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1 Representations of Finite Groups
Notation. We write C™*? for the ring of d x d-matrices over C. Further GLy = GL4(C) is the

group of invertible d X d-matrices over C.

1.1 Modules and Representations

1.1 Definition. A matriz representation of a group G is a homomorphism M : G — GL, for some
d. This number d is called the representation degree or dimension of M.

Example. o There always is the trivial representation G — GL; via g — 1.
e From the symmetric group we have the sign sgn : S, — {—1,1} < C.

o We have the defining representation D : S,, — GL,, where

D), = {1 () =i

0 :else

o Let G =C, = (g9). We know M(g)" = M(g") = M(1) =1, so M(g) is a root of unity and
each such choice is a representation.

1.2 Definition. Let G be a group, V some (finite dimensional) C-vector-space. A representation
of G on V is a group morphism D : G — GL(V). D is called faithful if it is injective.

1.3 Definition. A (finite dimensional) G-module is a (finite dimensional) C-vector-space V' to-
gether with an operation of G on V' (i.e. g.(h.v) = (gh).v, 1.v = v) such that v — g.v is linear for
all g € G.

1.4 Remark. If D is a representation of G on V, we define the operation g.v := D(g)(v), which
yields a G-module. Conversely any operation defines a representation via D(g)(v) := g.v.

Let G operate on some finite set X. Put

V = spang(X) = {Z/\%'x:)\x € C}

zeX

as formal linear combinations. We extend the operation of G linearly onto V. Then V is a
G-module.

Example. Take the natural operation of S, on [n] = {1,...,n}. The S,-module is given by

T (Z)\zz) :Z)\,—-ﬂ(i)

If we identify i with e;, then the corresponding matriz is the permutation matric.

1.5 Definition. Let GG be some finite group. The group algebra is the set

C[G] := {Z)\g-g:)\g e@}

geG



together with the multiplication

(o) () = 3 ot

e heG g,heG

1.2 Submodules and Reducibility

1.6 Definition. Let V' be some G-module. A submodule of V is a G-stable subspace, i.e. Vg €
GiueUguel.

1.7 Remark. U inherits G-module structure from V. We always have the trivial submodules 0
and V.

Example. Consider C" as S, module. Then U := span(e;+...+e,) is a I-dimensional submodule.
S, operates trivially on U, since it just permutes the summands.

1.8 Exercise. Show that U and U~ are the only non-trivial S,-submodules of C".

1.9 Definition. A G-module V is called simple, if V # 0 and the only submodules are 0 and V
itself. The corresponding representation is called irreducible.

1.10 Lemma. Every simple C,,-module is 1-dimensional.

Proof. Let C,, = (g) and v be an eigenvector of D(g) € GL(V). Then g.v = Av, and therefore
¢’.v = NMv. Hence Cv is a non-empty C,-submodule. If V is simple, we must have V = span(v),
which is 1-dimensional. O

1.11 Definition. Let V' be a G-module and U < V. A module-complement is a submodule W
with V=U@W.

Let V = U @ W with basis U = (uy,...,uy) and W = (wy,...,w,). For g € G let M(g) be the
matrix of D(g) € GL(V). Then U, W are submodules iff M(g) has block-form for all g € G. So
we look for a simultaneous block decomposition.

1.12 Notation. We fix the following notation, unless states otherwise.
e From now on let G be some group, V be some (finite dimensional) C-vector-space.
e A G-module is a map G x V : (g,v) — g.v.

e A representation is a morphism D : G — GL(V).

A submodule U C V is a G-invariant subspace.

e Let (-,-) be some hermitian inner product on V:

<)\1U1 + )\2u2, U> = /\1<U1, U> + )\2<u2, U)

(v,u) = (u,v)

1.13 Lemma. Fvery G-module has a G-invariant inner product, i.e. Vg € G,u,v € V.(qu, gv) =
(u,v).



Proof. Let (-,-) be any inner product. Then we define

1

(v, w)e = a1 Z(gv,gw>

Gl 2=
By construction this is a G-invariant inner product. ]
1.14 Lemma. Let (-,-) be G-invariant and U C V' be some G-submodule. Then

Ut :={veV :VuecUluv)=0}

is a submodule.

Proof. Let g € G,v € U*. It remains to show gv € U+. But for any u € U we have (gv,u) =
(v,g7 ) = 0, since g~ tu € U. O

1.15 Theorem (Maschke). There are simple submodules Uy, ..., U of V withV = U, & ... B U,.

Proof. By induction on d := dim V. For d = 0 it is clear, so let d > 0.
If V is simple, we are done. Otherwise there is a submodule 0 # U; C V. By a previous lemma
V =U;, @ V' for some V’'. Then we apply induction on U; and V". H

1.16 Corollary. Let M : G — GLg4 be the matrixz representation. Then there exists some T € GLg4
and a decomposition d = dy + ...+ d; such that for all g € G we have

where M; : G — GLy, are irreducible matriz representations.

Example. Take G = C,, = (g). Then C,-module V is simple iff dimV = 1. The 1-dimensional
C,-modules are given by the group morphisms

My : Cp — C* i gf v ¢

where ¢ is an n-th root of unity. For al matriz representation M : C,, — GLg there exist integers
ki,..., ks and there is some T € GLg4 such that

TM(g)T~" = diag(My, (9), . . ., M, (g)) = diag(¢*™, ..., ¢™)

1.17 Remark. (i) Maschke’s Theorem still holds if C is replaced by a field K with char K t |G|
(because we computer |G|~! when averaging over the group).

(ii) For infinite groups Maschke’s theorem does not hold. Take G = (R, +) with

M:R—GLy, M(r)= (é 71“)
It is in fact a representation since M (ry)M(ry) = M(ry + r2). Now take the submodule
U = R(1,0)T. We claim that this is the only proper submodule: Assume vy # 0,50 v ¢ U.
Then M(1)v = (vy + vg,v2), which is linearly independent of v. So with any of these v we
span all of V. Thus U does not have a module complement.
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1.3 Morphisms and Schur’s Lemma

1.18 Definition. Let V, W be G-modules. A G-module morphism is a linear map
: V=W VgeG,veVp(go)=gp). (1)

In matrix language: Choose some basis of V and W with m = dimV and n = dimW. Let
M : G — GL,, N : G — GL, be the corresponding matrix representations. Let T be the
representation matrix of ¢. Then eq. (1) means: Vg € G.T'M(g) = N(g)T.

