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1 Real Algebra

In previous lectures we focused on extension of @, or we took C when we needed an algebraically
closed field. Now we regard R as basis.

Much is based on work of E.Artin, U. Schreyer. The standard textbook is “Real Algebraic Geom-
etry” by Bochnak, Coste and Roy.

1.1 Real Fields

Definition. An ordered field (angeordneter Korper) is a field K together with a total order < on
K such that

(1) Ve,y,2 € K 12 <y = x4+ 2<y+=z

(2)Ve,ye K:0<z,0<y = 0<uxy
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We will use the notation x <y = x < yAx#y.

Example. o Of course, Q and R are ordered fields.

o For f € RIX]\ {0}, with f = Z?:m a; X" and a,, # 0 we define 0 < f := 0 < a,,. This can
be expanded to R(X), where we say 0 < § <0< f-g. To obtain a total order we define
N=@eon=@eV0<gp-—q.

For anyr € R we have 0 < X < r. So X is like an infinitesimal.

Remark. Let (K, <) be an ordered field. Then Vx € K : 0 < 2%, So we have 0 < 12 = 1 and by
induction n < n + 1, which implies char K = 0.

Proof. 1f 0 < x, then 0 < z - x by the second axiom. Otherwise x < 0. So we have 0 < —z so we
get 0 < (—x)(—z) = 2% O

Definition. A cone (Kegel) of a field K is a subset P C K such that
(1) Ve,ye P:x+y€P

(2) Vx,ye P:ay e P

(3) Vo € K : 2% € P.

A cone is called proper is —1 ¢ P.

Lemma. Let (K, <) be an ordered field.

(1) Then P := {x € K : x > 0} is a proper cone, the positive cone of (K,<), and we have
PU(-P)=K.

(2) Conversely, if P is a proper cone with P U (—P) = K, then ¢ <y & y—x € P defines a
total order of K.

Proof. The first is clear.
For the second we claim PN (—P) = {0}. Assume 0 # a € PN (—P). Let z € K\ P. Thus
—z € P. But then we get © = (a™')? - a(—x)(—a) € P, which is a contradiction. O

Remark. The set Y K? :={zi+...+ 22 :2; € K,n € N} is a cone. It is contained in any cone
of K.
1.1 Lemma. Let P be a proper cone of K and a € K.

1. —a & P implies Pla] == {x +ay : x,y € P} is a proper cone of K.

2. P is contained in the positive cone of an ordering of K.

Proof. 1. The first two axioms are calculation and use of a> € P. The third follows from
P C Pla] (take y = 0). So Pla] is a cone.

Assume —1 € Pla] with —1 = x + ay. Then y # 0, because —1 ¢ P. But in this case
—a=(z+ 1)y '=(z+1)y(y')* € P we get a contradiction.

2. By applying the above construction, we get a chain, whose union forms an upper bound.
By Zorn’s Lemma there is a maximal proper cone () containing P. So we need to check
QU (—Q) = K: Let —a ¢ Q. Then a € Q[a], but Q[a] is a proper cone, so Qla] = Q.

O



Theorem. Let K be a field. TFAE (The following are equivalent)
1. K has an ordering.
2. K has a proper cone.
3. —1¢ S K?
4. V1, o, €KY 02 =0 = Vi:x; =0
Proof. The chain (1) = (2) = (3) is clear with the above.
Assume (3) and >, 27 = 0 with 27 # 0. Then -1 =37, (’“)2, which is a contradiction.

i=1"1 T
(4)=(3): Assume —1 = >_2? € > K2 Then we can add 1% on both sides, so 0 = 12+ >" 22, By
(4) this implies 1 = 0. 4.
(3)=(1): Since —1 ¢ >_ K?, this cone is proper. By Lemma 1.1 the cone Y K? is contained in
the positive cone of an ordering of K. So in particular K has an ordering. m

Definition. A field K which has these properties is called real field.
Remark. FEvery real field contains a copy of Q. This already follows from the characteristic.

