. Then on rank 1 matrices it acts the following way:

$$
(A \otimes B)\left(w v^{T}\right)=B(w) \cdot A(v)^{T}=B w v^{T} A^{T}
$$

which we write as $B C A^{T}$. So

$$
(A \otimes B)\left(E_{i j}\right)=(A \otimes B)\left(e_{i} e_{j}^{T}\right)=\left(B e_{i}\right)\left(e_{j}^{T} A^{T}\right)=b_{i} \cdot a_{j}^{T}=\sum_{k, l}\left(b_{i k} a_{j l}\left(e_{k} e_{l}^{T}\right)\right)
$$

if we use the vectors for the columns of the matrices. Now we regard the operation on matrices as operation on vectors (concatenating all columns), then we get the Kronecker product of matrices for the operation.
Maybe we have to transpose some terms. Jesko is not sure.

2 Representations of Algebras

Let k be a field and A some finite-dimensional algebra.
2.1 Definition. - A representation of A is an algebra-morphism $D: A \rightarrow \operatorname{End}(M)$ where M is a k-vector-space.

- An A-module is a k-vector-space M together with a map $A \times M \rightarrow M$ which satisfies

$$
\begin{aligned}
& \forall a \in A \cdot \varphi_{a}: M \rightarrow M \quad x \mapsto a x \text { is } k \text {-linear } \\
& \forall x \in M \cdot \varphi_{x}: A \rightarrow M \quad a \mapsto a x \text { is } k \text {-linear } \\
& \forall a, b \in A, x \in M .(a b) x=a(b x) \\
& \forall x \in M .1 x=x
\end{aligned}
$$

2.1 Semi-simple modules

2.2 Remark. A k-module is the same as a k-vector-space.
(i) If $D: A \rightarrow \operatorname{End}(M)$ is a representation of A, then $a x:=D(a)(x)$ defines an A-module and vice-versa.
(ii) Let G be a finite group, $A=k[G]$. Every representation $D: G \rightarrow \operatorname{GL}(M)$ of G extends to a representation $\widetilde{D}: k[G] \rightarrow \operatorname{End}(M)$.

Example. Let $A=\operatorname{End}(V)$ for some k-vector-space and $M:=V$. Then the representation is $D=\mathrm{id}$. So the action is the evaluation $(a, v) \mapsto a(v)$.
2.3 Definition. Let M be an A-module. A submodule of M is a linear subspace $N \leq M$ such that $\forall a \in A, x \in M . \varphi(a . x)=a . \varphi(x)$.
$\operatorname{Hom}_{A}(M, N)$ is a linear subspace of $\operatorname{Hom}_{k}(M, N)$ and $\operatorname{End}_{A}(M)$ is a subalgebra of $\operatorname{End}_{k}(M)$.
2.4 Definition. An A-module M is called simple if $M \neq 0$ and M does not have a proper submodule.

Example. V as $\operatorname{End}(V)$-module is simple.
2.5 Lemma (Schur's Lemma). If M and N are simple A-modules and $\varphi: \operatorname{Hom}_{A}(M, N)$ then either $\varphi=0$ or φ is an isomorphism.
2.6 Theorem. Let M be an A-module. The following are equivalent
(i) M is a direct sum of simple modules.
(ii) M is a sum of simple submodules.
(iii) Every submodule of M has a module complement.

Proof. (i) \Rightarrow (ii): is clear.
(ii) \Rightarrow (iii): Let $N \leq M$ be a submodule. Let $L \leq M$ be a maximal submodule such that $N \cap L=0$ (exists since finite-dimensional). Then it suffices to show $N+L=M$. By assumption $M=M_{1}+\ldots+M_{r}$ with M_{i} simple submodules. If $N+L \neq M$ there is some i with $M_{i} \nsubseteq N+L$. Thus $M_{i} \cap(N+L)=0$, since M_{i} is simple. This also implies $N \cap\left(M_{i}+L\right)=0$, which contradicts the maximality of L.
(iii) \Rightarrow (i): induction on the dimension

cref for item

2.7 Definition. An A-module is called semi-simple if it satisfies the conditions of Theorem 2.6.
2.8 Remark. (i) Any $\mathbb{C}[G]$-module is semi-simple (by Maschke, Theorem 1.15).
(ii) Any $k[G]$-module is semi-simple if char $k \nmid|G|$.
2.9 Definition. If M is an A-module and $N \leq M$, then we define an A-module structure on the k-vector-space M / N by $a .(x+N)=a . x+N$. This is called the factor-module.
2.10 Proposition. Submodules and homomorphic images of semi-simple modules are semi-simple.