[That’s a natural transformation J

1.19 Definition. A G-module isomorphism ¢ : V — W is a bijective module morphism. If there
exists such an isomorphism, we say V' and W are isomorphic, written V" = WW.

Now we have a special case of the above scenario. The corresponding modules are isomorphic iff
there exists some T € GLg with Vg € G.N(g) = TM(g)T ', which means they are conjugate.

Notation. e Denote Homg(V,W) :={p: V — W : G-module morphism} < Hom(V, W).
e Endg(V) := Homg(V, V) < End(V), is a subalgebra.

Lemma. Let ¢ : V. — W be some G-module morphism. Then kerp < V and imp < W are
submodules.

Theorem (Schur’s Lemma). Let V., W be simple G-modules.
(i) If V.2 W then Homg(V, W) = 0.
(i) If V=W then dim Homg(V, W) = 1.

Proof. Let V-2 W and assume 0 # ¢ € Homg(V,W). Then ker < V, but since V' is simple, we
get kerp = 0. So ¢ is injective. Additionally 0 # imy < W, so imy = W since W is simple.
Thus ¢ is surjective, hence bijective, so ¢ is an isomorphism. 4

Next we show Endg(V) = Cidy (so we have the case W = V).

Let ¢ € Endg(V). Let v # 0 be an eigenvector of ¢, with ¢(v) = Av. Then

¢ — Aidy € Endg(V) v € ker(p — Aidy) #0

Since V' is simple, we get ker(p — Aidy) =V, so ¢ = Aidy.
Now let a : V' — W be an isomorphism and ¢ € Homg(V, W). Then a'op € Endg(V). So there
is some A € C with a~! o ¢ = Aidy, which means ¢ = \a. O

Remark. In the proof we didn’t use that G is finite.

Corollary. Let V =U, & ... ® U; be a direct sum of simple modules. Take any simple G-module
W. Then

|{i: U; 2 W}| = dim Homg(V, W).
This number is called multiplicity of W in V', written multy, (V).

Proof. We regard the map

@Hom(W, U;) — Hom(W, V) (1, 01) = (W= pr(w) + ...+ p(w))

i=1



By taking projections ¢; := m; o ¢, we get an inverse map, so this is an isomorphism. Restriction
onto G-invariant maps yields an isomorphism

t
& Home (W, Ui) — Homy (W, V)
i=1
By Schur’s Lemma we have

dim Homg (W, U;) = {(1) z/seg Ui

Thus dim Homg(W, V) = [{i : W = U;}|. O

Corollary. Let V' be some G-module and U;, U} be simple submodules such that
V=Ui®..0U=Ua.. U,

Then s =t and there is some ™ € S; with U; = U;(i) for all 1.

Let M = M(g) be some matrix representation. Now we are looking at polynomial functions
f: €4 — C with f(TMT™) = f(M) for all T € GL;. We can use every elementary symmetric
polynomial in the eigenvalues (e.g. trace, determinant).

1.4 Characters

Let @ : V. — V be linear, and a = [a;;] a matrix representation with respect to some basis.
The function tr(a) = ), a; is called the trace. It is independent of the basis. In fact tr(«) is a
coefficient of the characteristic polynomial

det(T — o) = T% — tr(a)T + ... 4 (=1)%det(a)
In particular tr(gag™') = tr(a) for all g € GL(V).

Definition. Let D be a representation of G. The function xp : G — C via g — tr(D(g)) is called
a character of D. If V is the module corresponding to D, we write xy .

Proposition. Isomorphic modules have the same characters.

Proof. Let U,V be G-modules with representations D, F' and isomorphism « : U — V. Then by
definition o - D(g) = F(g) - a, or rather F(g) = aD(g)a™!. Thus

xr(g) = tr(F(g)) = tr(D(9)) = xn(9) O
Remark. (i) xy(1) =dimV.
(i1) xv is a class function, i.e. constant on conjugacy classes.
(i1i) Xvev = Xv + Xv

Example. (i) Suppose X is some finite set and G acts on X. Let V := spang(X) with repre-
sentation D. Then xv(g) = tr(D(g)) is the number of fixed points of g.



(i1) Let G = S,, acting on X = [n]. We regard C" as S,-module. We put 1 = C(>_e¢;) and
U:=1t = {x € C" : Y.y = 0}. Then U is a simple module (exercise). xy(mw) =
#(fized points of m) — 1, due to the previous remark.

(15i) Take the reqular representation: X = G and G acts on the left. In this case, we have a fized
point iff g = 1. Hence
(g) 0 g#1
X9 lel 1

Lemma. xy (97 !) = xc(9)

Proof. Take H = (g), say H = C,. With a suitable basis, V' has a representation of the form
M(g) = diag(¢*, ..., k), for (" = 1. But since (7! = zeta we have

d
x(g) = tr(M(g™) =3 ¢ =3 " =xv(g) O

1.5 Orthogonality relations

G acts on Hom(U,V) via (g.a)(u) := g.a(g~'.w). This way, Hom(U, V) becomes a G-module.
Recall Homg (U, V') < Hom(U, V). In fact a« € Homg(U,V) & Vg € G.g.a = av.

Corollary (From Schur’s Lemma). Let ¢ : V — U be some linear map. We define
=G Dy(g)opoDy(g).
ge@
Then we have
(i) If U 2V then ¢ = 0.
(it) If U =V then ¢ = tr(yp) - idy, where n = dim V.

Proof. Due to the averaging ¢ € Homg(U, V), so we can apply Schur’s Lemma. This immediately
yields the first part. For the second, we know ¢ = Aidy, so just have to compute \.