Proposition. Let K be a real field, P a proper cone. Then P is the intersection of the positive
cones Q of all orderings of K where P C Q. In particular > K? is the intersection of positive
cones of all orderings.

Proof. Assume —a ¢ P. By Lemma 1.1.(1) Pla] is a proper cone of K. By Lemma 1.1.(2) Pla] is
contained on the positive cone @) of some ordering of K. Then a € @, so —a ¢ Q. so each element
not contained in P is cut off by some ordering. O]

Example. o Fvery subfield of R is a real field.

e Recall our ordering on R(X). Then this also becomes a real field.

1.2 Real Closed Field (reell abgeschlossene Korper)

Definition. A real field K is called real closed if it does not have a proper real algebraic extension.
That is: if K < Ky s an algebraic extension and Ky is a real field, then K = Kj.

Example. R is real closed: Let R < K; be an algebraic extension. But we already know this allows
only for K1 = R or Ky = C. But C is not real, since —1 € > C.

Example. R, := {z € R : a alg. over Q} is a real closed field. The proof idea is Rag(i) = Q.
More general we will show: If K real and K(7) alg. closed, then K is real closed.
1.2 Theorem. Let K be a real field. TFAE

1. K 1s real closed.

2. K*={a € K :a>0} and any polynomial of odd degree as a root in K.
3. K(i) = K[X]/(X? + 1) is algebraically closed.



Proof. (1)=(2) Put Q := K% We want to show Q = >> K?. Assume a = > 07 ¢ Q. Then
K < K(y/a) is a proper algebraic extension. Since K is real closed, this is not a real field.
By the above characterisation we can write —1 as a sum of squares:

i=1
= Z(af +ay?) + \Wa compare coefficients
i=1

_1:imf+azy¢2 .
_a:<1+ xf) <ny) (Zy12> €Y K
- am Y

But then >" 0% + Y 22 = 0, which only is possible if b; = z; = 0, so a = 0. 4

Next we claim Q U —Q = K: We just showed if a ¢ Q, then —a € > K% = Q. Therefore Q
is the positive cone of an ordering of K.

Claim 3: If f € K[X], d:= deg f is odd, then f has a root in K. To this end assume f has
no root and is of minimal degree. We know f has an irreducible factor of odd degree, so wlog
f is irreducible. Then consider K < K[X]|/(f) =: L, which cannot be a real field. Again —1
is a sum of squares —1 = S h; = Y h; + gf, so h; € K[X] with degh; < d and g € K[X].
Then we have deg (3" h?) = 2max{degh; : i} < 2(s — 1). Note that we do not have any
cancellation of the leading coefficients since they are sums of squares. From " h? = —1—gf
we conclude

deg g+ d = deg(gf) = deg (th) <2d-—2

so degg < d — 2, but also deg g is odd. By minimality of f we know ¢ has a root z € K.
But then —1 = )" h;(z) in K, which is a contradiction.

(2)=(3) See Algebra II

(3)=(1) Take K < K an algebraic field extension. Since any extension is contained in the
algebraic closure, so K; < K (i). That leaves only K; = K and K; = K (7). But the latter is
not real, since —1 is a sum of squares. So K7 = K, hence K is real closed. O

1.3 Proposition (Intermediate Value Theorem). Let R be a rial closed field, a,b € R with
a <b. Let f € R[X] such that f(a)f(b) < 0. Then there is some & € [a,b] with f(§) = 0.

Proof. By Theorem 1.2 R(i) is algebraically closed, so f splits into linear factors. But as in C, if
x = c+di is a root, then also the conjugate T = ¢ — di is a root. So all factors of f are of the form
X —e; and (X — ¢;)? + d?. From f(a)f(b) < 0 we know that in the interval, one of the factors
must have a sign change. But the quadratic ones always yields non-negative values. So one of the
e; mus be in the interval. So e; € [a,b] with f(e;) = 0 as desired. O

Definition. Let (K, <) be an ordered field. A real closure of (K, <) is a field extension K < R
such that

1. R is real closed



2. The inclusion K < R is order preserving. If v > 0 in K, then x > 0 in R and x = y* for
some y € R.

[change subfield to C, because < is taken ]

1.4 Theorem. Fvery ordered field (K, <) has a real closure. This is unique up to isomorphism: If
K < R and K < R’ are real closures, then there erists a unique order-preserving K-isomorphism
R— R.