Proof. Let $M=M_{1}+\ldots+M_{r}, M_{i} \leq M$ simple subodules. Let $\varphi: M \rightarrow P$ be a surjective morphism of A-modules. Then

$$
P=\varphi(M)=\varphi\left(M_{1}\right)+\ldots+\varphi\left(M_{r}\right)
$$

By Schur (Lemma 2.5) either $\varphi\left(M_{i}\right)=0$ or $\varphi\left(M_{i}\right)=M_{i}$ which is simple. So P is semi-simple.
Let $N \leq M$ be some submodule and $L \leq M$ a module-complement. Then $M=N \oplus L$. Let $\pi: M \rightarrow N$ be the projection along L. Then by the first part $N=\pi(M)$ is semi-simple.
2.11 Theorem (Uniqueness of decomposition). Assume M is an A-module and

$$
M=S_{1} \oplus \ldots \oplus S_{m}=T_{1} \oplus \ldots \oplus T_{n}
$$

with $S_{i}, T_{j} \leq M$ simple. Then $n=m$ and there is some π with $S_{i} \cong T_{\pi(j)}$.
Again we have a well-defined notion of multiplicity $\operatorname{mult}_{W}(M)$ of a simple module W in M.
continue

2.2 Isotypical Decompositions

2.12 Definition. An A-module M is called W-isotypical if it is a (direct) sum of simple submodules $\cong W$.
Let M be semi-simple. We call $M_{W}:=\sum_{N \leq M, N \cong W} N$ the W-isotypical component of M, if $M_{W} \neq 0$.

Although M_{W} is defined by a possibly infinite sum, it is well-defined, since only finitely many summands actually contribute.
2.13 Lemma. Let $M=M_{1} \oplus \ldots \oplus M_{r}$, with M_{i} simple. Then $M_{W}=\bigoplus_{m_{i} \cong W} M_{i}$.

Proof. Let $l=\operatorname{mult}_{W}(M) . W \log M_{i} \cong W$ for exactly $i \leq l$. Clearly $M_{W} \supseteq M_{1} \oplus \ldots \oplus M_{l}$.
Suppose $W \cong L \leq M$, but $L \nsubseteq M_{1} \oplus \ldots \oplus M_{l}$. Then $L \cap\left(M_{1} \oplus \ldots \oplus M_{l}\right)=0$ since L is simple. Put $N:=\left(M_{1} \oplus \ldots \oplus M_{l}\right) \oplus L$. Take the complement of N, i.e. $M=N \oplus T$ with $T=S_{1} \oplus \ldots \oplus m$ and S_{i} simple. This yields a decomposition

$$
M=M_{1} \oplus \ldots \oplus M_{l} \oplus L \oplus S_{1} \oplus \ldots \oplus S_{m}
$$

so $\operatorname{mult}_{W}(M) \geq l+1$, which is a contradiction.
2.14 Corollary. Let M be semi-simple.
(i) We have $M=\bigoplus_{i=1}^{r} M_{W_{i}}$ is W_{1}, \ldots, W_{r} is an isomorphism list of simple modules occurring in M. This is called an isotypical decomposition.
(ii) Let $\varphi: M \rightarrow P$ be a module morphism. Then $\varphi\left(M_{W}\right) \leq P_{W}$ with equality if φ is surjective.
(iii) If $N \leq M$ is a submodule, then $N_{W}=M_{W} \cap N$.

Proof. (i) follows directly from Lemma 2.13
(ii) $\varphi\left(M_{W}\right) \leq P_{W}$ by Schur (Lemma 2.5). If φ is surjective, then by item (i) we have

$$
\varphi(M)=\sum_{i=1}^{r} \varphi\left(M_{W_{i}}\right) \leq \bigoplus_{i=1}^{r} P_{W_{i}}=P=\varphi(M)
$$

(iii) Apply item (ii) to a projection $\pi: M \rightarrow N$ along a module complement.

Now consider the special case $A=\mathbb{C}[G]$.
2.15 Remark. The isotypical component of the trivial module $\chi=1$ is the submodule of G invariants $V^{G}=\{v \in V: \forall g \in G . g . v=v\}$.