An = tx(F) = ﬁ S tr(Dy (9)9Dy (9)™)) = ta(p) 0

geG

Corollary. Let U,V be simple G-modules with representations R, S.

(Z) ]fU ;7_5 V, then |G|_1 deG Sw’(Q)Rkl(g_l) =0.

(ZZ) IfU = V, then ‘G|_1 ZgEG Slj(,g)Rkl(g_l) = %6zl5]k
Proof. Apply the corollary to ¢ : U — V with matrix Ej;. In the case U 2V we get

1 _ 1 _
0= @ Z Z Sl]’(g) (Ejk)j’k/ Rk’l(g 1) = @ Z Sz](g)Rkl(g 1)
geqG j' k! geG

For the case U = V we proceed similarly

é Z sij(9)Ru(g™") =

geG

tr(E; 1
M@z = —0;10il u
n n



Let (-,-) be a Hermitian inner product on H. We say x,...,x; form an orthonormal system iff
(i, ;) = 0;5. If k = dim H, then this is an orthonormal basis. In this case we have the Fourier
decomposition

k
E Ty, 331
=1

On our vector space C“ we define the Hermitian product

(o, ) : |G|Zw

geG

Theorem (Orthogonality relations). Let U,V be simple G-modules. Then

< >_ 1 U=V
XU, Xv) = 0 U2V

Proof. Take matrix representations R,.S of U, V.

{(xv, xv) | Z xv(9)xu(g Lemma | Z xv(9)xu(g™)
geG geq
el e (Z sii(g ) (Z Rjilg ) Z Z Siilg
geG i J gEG

For U 22V, the corollary tells us that the inner sum is zero. So in this case (xv, xy) = 0.
Let U =2V, so wlog U = V. By the corollary we get

Z Su - %51]

gEG’
Thus (xv, xv) = %Z” dij = 1. O
Corollary. Let W be simple. Then
multy, (V) = dim Homg(W, V) = (xv, xw)

Proof. We decompose V =U; @ ... ® U, with U; simple. Thus xy = > xv,. By linearity

Oovsxw) = (v xw) = #{i - Uy 2 W} = multyy (V) O

Note that this also shows that the multiplicity in independent of the decomposition.

Theorem. There are only finitely many isomorphism types of simple G-modules. If they are
represented by Wi, ..., Wy, then > (dim W;)? = |G|. Moreover k is upper bounded by the number
of conjugacy classes of G.

Proof. Characters lie in the subspace of class functions

R(G) :={f € C%: f constant on conjugacy classes}



Moreover dim R(G) = #conjugacy classes. But xw,, ..., xw, are orthogonal, in particular linearly
independent. Hence k < dim R(G).
Let V' denote the G-module of the regular representation, i.e. V' = C[G]. Then

1 :
multyy, (V) = (xv, xw;) = ZXV 9)xw; (g el xv(Dxw; (1) = xw; (9) = dim W =: d;

gEG

Thus we get the decomposition
k dj
V=P @ j

which leads to |G| = dimV = $F

]1J

Remark. In fact, k is the number of conjugacy classes.
Theorem. We have U =2V < xy = xv-

Proof. We have already done one direction. So assume xy = xy. Let U = @le m;W; and
V= @le n;W; with n;, m; € IN. Thus we get xy = >, m;xw, and xv = >_, nixw,. But since the
characters are linearly independent (orthogonal system), this decomposition is unique. So n; = m;
and U = V. O]

Proposition. Let x be some character of a G-module. Then
(i) x is 1-dimensional iff x : G — C* is a group morphism.
(i) x is irreducible iff (x,x) = 1.

Proof. (i) = Let x = xy with representation D : G — GL; = GL(C) = C*. But then y = D.
<«: Define a 1-dimensional module on C by g.x = x(g)z. This has character x.

(ii) Let x = xv with decomposition V' = @ m;W;. Then xy = > m;xw,. For the inner product
we get

(xv,xv) Zm XWis XW;) Zm?

The latter is a sum of non-negative squares, which can only be one iff there is a single
contribution, which means there is a single W;. [

Example. Toke G = S3. We have the following simple representations.
o C = Wj: trivial representation, x1 = 1
o C=Wsy: sign, xo = sgn

o C? = Ws: Consider C* = C(1,1,1)® U, then U is our simple Ss-module: We know xy(m) =
fixg(w) — 1. Then

22430742 (—1)?
(XU, Xu) = ZXU )? = 5 )21
FES;

As a short notation we have the character table:



lid (i) (ijk)

x1=1 1 1 1
xX2=sgn| 1 -1 1
X3 2 0 —1

Example. Take G = S;. The number of conjugacy classes is the number of partitions of 4, which
is 5. As before we have Wi, Wy and W3 = (1,1,1)% (check that it is simple). For the remaining
ones we get 13 = dim(W,)? + dim(W5)?, so dim W, = 3 and dim W5 = 2.

Define the module U by (m,u) — sgn(m)m.u, $0 x4 = X2+ x3- This module is simple as well and
X3 # X4, S0 it is a new module. To find Wi, we take a map ¢ : Sy — S3 with kernel Klein Four. Let
Dy : S3 — GL(W3) be the irreducible representation. Then ¢ o Do is an irreducible representation
of Sy. When checking the orthogonality we get

id (i) (ijk) (k) (ij) (k)
x1=1 1 1 1 1 1
X2 = sgn 1 -1 1 —1 1
X3 3 1 0 -1 -1
X4 =s5gn-xys | 3 —1 0 1 —1
X5 2 0 —1 0 2
1 1
S nmnm =5 S K )G (E)

TESy Kecong. class

Thus the 5 X 5-matriz [ %XZ—(K)] 18 orthogonal in the rows and thus also in the columns.
i, K
This means the columns of the character table are orthogonal.