Proof. Let K be an algebraic closure of K. Thus every algebraic extension of K is a subfield of
K, so we just look at the real ones. Consider

{(F, <ordered field : K < F < K, K < F order preserving}

We say (F,<) <X (F', <) it F < F’" and F' < F’ preserves order. Thus the above set gets an
order, so we can apply Zorn’s Lemma. As is the proof for the algebraic closure, the union of a
chain is an upper bound, so we have a maximal element (R, <). It remains to show that R is real
closed. Put P:={r € R: 2z >0} and Q := {y? : y € R}. Clearly Q C P, by axioms. But we
claim P = Q.

Assume a € P\ Q. The set of elements

sz (Cz‘ + dz\/a)z b“Ci,di < R, bz >0

is the cone generated by P and /a in R (y/a). This cone P’ is proper, because otherwise we would
have

—1_Zb (¢ + di/a)’ Zb 2L+ () Va

and by comparing coefficients, we get —1 = > b;(¢? 4+ d7), which is an equation in R. But R is
ordered, so —1 is not positive, while the sum is. So P’ is proper.

Therefore there is an ordering of R(y/a) whose positive cone is P’. But that is a contradiction to
the maximality of R. Hence P = Q).

Let R < E < K be a field extension, with E real. Let <z be an ordering of E. Since {z € R :
r >0} = {y*:y € R} we know that <g extends he order of R: If x > 0, then x = y? for some
y€ RCE. Sox=y?in E, so x > 0. By the maximality of R, we get R = E. Hence R is real
closed. O]

For the proof of uniqueness, we need the following

Theorem. Let (K, <) be an ordered field and f € K[X]. Let K < R be a real closure. The number
of distinct zeros of f in R is the same for all real closures.

of Theorem 1.4 cont. Assume we have the following picture Where R, R’ is real closed and K < F
is a finite algebraic extension. Then we claim every order-preserving morphism ¢ : K — R’ can
be extended to an order preserving morphism ¢’ : F' — R'.

Let F = K(a) for a primitive element a. Let f € K[X] be the minimal polynomial of a. Let
a; < ay < ... < a, be the zeros of f in R, say a = a;. By the above theorem, f has exactly n
zeros in R/, say by < ... < b,. Define ¢’ : F' = K(a) — R’ via a = a; — b;. By our knowledge
from Algebra, we know such a morphism exists. But it remain to show that ¢’ actually preserves
order.



Take y € K(a), with y > 0. Then y is a square in R, say y = 22 for some z € R. Let
r? := a;,1 — a; for some x; € R. Then there is a morphism ¢ : K(a1,...,0n, %1, ..., Ty 1,Y,2) =:
K(a) — R',which extends ¢. Now we can say ¥(a;i1) — ¥(a;) = ¥(x;)* > 0, and (a;) are the
zeros of f. Together with the order we get 1) (a;) = b; and in particular ¢(a;) = b; = ¢'(a;). Thus
Vik@ = ¢, 50 ¢ (y) = (y) = ¥(2)* > 0, so ¢’ is order preserving.

Let K < R be an algebraic extension. Using Zorn’s Lemma any ¢ : K — R has an order preserving
extension R — R’. This is unique, because if a € R is the j-th root of its minimal polynomial
f € K[X], then a has to be mapped to the j-th root of f in R'. ]

Definition. An ordered field (K, <) is called archimedian if for any o € K there is some n € N
such that a < n.

Remark. Note that 1 4+ ...+ 1 # 0 in any ordered field, so every ordered field contains (a copy
of ) the natural numbers, so the above comparison actually makes sense.

Example. 1. Subfield of R are archimedian.

2. The field R(X), <) with infinitesimal X > 0 is not archimedian, because X ' is not bounded
by any natural number.

1.5 Exercise. Let (K, <) be archimedian. Then Q is dense in K, which means for all a,b € K
where is some ¢ € Q with a < ¢ < b.