Let $W \in \bmod G$ simple, $\chi:=\chi_{W}$. Consider

$$
a:=\frac{\operatorname{dim} W}{|G|} \sum_{g \in G} \overline{\chi(g)} g \in \mathbb{C}[G]
$$

Since χ is a class function, we even have $a \in Z(\mathbb{C}[G])$. Let $V \in \bmod G$ with corresponding representation $D: \mathbb{C}[G] \rightarrow \operatorname{End}(V)$. Then $D(a) \in \operatorname{End}_{G}(V)$.
Now suppose V is simple. By Schur there is some $\lambda \in \mathbb{C}$ such that $D(a)=\lambda \cdot \mathrm{id}_{V}$. Then

$$
\lambda \cdot \operatorname{dim} V=\operatorname{tr}(D(a))=\frac{\operatorname{dim} W}{|G|} \sum_{g \in G} \overline{\chi(g)} \underbrace{\operatorname{tr}(D(g))}_{\chi_{V}(g)}=\operatorname{dim} W \cdot\left\langle\chi_{V}, \chi\right\rangle \Longrightarrow \lambda= \begin{cases}0 & : V \nsupseteq W \\ 1 & : V \cong W\end{cases}
$$

Now suppose $V=V_{1} \oplus \ldots \oplus V_{r}$ is the isotypical decomposition and V_{i} is W-isotypical. Then the representation D of V satisfies

$$
\begin{array}{r}
D(a)_{\mid V_{i}}=\mathrm{id} \\
\forall j \neq i . D(a)_{\mid V_{j}}=0
\end{array}
$$

Therefore $D(a)$ is the projection of V onto V_{i} along $\bigoplus_{j \neq i} V_{j}$. Furthermore we have an explicit description of this projection in terms of characters.

Example. For the trivial character the projection $V \rightarrow V^{G}$ is given by

$$
a=\frac{1}{|G|} \sum_{g \in G} g
$$

Now we return to the general situation of A-modules; let $W \in \bmod A$ simple. Let M be some W-isotypical modules. We investigate the submodules of M and $\operatorname{End}_{A}(M)$. We decompose $M=$ $M_{1} \oplus \ldots \oplus M_{m}$ with isomorphisms $\sigma_{i}: W \rightarrow M_{i}$, so mult ${ }_{W}(M)=m$. We regard k^{m} as the trivial A-module and form the A-module $W \otimes k^{m}$. So $a(w \otimes x)=(a w) \otimes x$ for $a \in A, w \in W, x \in k^{m}$. Our k-linear map is $D(a) \otimes \mathrm{id}_{k^{m}}: W \otimes k^{m} \rightarrow W \otimes k^{m}$.
2.16 Lemma. The map $\tau: W \otimes k^{m} \rightarrow M$ induced by $w \otimes x \mapsto \sum x_{i} \sigma_{i}(w)$ is an A-module isomorphism.

Proof. - τ is well-defined. The map $(w, x) \mapsto \sum x_{i} \sigma_{i}(w)$ is bilinear, then use universal property.

- τ is an A-module morphism $a .(w \otimes x)=(a . w) \otimes x$ because

$$
\tau(a(w \otimes x))=\sum_{i} x_{i} \sigma_{i}(a . w)=a . \sigma_{i} x_{i} \sigma_{i}(w)=a . \tau(w \otimes x)
$$

- $\operatorname{im} \tau=\sum M_{i}$, so τ is surjective.
- τ is an isomorphism since

$$
\operatorname{dim}\left(W \otimes k^{m}\right)=m \cdot \operatorname{dim} W=\operatorname{dim} M
$$

2.17 Lemma. Assume k is algebraically closed. The map $\rho: k^{m \times m} \rightarrow \operatorname{End}_{A}\left(W \otimes k^{m}\right)$ induced by $b \mapsto \mathrm{id}_{W} \otimes b$ is an algebra-isomorphism.

Proof. - $\rho(b)$ is an A-module-isomorphism since

$$
\rho(b)(a .(w \otimes x))=\rho(b)(a . w \otimes x)=(a \cdot w) \otimes(b \cdot x)=\ldots=a . \rho(b)(w \otimes x)
$$

- ρ is k-linear, $\rho\left(I_{m}\right)=\mathrm{id}$.

$$
\rho(b c)(w \otimes x)=w \otimes(b c . x)=\rho(b) \cdot(w \otimes c . x)=\rho(b) \rho(c) \cdot(w \otimes x)
$$

So it is an algebra-morphism.

- For $\varphi \in \operatorname{End}_{A}\left(\bigoplus_{1}^{m} W\right)$ there exist $\varphi_{i j} \in \operatorname{End}_{k}(W)$ such that

$$
\varphi\left(w_{1} \oplus \ldots \oplus w_{m}\right)=\bigoplus_{i=1}^{m}\left(\varphi_{i 1}\left(w_{1}\right) \oplus \ldots \oplus \varphi_{i m}\left(w_{m}\right)\right)
$$

We view $\left(\varphi_{i j}\right)$ as the "representation matrix" of φ. The map $\varphi \mapsto\left[\varphi_{i j}\right]$ (as matrix) is a k-linear isomorphism. Moreover

$$
\varphi \in \operatorname{End}_{A}\left(\bigoplus_{1}^{m} W\right) \Leftrightarrow \forall i, j \cdot \varphi_{i j} \in \operatorname{End}_{A}(W)
$$