1.6 Decomposition of the Group Algebra
Let G be some finite group. Recall that we have the group algebra

C[G] = {Z Mg g € c} dim C[G] = |G]

geG

Example. Take G = C,, = (g). Starting with the polynomial ring C[X], we have the surjective
map ¢ : C[X] — C[C,] induced by X — g. We have p(X™) = g" =1, so X" — 1 € ker p, and in
fact this generates the kernel. So C[X]/(X™ —1) = C[G].

Let ¢ be some n-th root of unity. Then X" —1 = [[(X — ¢’). By the Chinese Remainder Theorem
we have C[X]/(X™ — 1) & C" via the map [F] — (F(¢°),..., F(¢"™Y). This map is the Discrete
Fourier Transform.

Next we take a look at the centre of group algebra, which is given by
Z(C|G]) :={a € C[G] : Vb € C[G].ab = ba}

The centre is a sub-algebra.
For some a = ) \,g conjugation can be written as

hah™ =" Xhgh™ =Y N-rgng’

geG g eG
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So all that happens is a reordering of the coefficients. Then we have a € Z(C[G]) iff Vg.\p-14, = A,
iff A : G — C is constant on conjugacy classes. As a consequence, dim Z(C|G]) is the number of
conjugacy classes.

Remark. Let D : G — GL(V) be some group representation. We extend this to a C-algebra
morphism D' : C[G] — End(V') via > A\gg — > A\;D(g). This is called a representation of the
algebra C[G].

Theorem (Wedderburn). Let G be finite and Wy, ..., Wy the isomorphism types of simple G-
modules (recall that there are only finitely many), with corresponding representations D; : G —
GL(W,), extended to algebra morphisms D; : C[G] — End(W;). Then ¢ : C|G| — [][End(W;)
via a — (Dy(a),...,Di(a)) is a C-algebra isomorphism. After choosing bases for the W;, we get
C[G] =2 Cm*™ x ... x CXm,

Proof. e First note that by construction ¢ is a C-algebra morphism.

e Let a € ker p. This means D;(a) =0 or aW; = {aw : w € W;} = 0 for all i. So a annihilates
each W;. But any G-module is a direct sum of these W;, so a annihilates every G-module.
In particular a annihilates C[G], which means a.1 =0, so a = 0. Thus ¢ is injective.

e Both sides have the same dimension
dim C[G] = |G = 3 (dim ;) = dim (H End(m))

Therefore ¢ is an isomorphism. [

Example. o Wedderburn’s Theorem generalises our above observation on the Discrete Fourier
Transform: C[C,] =C x ... x C.

o Take G = S3. Then C[G] = C x C x C**2, from previous parts.
o Similarly C[Sy] = C x C x €33 x €33 x (232,

Corollary. The number of isomorphism classes of simple G-modules is the number of conjugacy
classes (before we had “<”).

Proof. First observe that Z (C"*"™) = CI,,, which is 1-dimensional. Furthermore
Z(Cmm X ox O = Z (CMM) XL x Z(CR) 2 O x L. x C 2 CF
So we have Z(C[G]) = C*. Finally
# (iso-classes) = k = dim Z(C[G]) = #(conjugacy classes) O

Corollary. Let |G| = n, G abelian. The simple G-modules are the 1-dimensional modules. There
are exactly n pairwise non.isomorphic 1-dimensional G-modules. The group algebra is C|G| = C™.

Proof. We have n conjugacy classes, so n isomorphism classes. Further n = |G| = >_" | (dim W;)%
Hence each W, needs to have dimension 1. ]

Corollary.

#(iso classes of Sy,) = #(conjugacy classes of S,) = P(n) := #(partitions of n)

11



Example. Take the dihedral group D,, for n odd. We denote the elements by
D,={1,d,....d" " s sd,... 6 sd""}

It is generated by the relations d* = s> =1 and sds = d~*.
We have C,, = (d) < D,,, as normal subgroup of index 2. Thus D, /C, = (5) = Cy = {1,—1}. So
we get the 1-dimensional representation xi1 : D, — D, /C,, — {1,—1}. There are 2 + "T_l further

conjugacy classes {1}, {d’,d~7} and {sd’ : j <n}. For1 <1< 5% we have the C,-representation

Dy : C, — GLg by Dy(d) = diag(¢!, ¢Y). We extend this onto D,, by

o= (1 o) pist) = (5 <))

which gives rise to character x; with x;(d) = ¢ + (Y and x,(sd’) = 0.

2n 2n

o xi) = L <|Xz(1)!2 + i Ixi(d))[* + 0) = w —1

j=1

Hence the x; are irreducible. Moreover x; # x, for l # r.

1.7 Tensor Products

Let k be some field and U,V finite dimensional k-vector-spaces. For U = k™ and V = k" we will
get U@V = E™ ™ although it will not be defined this way.

1.20 Definition. A tensor product of U and V' is a k-vector-space W together with a bilinear map
p:UxV — W, written (u,v) — u ® v which satisfies the following universal property: For all
k-spans W' and ¢’ : U x V' — W', which is k-linear, there is exactly one k-linear map v : W — W’
such that the following diagram commutes

UXVLW

N

W/

1.21 Theorem. (i) The tensor product exists and it is unique up to “canonical isomorphism”.

(11) Let ¢ : U x V. — W be k-linear, e; be some basis of U and f; basis of V. Then (W, ¢) is a
tensor product of U and V' iff (p(e;, f;) : 1,7) is a basis of W.

Proof. (i) Existence follows from the second part. Taking W = W’ we get that there only is

the identity map. In the general case, swap W and W', to get W s W' 5 W. Therefore
v o' =1id, so it is an isomorphism.

(ii) If we have the basis, then the map is uniquely defined.
]

Notation. We write U x V. — U ® V wvia (x,y) — x Q@ y for the tensor product. Every tensor
weU®V can be written as w = Y u; @ v; but this is not unique.

12



Example. The map into matrices given by (§,m) — (& - n;)i; is a tensor product.
1.22 Remark. (i) dim(U® V) = (dimU) - (dimV)

(ii) U — U ® k via u — u ® 1, which is a k-isomorphism. There is exactly one isomorphism
UV -5V ®U mapping all u ® v to v @ u.