1.6 Exercise. Let (K, <) be archimedian. Then there is an order preserving mophism K — R of
fields. Up to isomorphism, the archimedian fields are exactlythe subfield of R.
See: “Real Algebra”, by A. Prestel.

1.3 Counting real roots
Let R be a real closed field.

Proposition. Let f € K[X] and a,b € R with a < b.
1. (Rolle) If f(a) = f(b) =0 then f'(c) =0 for some a < ¢ < b.
2. (Mean Value Theorem) There is some ¢ € (a,b) with f(b) — f(a) = f'(c)(b— a).
3. If for all x € (a,b) we have f'(x) >0, then f is strictly increasing in (a,b).

Proof. 1. Wlog a, b are consecutive zeros of f, say f = (X —a)"(X — b)"g with n,m > 1 and
g without root in (a,b). By Proposition 1.3 g has constant sign on (a,b). Furthermore we



have
ff=(X—a)" (X —b)""g for gg = m(X —b)g+n(X —a)g+ (X —a)(X —b)g

Then g1(a) = m(a — b)g(a) < 0 and ¢;1(b) = n(b — a)g(b) > 0 have opposite sign. By
)

Proposition 1.3 there is some ¢ € (a,b) with g;(c

2. Apply 1to f = f — f(a) — m(X —a), m := LB=@

b—a
3. Clear after 2.
]
For this section let R be a real closed field.
Definition. The variation var(ay,...,a,) of a sequence (ay, ..., ay) in R is the number of its strict
sign changes. For some polynomial f =>"1"  a; X" we put ve(f) := var(ag, ..., a,).

Example. var(1,—-2,3,4) = 2, var(l,O —-2,0,3,0,0,4) = 2, because the zeroes are no strict
changes. vc(f)(X —-1)= ( v 0,1) =15 VC(X” 1) =

Remark. If f hat t terms, then ve(f) <t —1.

Denote by N, (F') the number of positive roots in R, counted with multiplicity.

1.7 Theorem (Décartes Rule,1637). For f € R[X]|\ R we have N.(f) < vec(f). In particular,
a polynomaal with t terms has at most t — 1 positive roots.

Example. 1. Let f = X" —1, sot =2 terms and N.(f) =1 (only 1),s0 this bound is sharp.
2. f=S" X = XL We have ve(f) = 0= N4(f).

1

3. For f = X3 — X?+ X — 1 we have ve(f) = 3 but Ny (f) = 1.

of Theorem 1.7. Induction over the number of terms: For the case ¢ = 1 the polynomial has the
form f = a, X", which has no sign change and no positive root.
Now let f=>"" ;X" with m < n and a,a,, # 0. This we rewrite as

f:Xm(anX"_m+...+am) ::Xm-f,

so wlog we can assume m = 0. Then we look at the next coefficient after ay (note that we
allow gaps), so f = a, X" + ... + a,X? + ap where a,a9 # 0 and ¢ > 1. Regard the derivative
= na, X"+ ... 4+ qa,a?'. Note that f’ has one term less, so we can apply our induction
hypothesis. We have

ve(f’ sagag > 0
ve(f) = V) s
ve(f')+1 :aga0 <0
It is sufficient to show

N (f") tagao >0

v 0
+(f)+1 ragag <0

N+(f)§{

Let 0 < 1 < ... < x4 be the positive roots of f with multiplicities u;. By Rolle, there are roots
Yy Ys—1 Of [/ such that 0 < z7 < 1y < 29 < ... < x5 < Ys_1 < T,. Moreover z; is root if

7



f’ with multiplicity p;. Note that N, (f) = > p;. Furthermore N (f') > (s — 1) + > (s — 1).
Therefore eq. (1) follows in the case a,ao < 0. So now assume a,ao > 0, so wlog both are positive.
Hence f(0) > 0 and f'(0) > 0, so we start positive and have a positive slope. Thus between 0 and
x1 there must be a maximum yo of f. But in that point we must have f’(yy) = 0, so we have found

another root of f’. So in this case we get Ny (f") > 1+ (s —1) + > (s — 1) = N.(f). O

Remark (Supplement to Décartes Rule). For f € R[X]\ R we have N.(f) = ve(f) mod 2.