By Schur there exist $b_{i j} \in k$ such that $\varphi_{i j}=b_{i j} \mathrm{id}_{W}$. Then we get a linear isomorphism

$$
k^{m \times m} \rightarrow \operatorname{End}_{A}\left(\bigoplus_{1}^{m} W\right) \quad b=\left[b_{i j}\right] \mapsto\left(w_{1} \oplus \ldots \oplus w_{m} \mapsto \bigoplus\left(b_{i 1} w_{1} \oplus \ldots \oplus b_{i m} w_{m}\right)\right)
$$

This is clearly an algebra-isomorphism. We get an algebra-isomorphism

$$
k^{m \times m} \xrightarrow{\sim} \operatorname{End}_{A}\left(\bigoplus_{1}^{m} W\right) \stackrel{\sim}{\longrightarrow} \operatorname{End}_{A}\left(W \otimes k^{m}\right)
$$

The image of $b \in k^{m \times m}$ is indeed $(w \otimes x \mapsto w \otimes(b . x))$.

$$
\begin{array}{r}
W \otimes k^{m} \xrightarrow{\sim} \bigoplus_{1}^{m} W \rightarrow \bigoplus_{1}^{m} W \rightarrow W \otimes k^{m} \\
w \otimes x \mapsto x_{1} w \oplus \ldots \oplus x_{m} w \rightarrow \bigoplus_{i}\left(\sum_{j} b_{i j} x_{j}\right) w \mapsto w \otimes(b . x)
\end{array}
$$

Let V be a W-isotypical module $V \cong W \oplus \ldots \oplus W \cong W \otimes k^{m}$. Take $w \otimes x \in V$ and some $a \in A$. Then $a(w \otimes x)=(a w) \otimes x$.
2.18 Lemma. Let $X \subseteq k^{n}$ be some linear subspace. Then $U:=W \otimes X$ is a submodule of $W \otimes k^{m}$ and all submodules are obtained this way. Moreover X is uniquely determined by the space $U:=W \otimes X$.

Proof. (i) It is clear that $W \otimes X$ is a submodule, because $a \in A$ operates only on the first component.
(ii) Let $U \leq W \otimes k^{m}$ be a submodule and $p \in \operatorname{End}_{A}\left(W \otimes k^{m}\right)$ be a projection onto U. By Lemma 2.17 there exists some $b \in k^{m \times m}$ such that $p=\mathrm{id}_{W} \otimes p$. Then $U=\operatorname{im} p=W \otimes \operatorname{im} b$. So we just take $X=\overline{n i m} b$.
(iii) Let $W \otimes_{1}^{X}=W \otimes X_{2}$. Then we have $X_{1}=X_{2}$ for subspaces $X_{1}, X_{2} \subseteq k^{m}$. [Exercise]
2.19 Theorem. Let M be a semi-simple A-module and $M=M_{1} \oplus \ldots \oplus M_{r}$ by isotypical decomposition. Let $M_{i} \cong W_{i} \otimes k^{m_{i}}$ for simple A-modules W_{i}.
(i) For subspaces $X_{i} \leq k^{m_{i}}$ we have that $\bigoplus_{i=1}^{r} W_{i} \cdot \otimes X_{i}$ is a submodule of M. Every submodule of M is obtained this way (with unique X_{i}).
(ii) We have an algebra-isomorphism

$$
\begin{aligned}
& \prod_{i=1}^{r} k^{m_{i} \times m_{i}} \xrightarrow{\sim} \operatorname{End}_{A}(M) \\
& \left(b_{1}, \ldots, b_{r}\right) \mapsto\left(\bigoplus_{i=1}^{r} w_{i} \otimes r_{i} \mapsto \sum_{i=1}^{r} w_{i} \otimes b_{i} r_{i}\right)
\end{aligned}
$$