UxV
/7\
VeoU---------------- Yy U RV
,.)//

(iii) The tensor product is associative in the sense that (U® V)@ W =2 U @ (V @ W). There is
exactly one such isomorphism and it maps (u® V)@ w — u® (v @ w).

1.23 Proposition. Let o : U — U’ and 5 : V — V' be k-linear maps. Then there is exactly one
k-linear map a @ f: U RV — U @V’ such that (a ® f)(z ®y) = a(z) ® B(y). One calls a @
the tensor product of o and 3, also called Kronecker product.

Proof. We have a bilinear map
UxV 50UV (u,v)— alu)® B(v)

By universal property there exists exactly one map such that the following commutes:

UXVLU(X)

N

UeVv

So y(u ®v) = a(u) ® B(v). O

More concrete let o : k™ — k™ and (5 : k" — k™ be given by matrices A € k™ *™ and B € k" *™.
Then we use k™ ® k™ = k™" and k™ @ k™ = k™ >". Then

a® 5 . fmxn km'xn'
has the representation matrix

A® B = [azbal (i,0) € [m'] x ]

(1:0).iD)
(7:0) € [m] x [n]

Choose lexicographic order for (i,0), similarly for (j,1). Then A ® B € k™™ *™ looks like

allB c. CleB

CLmllB (lm/mB
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1.24 Lemma. Let m =m' and n =n’ in the above scenario. Then tr(A® B) = tr(A) - tr(B).

Proof. Using the above writing, we obtain

tr(A®B) =Y (a;tr(B)) = <Z a) -tr(B) = tr(A) - tr(B) O

7 %

1.25 Definition. On U ® V' we define by g(u ® v) = (gu) ® (gv) a G-module structure, which is
called the tensor product of the G-modules U and V.
Note that for ¢ € G we have a well-defined linear map

UV —=2UV u®vw— (gu) ® (gv)

If Dy and Dy are the corresponding representations, then the representation D of U ® V' satisfies
D(g9) = Dy(g9) ® Dy (g) (Kronecker product).

1.26 Remark. For G-modules we also have
e UV =VU
e (UV)eaW=U (VeW)
e URE=U
1.27 Proposition. For U,V € mod G we have xygv(9) = xv(9) - xv(9), by Lemma 1.24.

Example. Let W be some simple S,,-module; Cggy the 1-dimensional S, module given by the sign.
Then Cegn @ W is an S,-module. As a vector space Cegn @ W = C @ W = W, however, this
isomorphism might not respect the operation. The S,-operation is (m,w) — sgn(n) - w(w). This
module 1s also simple.

We furthermore have Csgn @ W = W as S,-modules iff
SEN “Xuw = Xw < VT € S, \ Apn-Xuw(T)
Example. Some further examples of tensors:
o V*@W = Hom(V,W) via the map
(P @w) = (v = p(v) w)
o (C")" ®@C™ = C™™ via
((p1,- -, 9n),w) > w - "

which 1s a rank 1 matriz. Fvery matriz can be written as a sum of rank 1 matrices, and the
same holds for tensor elements. But the converse is not true (usually matrices don’t have
rank 1, also a tensor element usually is just a sum of these terms.)

o Let’s think about the Kronecker-product again. Let A € GL(C") and B € GL(C™). Then on
rank 1 matrices it acts the following way:

(A® B)(wv") = B(w) - A(v)" = Buv® AT

14



which we write as BCAT. So

(A® B)(Ey) = (A® B)(esef) = (Bei)(ef A7) = bi-aj = (buaj(exe])
k,l

if we use the vectors for the columns of the matrices. Now we regard the operation on matrices
as operation on vectors (concatenating all columns), then we get the Kronecker product of
matrices for the operation.

Maybe we have to transpose some terms. Jesko is not sure.

2 Representations of Algebras

Let k be a field and A some finite-dimensional algebra.

2.1 Definition. e A representation of A is an algebra-morphism D : A — End(M) where M
is a k-vector-space.

e An A-module is a k-vector-space M together with a map A x M — M which satisfies

Ya € Apy, : M — M x — ax is k-linear
Vee M.p,: A— M avw~ ax is k-linear
Va,b € A, x € M.(ab)x = a(bx)

Vee Mlx ==

2.1 Semi-simple modules

2.2 Remark. A k-module is the same as a k-vector-space.

(i) If D : A — End(M) is a representation of A, then ax := D(a)(x) defines an A-module and
vice-versa.

(ii) Let G be a finite group, A = k[G]. Every representation D : G — GL(M) of G extends to a
representation D : k[G] — End(M).

Example. Let A = End(V') for some k-vector-space and M := V. Then the representation is
D =1id. So the action is the evaluation (a,v) — a(v).

2.3 Definition. Let M be an A-module. A submodule of M is a linear subspace N < M such
that Va € A,z € M.p(a.x) = a.p(x).

Hom (M, N) is a linear subspace of Homy (M, N) and End (M) is a subalgebra of Endy(M).

2.4 Definition. An A-module M is called simple if M # 0 and M does not have a proper
submodule.

Example. V as End(V')-module is simple.

2.5 Lemma (Schur’s Lemma). If M and N are simple A-modules and ¢ : Homa(M, N) then
either ¢ = 0 or ¢ is an isomorphism.

2.6 Theorem. Let M be an A-module. The following are equivalent
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(i) M is a direct sum of simple modules.

(i1) M is a sum of simple submodules.

(iii) Every submodule of M has a module complement.
Proof. (i) = (ii): is clear.

(ii) = (iii): Let N < M be a submodule. Let L < M be a maximal submodule such that
NN L = 0 (exists since finite-dimensional). Then it suffices to show N + L = M. By
assumption M = M; + ... + M, with M; simple submodules. If N + L # M there is
some ¢ with M; ¢ N + L. Thus M; N (N + L) = 0, since M; is simple. This also implies
N N (M; 4+ L) = 0, which contradicts the maximality of L.