Example. Let f = > (—1)*X"* s0 vc(f) =n. But also we have N, (f) =0 if n is even, and
Ni(f)=1ifn is odd.

Generalisation: Let f € R[X] and £ € R. We define the variation of the derivatives of f at £ via

vdere(f) == var(f(&), f'(§), f"(€),...)

For —oo < a < b < oo denote by N(,4(f) the number of roots in f in the interval (a,b], counted
with multiplicity. Earlier we had the special case N, (f) = N,o0)(f)-

1.8 Theorem (Budan (1807), Fourier (1820)). Let f € R[X]\ R and —c0 < a < b < oc.
Then

Ny (f) < vdera(f) — vdery(f)
Niap(f) = vder,(f) — vdery(f) mod 2

Remark. e We have shown the special case a =0 and b = oo.

e vdero(f) = var(f(0), f'(0),...) =var(k!-ar : k=0,...,n) = ve(f)

e vder,.(f) =0 (that means vdery(f) for some sufficiently large number M)

Given f € R[X] square-free (i.e. ged(f, f') = 1). We apply the Euclidean Algorithm to f and
f'putting fo := f and f; := f’. The recursive steps are written as f;_1 = ¢;f;— fiz1 fori=1,... 1L
(We already know the final result, but we are interested in the f; we obtain during the computation.)
Note that

ged(fivr, fi) = ged(fi, fisa) = .. = ged(f', f) =1
For £ € R we define V(f) := var(fo(€), ..., xi(§).

1.9 Theorem (Sturm, 19th cent.). Let f € R[X] (be square-free), a,b € R with a < b and
Fa) #0# f(b). Then

#{€ € (a,b) - f(§) = 0} = Vu(f) = Val/f)

Remark. The condition square-free can be removed, because that would just add the same factor
in our sequence in the variation. But var(a; : 1) = var(a; - b : 7).

Example. Toke f = X? — X=(X-1)X(X+1)=: fo. Then f1 = f' =3X?—1. The algorithm yields

f= %Xf’ — %X and f1 = gfg — 1, that is fo = %X and f3 = 1. So we get the following table




fo fi
-+
& 0+
& +  +

Remark. Denote by lc(f) := a, the leading coefficient for f = a, X™ + ..., where ag # 0. Put
Vo (f) := var(le(fo),1c(f1), . ..) and likewise V_ = Vo (f(—=X)).

If € is the largest root of f, then f has constant sign on the interval (§,00) and this sign is the
same one as lc(f).

Corollary. Sturm’s theorem also holds for —oo < a < b < oco. In particular

#HEe R: f(§) = 0F = Voso(f) = Vao(f):

Proof. Assume as zeroes of fy, ..., f; are contained in the interval (—M, M). Then by the previous
observation sgn(f;(M)) = sgn(le(f;)) for all 0 < i < [. Hence Vo (f) = Vas(f). Similarly V_(f) =
V_m(f). Now we apply Sturm on the interval (—M, M) and obtain the result. O

of Theorem 1.9. Let & < ... < & be the roots in R of fy,..., fi. In the open interval (&;,&41)
all of the functions fy, ..., f; have constant sign. In particular £ — V(f) is constant on these
intervals.

Let £ € {&,..., &} and £ and &, are “close” to € (ie. £ =& and &1 <& <& <& <&aq). It
suffices to show

Velf)  clse

To that end we have the following observations
(A) f;(&) > 0 implies f;({-) > 0 and f;(£5) > 0 by intermediate value theorem. Likewise we have
fi(§) < 0 implies f;(§-) < 0 and fi(§4) <0

(B) Let f(&) =0, 1i.e. fo(§) =0. Since f is square-free we get f'(£) # 0; wlog f'(£) > 0. Then for
the sign we get the following table Therefore var(fo(£-), f1(§-) = 1 and var(fo(£+), f1(§+) = 0.