Proof. (i) Let $U \leq M$ be some submodule. Then we have the isotypical decomposition

$$
U=\bigoplus_{i=1}^{r}\left(M_{i} \cap U\right)
$$

and use Lemma 2.18.
(ii) For $\varphi \in \operatorname{End}_{A}(M)$ there exist (unique) $\varphi_{i j} \in \operatorname{Hom}_{A}\left(M_{j}, M_{i}\right)$ such that

$$
\varphi\left(v_{1} \oplus \ldots \oplus v_{r}\right)=\bigoplus_{i=1}^{r}\left(\varphi_{i 1}\left(v_{1}\right) \oplus \ldots \oplus \varphi_{i r}\left(v_{r}\right)\right)=\bigoplus_{i=1}^{r} \varphi_{i i}\left(v_{i}\right)
$$

because by Schur $\varphi_{i j}=0$ if $i \neq j$. So $\varphi_{i i} \in \operatorname{End}_{A}\left(M_{i}\right)$. By Lemma 2.17 we have $k^{m_{i} \times m_{i}} \rightarrow$ $\operatorname{End}_{A}\left(M_{i}\right)$. Hence there exist $b_{i} \in k^{m_{i} \times m_{i}}$ such that

$$
\varphi_{i i}=\mathrm{id}_{W_{i}} \otimes b_{i} \quad \varphi_{i i}\left(w_{i} \otimes x_{i}\right)=w_{i} \otimes b_{i} x_{i}
$$

2.3 Semi-simple Algebras

2.20 Definition. A k-algebra A is called semi-simple if every A-module is semi-simple.

Example. Let G be a finite group and $k=\mathbb{C}$ (in fact char $k=0$ suffices). Then $k[G]$ is semisimple.
2.21 Remark. Let $L \leq A$ be a subspace. L is a submodule of A-module A iff

$$
\forall a \in A . \forall x \in L . a x \in L
$$

Such L is called a left-ideal of $A . L$ is called a minimal left-ideal if $L \neq\{0\}$ and L does not contain a proper left-ideal.

This means L is a simple A-module. Hence A is semi-simple iff there exist minimal left-ideals L_{1}, \ldots, L_{r} such that $A=L_{1} \oplus \ldots \oplus L_{r}$.
2.22 Theorem. (i) If A-module A is semi-simple then algebra A is semi-simple.
(ii) Assume $A=L_{1} \oplus \ldots \oplus L_{r}$ for minimal left-ideals. Every simple A-module is isomorphic to some L_{i}.

Proof. (i) Let M be an A-module and $\left(f_{1}, \ldots, f_{n}\right)$ a k-basis of M. Consider $\varphi_{A}^{n} \rightarrow M$ via $\left(a_{1}, \ldots, a_{n}\right) \mapsto \sum a_{i} f_{i}$, which is a surjective module morphism. If A-module A is semisimple, then A-module A^{n} is semisimple, so M is semisimple.
(ii) Take M and φ as before. Next we regard

$$
A^{n}=A \oplus \ldots \oplus A=\left(L_{1} \oplus \ldots \oplus L_{r}\right) \oplus \ldots \oplus\left(L_{1} \oplus \ldots \oplus L_{r}\right)
$$

as A-module. Assume M is simple. We know $0 \neq M=\varphi\left(A^{n}\right)$, so at least one of the L_{i} is not mapped to 0 . By Schur's Lemma $L_{i} \cong M$.

Example. (i) Let $A=k$, then k is the only minimal left ideal, k is semisimple. There is up to isomorphy only the simple k-module k (see Linear Algebra). Every k-module is isomorphic to some k^{n}, with $n \in \mathbb{N}$.

second example

2.23 Definition. Let M be an A-module. Then we define the annihilator

$$
\operatorname{ann}_{A}(M):=\{a \in A: \forall x \in M . a x=0\}
$$

2.24 Remark. (i) $\operatorname{ann}_{A}(M)$ is an ideal of A.
(ii) If $M \xrightarrow{\sim} N$ then $\operatorname{ann}_{A}(M)=\operatorname{ann}_{A}(N)$.
2.25 Lemma. (i) If A and B are semisimple algebras then so is $A \times B$.
(ii) If $A=\bigoplus_{i=1}^{r} L_{i}$ and $B=\bigoplus_{j=1}^{s} \Lambda_{j}$ are decompositions into minimal left ideals then

$$
A \times B=\left(L_{1} \times 0\right) \oplus \ldots \oplus\left(L_{r} \times 0\right) \oplus\left(0 \times \Lambda_{1}\right) \oplus \ldots \oplus\left(0 \times \Lambda_{s}\right)
$$

is a decomposition into minimal left ideals. Moreover $L_{i} \times 0 \not \approx 0 \times \Lambda_{j}$ as $A \times B$-modules.
Proof. - $L_{i} \times 0$ and $0 \times \Lambda_{j}$ are minimal left-ideals: clear

- decomposition of $A \times B$ is clear. Thus $A \times B$ is semisimple. For the annihilators we have

$$
\begin{aligned}
\operatorname{ann}_{A \times B}\left(L_{i} \times 0\right) & =\operatorname{ann}_{A}\left(L_{i}\right) \times B \\
\operatorname{ann}_{A \times B}\left(0 \times \Lambda_{i}\right) & =A \times \operatorname{ann}_{A}\left(\Lambda_{i}\right)
\end{aligned}
$$