(iii) = (i): induction on the dimension O

2.7 Definition. An A-module is called semi-simple if it satisfies the conditions of Theorem 2.6.

2.8 Remark. (i) Any C[G]-module is semi-simple (by Maschke, Theorem 1.15).
(ii) Any k[G]-module is semi-simple if char k { |G|.

2.9 Definition. If M is an A-module and N < M, then we define an A-module structure on the
k-vector-space M /N by a.(x + N) = a.x + N. This is called the factor-module.

2.10 Proposition. Submodules and homomorphic images of semi-simple modules are semi-simple.

Proof. et M = My + ...+ M,, M; < M simple subodules. Let ¢ : M — P be a surjective
morphism of A-modules. Then

P=p(M) = (M) + ... +¢(M,)

By Schur (Lemma 2.5) either ¢(M;) = 0 or ¢(M;) = M, which is simple. So P is semi-simple.
Let N < M be some submodule and L < M a module-complement. Then M = N & L. Let
7w : M — N be the projection along L. Then by the first part N = (M) is semi-simple. O

2.11 Theorem (Uniqueness of decomposition). Assume M is an A-module and
with S;, T < Msimple. Then n = m and there is some m with S; = Tr(j).

Again we have a well-defined notion of multiplicity multy (M) of a simple module W in M.

2.2 Isotypical Decompositions

2.12 Definition. An A-module M is called W -isotypical if it is a (direct) sum of simple submodules
=W.

Let M be semi-simple. We call My, = ZN<M’N%WN the W-isotypical component of M, if
My # 0. -
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Although My, is defined by a possibly infinite sum, it is well-defined, since only finitely many
summands actually contribute.

2.13 Lemma. Let M = M, @ ... © M,, with M; simple. Then My = ,, ~y M.

Proof. Let | = multy (M). Wlog M; = W for exactly ¢ < [. Clearly My O M; @& ...® M,.
Suppose W = L < M, but L & My & ...& M;. Then LN (M; @& ...® M;) = 0 since L is simple.
Put N := (M1 &...& M) ® L. Take the complement of N, i.e. M = N®T withT =S5, ®...&m
and S; simple. This yields a decomposition

M=M®®&..eMeLeS &...885,
so multy (M) > [ + 1, which is a contradiction. O
2.14 Corollary. Let M be semi-simple.

(i) We have M = @._, Mw, is Wi,..., W, is an isomorphism list of simple modules occurring
wn M. This is called an isotypical decomposition.

(ii) Let ¢ : M — P be a module morphism. Then o(Mw) < Py with equality if ¢ is surjective.
(i1i) If N < M is a submodule, then Ny = My N N.
Proof. (i) follows directly from Lemma 2.13

(ii) (Mw) < Py by Schur (Lemma 2.5). If ¢ is surjective, then by item (i) we have
i=1 i=1

(iii) Apply item (ii) to a projection m : M — N along a module complement. ]
Now consider the special case A = C[G].

2.15 Remark. The isotypical component of the trivial module x = 1 is the submodule of G-
invariants V¢ = {v € V : Vg € G.g.v = v}.

Let W € mod G simple, x := yw. Consider

dlmW
= el ZX )g € C[G
geG

Since x is a class function, we even have a € Z(C[G]). Let V € modG with corresponding
representation D : C[G] — End(V'). Then D(a) € Endg(V).
Now suppose V' is simple. By Schur there is some A € C such that D(a) = A - idy. Then

0 VW
1 :Vvew

A-dimV =tr(D(a)) = d1|mW ZX tr(D(g)) =dimW - (xv,x) = A= {

9eC xv(9)
Now suppose V =V, @ ... @ V, is the isotypical decomposition and V; is W-isotypical. Then the
representation D of V satisfies

D(a), = id
Therefore D(a)is the projection of V' onto V; along €B,; V;. Furthermore we have an explicit
description of this projection in terms of characters.
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Example. For the trivial character the projection V. — VY is given by
1
a = —
1€ 2,9
geG

Now we return to the general situation of A-modules; let W € mod A simple. Let M be some
W-isotypical modules. We investigate the submodules of M and End(M). We decompose M =
M & ...® M,, with isomorphisms o; : W — M;, so multy (M) = m. We regard k™ as the trivial
A-module and form the A-module W ® k™. So a(w ® z) = (aw) ® x for a € A,w € W,z € k™.
Our k-linear map is D(a) ® idgm : W @ k™ — W ® k™.

2.16 Lemma. The map 7 : W @ k™ — M induced by w ® x +— > z;0;(w) is an A-module
1somorphism.

Proof. e 7 is well-defined. The map (w, z) — > x;0;(w) is bilinear, then use universal property.

e 7 is an A-module morphism a.(w ® ) = (a.w) ® x because

T(a(w @) = Z zioi(a.w) = a.0x;0:(w) = a.7(w @ x)

e im7 = > M, so T is surjective.
e 7 is an isomorphism since
dim(W @ k™) =m - dim W = dim M O

2.17 Lemma. Assume k is algebraically closed. The map p: k™*™ — Ends(W ® k™) induced by
b+ idy ®b 1s an algebra-isomorphism.

Proof. e p(b) is an A-module-isomorphism since
p(b)(a.(w®x)) = pb)(aew®z)=(aw)® (br)=...=apb)(we )
e pis k-linear,p(l,,) = id.
p(be) (10 ® 2) = w ® (ber) = p(b).(w ® c.r) = p(b)p(c)-(w © )
So it is an algebra-morphism.

e For ¢ € Ends (@] W) there exist ¢;; € Endg (W) such that

m

(w1 & ... & wy) =P (pa(w) & ... & Gim(wn))

=1

We view (p;;) as the “representation matrix” of ¢. The map ¢ — [p;;] (as matrix) is a
k-linear isomorphism. Moreover

¢ € Endy (@ W) & Vi, jupy; € Endy (W)
1
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By Schur there exist b;; € k such that ¢;; = b;; idy. Then we get a linear isomorphism

E™™ s End s <é W) b= [b;| — <w1 ... 0wy — Q}(bﬂw1 ®...0 bimwm))
1
This is clearly an algebra-isomorphism. We get an algebra-isomorphism
ke s Endy <é W) — Ends(W ® k™) O
1
The image of b € k™™ is indeed (w ®  — w ® (b.x)).