Moreover $\operatorname{ann}_{A}\left(L_{i}\right) \neq A$, since $L_{i} \neq 0$. Therefore the annihilators are different, which means $L_{i} \times 0 \not \equiv 0 \times \Lambda_{j}$.
2.26 Theorem. $\mathscr{A}:=k^{n_{1} \times n_{1}} \times \ldots \times k^{n_{r} \times n_{r}}$ is a semisimple algebra. There are exactly r isomorphism classes of simple \mathscr{A}-modules, which are given by $k^{n_{1}}, \ldots, k^{n_{r}}$, where \mathscr{A} operates on $k^{n_{i}}$ by $\left(a_{1}, \ldots, a_{r}\right) \cdot v=a_{i} v$.

Proof. For simplicity we just show this for $r=2$ and use $A=k^{n \times n}$ and $B=k^{m \times m}$. For these we have the decomposition $A=L_{1} \oplus \ldots \oplus L_{n}$ and $B=\Lambda_{1} \oplus \ldots \oplus \Lambda_{m}$, where $L_{i} \cong k^{n}$ as A-module and $\Lambda_{j} \cong k^{m}$ as B-module. Applying Lemma 2.25 we get that $A \times B$ is semisimple and the isomorphism list is given by $k^{n} \times 0 \cong k^{n}$ and $0 \times k^{m} \cong k^{m}$:
$A \times B$ opertaes on k^{n} by $(a, b) \cdot v=a v$ and similarly on B.
2.27 Theorem. Let k be algebraically closed. Any semisimple k-algebra A is isomorphic to an algebra $k^{n_{1} \times n_{1}} \times \ldots \times k^{n_{r} \times n_{r}}$.

Example. Let $k=\mathbb{R}$, consider field \mathbb{C} as \mathbb{R}-algebra. The only non-zero ideal is \mathbb{C} itself, so \mathbb{C} is semisimple.
Can we write $\mathbb{C}=\prod \mathbb{R}^{n_{i} \times n_{i}}$? We must have $n_{i}=1$, since \mathbb{C} is commutative, but $\mathbb{C} \nexists \mathbb{R} \times \mathbb{R}$. So Wedderburn does not hold over the reals.
2.28 Definition. An A-module M is claled faithful if the corresponding representation $D: A \rightarrow$ $\operatorname{End}(M)$ is injective.
2.29 Corollary. Suppose $A=k^{n_{1} \times n_{1}} \times \ldots \times k^{n_{r} \times n_{r}}$ and M is an A-module. Suppose in M there occur exactly the simple A-modules $k^{n_{1}}, \ldots, k^{n_{s}}, s \leq r$. Then

$$
\operatorname{ann}_{A}(M)=\underbrace{0 \times \ldots \times 0}_{s} \times k^{n_{s+1} \times n_{s+1}} \times \ldots \times k^{n_{r} \times n_{r}}
$$

In particular M is faithful $\Leftrightarrow \operatorname{ann}_{A}(M)=0$ iffs $=r \Leftrightarrow$ all types of simple A-modules occur in M.
2.30 Theorem. Assume k is algebraically closed. Let V be a semisimple A-module. Then $\operatorname{End}_{A}(V)$ is a semisimple algebra.

Proof. If $V=V_{1} \oplus \ldots \oplus V_{r}$ is the isotypical decomposition, then

$$
\operatorname{End}_{A}(V) \cong k^{n_{1} \times n_{1}} \times \ldots \times k^{n_{r} \times n_{r}}
$$

where $V_{i} \cong w_{i} \otimes k^{m_{i}}$ with W_{i} simple.

2.4 Endomorphism algebras

large gap

3 Representation of S_{N} and GL($\left.V\right)$

3.1 Polarisation and Restitution

3.4 Definition. Let $\operatorname{dim}_{k} V=m$, where char $k=0$, and $N \geq 1$. Then we define $V^{\otimes N}:=$ $V \otimes \ldots \otimes V$. Note that $V^{\otimes N}$ is an S_{N}-module.
3.5 Remark. Further we put $S^{N}(V):=\left\{t \in V^{\otimes N}: \forall \pi \in S_{n}: \pi . t=t\right\}$ the subspace of symmetric tensors. We have a projection onto isotpical components with respect to the trivial S_{n} representation.

$$
\varphi: V^{\otimes N} \rightarrow S^{N}(V) \quad t \mapsto \frac{1}{N!} \sum_{\pi \in S_{N}} \pi . t
$$

This also gives another map

$$
V^{N} \rightarrow S^{N}(V) \quad\left(v_{1}, \ldots, v_{N}\right) \mapsto \varphi\left(v_{1} \otimes \ldots \otimes v_{N}\right)
$$

This is a multilinear S_{N}-invariant map.
3.6 Proposition. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis of V.
(i) $\left\{e_{1}^{\lambda_{1}} \ldots e_{m}^{\lambda_{m}}: \sum \lambda_{i}=N\right\}$ is a basis of $S^{N}(V)$.
(ii) $\operatorname{dim} S^{N}(V)=\binom{N+m-1}{m-1}$

We can interpret $S^{N}(V)$ as the space of homogeneous polynomial of degree N in m variables.
3.7 Definition. An element $t \in V^{\otimes N}$ is called alternating if

$$
\forall \pi \in S_{N}: \pi \cdot t=\operatorname{sgn}(\pi) \cdot t
$$

We put $\Lambda^{N}(V):=\left\{t \in V^{\otimes N}: t\right.$ alternating $\}$.
3.8 Remark. The map

$$
\psi: V^{\otimes N} \rightarrow \Lambda^{N}(V) \quad t \mapsto \frac{1}{N!} \sum_{\pi \in S_{N}} \operatorname{sgn}(\pi) \pi . t
$$

is a projection onto the isotypical components of the sgn-module.
This yields the alternating product (wedge product)

$$
\left.V^{N} \rightarrow \Lambda^{N} V\right) \quad\left(v_{1}, \ldots, v_{N}\right) \mapsto \psi\left(v_{1} \otimes \ldots \otimes v_{N}\right)=: v_{1} \wedge \ldots \wedge v_{N}
$$

which is multilinear, but antisymmetric.
3.9 Proposition. (i) $\left\{e_{i_{1}} \wedge \ldots \wedge e_{i_{N}}: 1 \leq i_{1}<\ldots<i_{N} \leq m\right\}$ is a basis of $\Lambda^{N}(V)$.
(ii) For the dimension we have

$$
\operatorname{dim} \Lambda^{N}(V)= \begin{cases}\binom{m}{N} & : N \leq m \\ 0 & : \text { else }\end{cases}
$$

Proof. We only need to check linear independence.

$$
0=\sum \alpha_{i_{1} \ldots i_{N}} e_{i_{1}} \wedge \ldots \wedge e_{i_{N}}=\sum \alpha_{i_{1} \ldots i_{N}} \frac{1}{N!} \sum_{\pi \in S_{N}} e_{i_{\pi(1)}} \otimes \ldots \otimes e_{i_{\pi(N)}}
$$

Then the coefficient of $e_{j_{1}} \otimes \ldots \otimes e_{j_{N}}$ equals $\pm \frac{\alpha_{j_{1} \ldots j_{N}}}{N!}$, hence $\alpha_{j_{1} \ldots j_{N}}=0$, since the tensor products of the e_{i} form a basis of $V^{\otimes N}$.

Example. Let $N=2$, and $\left\{e_{1}, \ldots, e_{m}\right\}$ basis of V. Then $V^{\otimes 2}=V \otimes V$ has basis $\left\{e_{i} \otimes e_{j}: i, j \leq m\right\}$. Then we have the linear isomorphism

$$
V \otimes V \rightarrow k^{m \times m} \quad t:=\sum_{i, j} \alpha_{i, j} e_{i} \otimes e_{j} \mapsto\left(\alpha_{i, j}\right)_{1 \leq i, j \leq m}=: A
$$

For example (12) $t \mapsto A^{T}$, so we just transpose. Furthermore t symmetric iff A symmetric and t alternating iff A skew-symmetric (i.e. $A^{t}=-A$).
When observing the dimension we get

$$
\operatorname{dim} S^{2}(V)=\binom{m+1}{2} \quad \operatorname{dim} \Lambda^{2}(V)=\binom{m}{2}
$$

$$
\operatorname{dim} S^{2}(V)+\operatorname{dim} \Lambda^{2}(V)=m^{2}=\operatorname{dim}(V \otimes V)
$$

In particular $V \otimes V=S^{2}(V) \oplus \Lambda^{2}(V)$.
In the more general setting $N>2$ we still have $S^{N}(V) \cap \Lambda^{N}(V)=0$ but $S^{N}(V) \oplus \Lambda^{N}(V) \subset V^{\otimes N}$.
3.10 Theorem. $S^{N}(V)$ is generated by $\left\{v^{N}: v \in V\right\}$ (symmetric product).