W®kmi>éW—>éW—>W®km
1 1

w®xl—>x1w@...@xmw—>@<Zbijxj>w»—>w®(b.x)

? J

Let V' be a W-isotypical module V=W @ ... W =2 W ® k™. Take w ® x € V and some a € A.
Then a(w ® z) = (aw) @ x.

2.18 Lemma. Let X C k" be some linear subspace. Then U := W ® X is a submodule of
W ®E™ and all submodules are obtained this way. Moreover X is uniquely determined by the space
U="W®X.

Proof. (i) Tt is clear that W ® X is a submodule, because a € A operates only on the first
component.

(ii) Let U < W ® k™ be a submodule and p € Enda(W ® k™) be a projection onto U. By
Lemma 2.17 there exists some b € k™*™ such that p = idy ®p. Then U =imp = W ® im b.
So we just take X = nimb.

(iii) Let W®¥ = W @ X,. Then we have X; = X, for subspaces X, X» C k™. |[Exercise] O

2.19 Theorem. Let M be a semi-simple A-module and M = My, & ... ® M, by isotypical decom-
position. Let M; =2 W, @ k™ for simple A-modules W;.

(i) For subspaces X; < k™ we have that @;_, W; - ®X; is a submodule of M. Every submodule
of M is obtained this way (with unique X;).

(ii) We have an algebra-isomorphism

[Txmm = Enda(M)

=1
(bl, e ,br) — (éwl Q1T > iwz ®b17’1)
=1 =1

Proof. (i) Let U < M be some submodule. Then we have the isotypical decomposition

U= é(MmU)

i=1

and use Lemma 2.18.
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(ii) For ¢ € Ends(M) there exist (unique) ¢;; € Homy4(M;, M;) such that

r

p1® ... 0v) =P (pua(v) & ... © pir(vy)) = @ ii(vi)

=1

because by Schur ¢;; = 0if i # j. So ¢; € Enda(M;). By Lemma 2.17 we have k™™ —
End4(M;). Hence there exist b; € k™*™ such that

i = idw, ®b; ii(w; ® z;) = w; @ by, [

2.3 Semi-simple Algebras

2.20 Definition. A k-algebra A is called semi-simple if every A-module is semi-simple.

Example. Let G be a finite group and k = C (in fact chark = 0 suffices). Then k[G] is semi-
simple.

2.21 Remark. Let L < A be a subspace. L is a submodule of A-module A iff
Ya € AVx € L.ar € L

Such L is called a left-ideal of A. L is called a minimal left-ideal if L # {0} and L does not contain
a proper left-ideal.

This means L is a simple A-module. Hence A is semi-simple iff there exist minimal left-ideals
Lq,...,L,suchthat A=L&®...® L,.

2.22 Theorem. (i) If A-module A is semi-simple then algebra A is semi-simple.

(ii) Assume A =Ly @ ...® L, for minimal left-ideals. Every simple A-module is isomorphic to
some L.

Proof. (i) Let M be an A-module and (fi,..., f,) a k-basis of M. Consider ¢ — M via
(ay,...,an) — Y a;f;, which is a surjective module morphism. If A-module A is semisimple,
then A-module A" is semisimple, so M is semisimple.

(ii) Take M and ¢ as before. Next we regard
A"=Ad.. dA=(L1®..0L)d.. d(L1®...dL,)

as A-module. Assume M is simple. We know 0 # M = p(A"), so at least one of the L; is
not mapped to 0. By Schur’s Lemma L; = M. O

Example. (i) Let A=k, then k is the only minimal left ideal, k is semisimple. There is up to
isomorphy only the simple k-module k (see Linear Algebra). Every k-module is isomorphic
to some k™, with n € IN.

2.23 Definition. Let M be an A-module. Then we define the annihilator

anng(M) :={a € A:Vr € M.ax =0}
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2.24 Remark. (i) anni(M) is an ideal of A.
(ii) If M — N then anny (M) = anny(N).
2.25 Lemma. (i) If A and B are semisimple algebras then so is A X B.
(ii) If A=E,_, L; and B = @;:1 A; are decompositions into minimal left ideals then
AXB=(L;x0)®...® (L, x0)®d(0xA)D...®(0xA)
is a decomposition into minimal left ideals. Moreover L; x 0 20 x A; as A x B-modules.

Proof. e L; x0and 0 x A; are minimal left-ideals: clear

e decomposition of A x B is clear. Thus A x B is semisimple. For the annihilators we have

annayxp(L; X 0) = annu(L;) X B
anngyp(0 X A;) = A x anny(A;)

Moreover anny(L;) # A, since L; # 0. Therefore the annihilators are different, which means

Li x 0 22 0 x Aj. ]
2.26 Theorem. &7 := k"*™ x ... X k"*" s a semisimple algebra. There are exactly r isomor-
phism classes of simple < -modules, which are given by k™, ... k", where </ operates on k™ by
(a1,...,a.).v = a;v.

Proof. For simplicity we just show this for r = 2 and use A = k"*" and B = k™*™. For these we
have the decomposition A = L1 ®... &L, and B=A1&...®A,,, where L; = k™ as A-module and
A; = k™ as B-module. Applying Lemma 2.25 we get that A x B is semisimple and the isomorphism
list is given by k™ x 0 = k™ and 0 x k™ = k™

A x B opertaes on k" by (a,b).v = av and similarly on B. ]

2.27 Theorem. Let k be algebraically closed. Any semisimple k-algebra A is isomorphic to an
algebra kK™ >*™ x ... x k"rrxnr,

Example. Let £ = R, consider field C as R-algebra. The only non-zero ideal is C itself, so C is
semisimple.