Proof.

$$
\begin{aligned}
\left(\sum_{i=1}^{m} \xi_{i} e_{i}\right)^{N} & =\sum_{i_{1}<\ldots<i_{N}} \xi_{i_{1}} \ldots \xi_{i_{N}} e_{i_{1}} \ldots e_{i_{N}} \\
& =\sum_{\mid \lambda \lambda_{1}=N} \#\left\{\left(i_{1}, \ldots, i_{N}\right): j \text { occurs } \lambda_{j} \text { times in }\left(i_{1}, \ldots, i_{N}\right)\right\} \xi_{1}^{\lambda_{1}} \ldots \xi_{m}^{\lambda_{m}} e_{1}^{\lambda_{1}} \ldots e_{m}^{\lambda_{m}}
\end{aligned}
$$

Next we claim that the coefficient vectors the following vector space

$$
k^{\binom{N+m-1}{m-1}}=\left\langle\left(\frac{N!}{\lambda_{1}!\cdot \ldots \cdot \lambda_{m}!} \xi_{1}^{\lambda_{1}} \ldots \xi_{m}^{\lambda_{m}}\right)_{\lambda}\right\rangle
$$

Otherwise there is some $0 \neq \alpha_{\lambda_{1} \ldots \lambda_{m}} \in k^{\binom{N+m-1}{m-1}}$ such that

$$
\forall \xi: \sum_{\lambda} \alpha_{\lambda_{1} \ldots \lambda_{m}} \frac{N!}{\lambda_{1}!\ldots \lambda_{m}!} \xi_{1}^{\lambda_{1}} \ldots \xi_{m}^{\lambda_{m}}=0
$$

Regarding this as a multivariate polynomial, we get $\forall \lambda: \alpha_{\lambda}=0$. z
3.11 Definition. A map $f: V \rightarrow k$ is called polynomial map if

$$
\exists F \in k\left[Z_{1}, \ldots, Z_{m}\right]: \forall \xi \in k^{m}: f\left(\sum_{i=1} \xi_{i} e_{i}\right)=F(\xi)
$$

3.12 Remark. (i) The concept of a polynomial map is independent of the basis.
(ii) $k[V]:=\{f: V \rightarrow k$, polynomial $\}$ is a subalgebra of the algebra of maps $V \rightarrow k$. With respect to the chosen basis e_{1}, \ldots, e_{m} we have the algebra isomorphism

$$
\mathbb{C}\left[Z_{1}, \ldots, Z_{m}\right] \xrightarrow{\sim} \mathbb{C}[V] \quad Z_{i} \mapsto e_{i}^{*}
$$

$k[V]$ is generated by V^{*} as a k-algebra (this is possible, since we have a coordinate-free definition).
(iii) The notion of homogeneous polynomial functions if well-defined (basis-independent), so we have to show

$$
\forall t \in k: \forall v \in V: f(t v)=t^{M} \cdot f(v)
$$

To this end we write

$$
k[V]_{(M)}:=\{f \in k[V]: f \text { homogeneous of degree } M\}
$$

Then we have the decomposition

$$
k[V]=\bigoplus k[V]_{(M)} \quad k[V]_{(0)}=k \quad k[V]_{(1)}=V^{*}
$$

3.13 Lemma. We have the isomorphism

$$
\left(V^{*}\right)^{\otimes N} \xrightarrow{\sim}\left(V^{\otimes N}\right)^{*} \quad l_{1} \otimes \ldots \otimes l_{N} \mapsto\left(x_{1} \otimes \ldots \otimes x_{N} \mapsto l_{1}\left(x_{1}\right) \otimes \ldots \otimes l_{N}\left(x_{N}\right)\right)
$$

Take $f \in\left(V^{\otimes N}\right)^{*}$. Define $\phi f: V \rightarrow k$ by $\phi f(x):=f\left(x^{\otimes N}\right)$. Then $\phi f \in k[V]_{(N)}$. Thus we obtain a linear map

$$
\left(V^{*}\right)^{\otimes N} \xrightarrow{\sim}\left(V^{\otimes N}\right)^{*} \xrightarrow{\phi} k[V]_{(N)}
$$

For this we claim that the restriction of this map yields a linear isomorphism

$$
\phi_{0}: S^{N}\left(V^{*}\right) \xrightarrow{\sim} k[V]_{(N)}
$$

This map ϕ_{0} is calledrestitution, its inverse ϕ_{0}^{-1} is called polarisation.
of claim. It is clear that ϕ_{0} is a linear map. Choose basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of V, so we have its dual basis $\left\{e_{1}^{*}, \ldots, e_{m}^{*}\right\}$ of V^{*}. A basis of $S^{N}\left(V^{*}\right)$ then is

$$
\left(\left(e_{1}^{*}\right)^{\lambda_{1}} \ldots\left(e_{m}^{*}\right)^{\lambda_{m}}\right)_{|\lambda|=N}
$$