Can we write C = [[R™*™ ¢ We must have n; = 1, since C is commutative, but C 2 R x R. So
Wedderburn does not hold over the reals.

2.28 Definition. An A-module M is claled faithful if the corresponding representation D : A —
End(M) is injective.

2.29 Corollary. Suppose A = E™>*™ x ... x k"> and M is an A-module. Suppose in M there
occur exactly the simple A-modules k™ ... k", s <r. Then

anny (M) =0 x ... x 0 xEmH7 Tt o gl
—_——

s

In particular M is faithful < annys (M) = 0if fs = r < all types of simple A-modules occur in M.

2.30 Theorem. Assume k is algebraically closed. LetV be a semisimple A-module. Then End (V)
s a semasimple algebra.
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Proof. If V =V, & ... ® V., is the isotypical decomposition, then
Endy (V) = E™X™ x .o x ke
where V; = w; ® k™ with W, simple. O

2.4 Endomorphism algebras

3 Representation of Sy and GL(V)

3.1 Polarisation and Restitution

3.4 Definition. Let dim; V = m, where chark = 0, and N > 1. Then we define V&V =
V®...®V. Note that VOV is an Sy-module.

3.5 Remark. Further we put SY(V) = {t e V®N:Vr € S, : 7.t =t} the subspace of sym-
metric tensors. We have a projection onto isotpical components with respect to the trivial S,,-
representation.

1
@ VN — SN(V) tHﬁZﬂ.t

'WESN

This also gives another map
VN = SN(V) (V1,...,0n) = (v @ ... @ vy)

This is a multilinear Sy-invariant map.

3.6 Proposition. Let {e1,...,e,,} be a basis of V.

(i) {ei\l ey >N =N} s a basis of SN(V).

(i) dim SN (V) = (VI
We can interpret S™(V) as the space of homogeneous polynomial of degree N in m variables.
3.7 Definition. An element t € V®V is called alternating if

Vr e Sy :mt=sgn(m)-t

We put AN(V) := {t € V®N : ¢ alternating}.
3.8 Remark. The map

1
Y VN 5 AN(V) t— N Z sgn(m)m.t

.WESN

is a projection onto the isotypical components of the sgn-module.
This yields the alternating product (wedge product)

VN o ANY) (V1,...,on) 2 V(11 ®...Qux) ="U A... Nvy

which is multilinear, but antisymmetric.
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3.9 Proposition. (i) {eg A... Aejy 11 <y <...<iy <m} is a basis of AN(V).
(ii) For the dimension we have

(ﬁ) N <m

dim AN (V) =
0 : else

Proof. We only need to check linear independence.

1
0= Z Qi Cin VANPIRIAN Ciy = Z ail,,,iNﬁ Z €iﬂ(1> ®X...Q ein(N)

TESN

Then the coefficient of ¢;, ® ... ® ¢;, equals ia"'lﬁ!jN, hence o, j, = 0, since the tensor products

of the e; form a basis of V&V O

Example. Let N =2, and {ey, ..., ey} basis of V. Then V* = VRV has basis {e;®e; : 1,7 < m}.
Then we have the linear isomorphism

VeV — gmm t:= Zamei ® e > (aij)i<ijem =1 A
i\j

For example (12)t — AT, so we just transpose. Furthermore t symmetric iff A symmetric and t
alternating iff A skew-symmetric (i.e. A' = —A).
When observing the dimension we get

dim S?(V) = (m; 1) dim A2(V) = (”;)
dim S*(V) +dim A%(V) = m? = dim(V ® V)

In particular V@V = S%(V) @ A%(V).
In the more general setting N > 2 we still have SY (V)N AN(V) =0 but SN(V) @ AN(V) Cc V&V,

3.10 Theorem. SN (V) is generated by {vY : v € V} (symmetric product).
Proof.

m N
<Z§261> = Z &1 ...&Neil <€y
=1

11 <...<tN

= Z #{(ir,...,in) : j occurs \; times in (iy,...,in)}E0 .. Exme}t . edn
[A1=N

Next we claim that the coefficient vectors the following vector space

N+m—1 N' A Am
50 = (ot e )

<N+m 1

Otherwise there is some 0 # ay,.\,, € k wir) such that

N!
\V/£ : Z)\:Ck)\lm)\mm f\l .. £7Anm =0
Regarding this as a multivariate polynomial, we get VA : ay) = 0. 4 [
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3.11 Definition. A map f: V — k is called polynomial map if

AF € k[Zy,..., 2] :VEECK™: f (Zgi@) = F(&)
=1

3.12 Remark. (i) The concept of a polynomial map is independent of the basis.

(ii) k[V] := {f : V — k,polynomial} is a subalgebra of the algebra of maps V' — k. With
respect to the chosen basis ey, ..., e, we have the algebra isomorphism

ClZy,..., Zm] = C[V] Ziv €

k[V] is generated by V* as a k-algebra (this is possible, since we have a coordinate-free
definition).

(iii) The notion of homogeneous polynomial functions if well-defined (basis-independent), so we
have to show

Vtck:YoeV: ftv)=t". f(v)
To this end we write
E[V]ay == {f € k[V] : f homogeneous of degree M}
Then we have the decomposition
E[V] = EP KV k[V]o) =k kV]gy =V*
3.13 Lemma. We have the isomorphism
(Ve = (veN)* L. @y (01®...Qaey = L(21)®...®Ix(ry))

Take f € (V®N)*. Define ¢f : V — k by ¢f(z) := f(z®N). Then ¢f € k[V]n). Thus we obtain

a linear map
(VN 2 (VEN) L [V
For this we claim that the restriction of this map yields a linear isomorphism
g0 : SN(VF) = K[V
This map ¢y is calledrestitution, its inverse ¢, Lis called polarisation.

of claim. It is clear that ¢ is a linear map. Choose basis {e1,...,e,} of V', so we have its dual
basis {e,..., e} of V*. A basis of SV(V*) then is

(DM (™)
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