(C) Let f;(&) = for some ¢ > 0. Since ged(fi_1, fi) =1 we get f;(€) - fi1(£) # 0 (otherwise X —¢
would be a common factor). From the above algorithm we have f;_1(£) = ¢:(£) f:(&)— fir1(§) =
fiz1(€). So these have different sign; wlog f;—1(£) < 0 and f;11(§) > 0. Hence we obtain the
sign table No mater which sign we have at the unknown places, we still have one sign change

fior fi fin
5

£ - 7 1
c -0
& - 7+

in every line. Therefore
var(fi—1(§-) =, fi(§-), fira(€§-)) = var(fima(€4) =, fi(€4), fira(§4)) =1

From item B and item C we get that eq. (2) is “locally true”. There may be several i such that
fi(€) = 0. But from that it is easy to see that eq. (2) holds in general. O

Exercise. Show the statement still holds if you drop the condition ged(f, f') = 1.

Proof. The main idea is var(fo(€), ..., fi(§)) = var(fo(&) - g(&), ..., fi(£),9(&)) as long as g(&) #
0. ]



2 Tarski-Seidenberg principles and applications

Let R be a real closed field.
Motivation: We regard the quadratic equation, let a,b,c € R.

3X € RaX?+bX +¢=0 (3)

As over R we have 3X €¢ RX? +pX +¢=0¢& %2 — q > 0. The important observation is that
the left hand side has an existential quantifier, whereas the right hand side is quantifier-free. So
we eliminated a quantifier, which makes the decision easier by far. Thus eq. (3) is equivalent to

(a#0AV —4dac>0)V(a=0Ab#0)A(a=b=c=0) (4)

By Theorem 1.9 we have a way to check eq. (3) for arbitrary degree. For f € R[X] the question
Jz € R.f(X) = 0 can be expressed by a quantifier-free formula.

Furthermore this can be generalised to an arbitrary number of variables. We iterate the single
variable case and eliminate a quantifier in each step.

In particular the existence of a root of f € R[X7, ..., X,,]is decidable. In contrast the question 3z €
Z".f(x) = 0 is undecidable. It was proven by Julia Robinson, Putnam, David and Matjasevich,
which solved Hilbert’s 10th problem.

Definition. Let R be a real closed field. Then we define the sign function sgn : R — {+,0,—} in
the canonical way.

Let f1,..., fr € R[X] and let 1 < 25 < ... < xy be the roots of the f; # 0. By intermediate value
theorem the sign of the f; on each interval (z;, z,41) is constant. Denote this by sgn fi(z;, xj41).
Define the sign table SGN(f1,..., f.) € {—,0,+}*EN*D For the number of columns we have
N + 1 intervals and the N roots.

sgn fi(—oo,x1) sgn(fi(x)) ... sgn fi(xy,o0)

sen f,(—o0, 1) < sgn fr(an, o0)

Example. Assume we have the following picture. Thus we get the sign table

\a

+0—0+)

SGN(fl’f2):(+ + 4+ 0 —

2.1 Lemma. Let f € R[X] and a,b € R with a < b. Let ¢ := sgn(f’) be constant on (a,b). Then
the sign table of f on [a,b] is determined by €, == sgn f(a),e, := sgn f(b) and . If b = oo, then
the sign table of f on [a,00) is determined by €, and €. Similarly for a = —oo.

Proof. Wlog let ¢ = +. By Rolle f has at most one root in (a,b). Now we have some case
distinctions.
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Case ¢, = +: We start positive and go up, so it remains positive.

Case ¢, = 0: We start at zero, then go up.

Case ¢, = —, ¢, = +: We have some root.
Case ¢, = —, ¢, = 0: We end with a root.
Case ¢, = —, ¢, = —: We stay negative all the time.

]

Corollary. Let f € R[X] with f' # 0. We compute the division f = qf' + g with degg < deg f’.
Then the sign table of f is determined by the sign table of (f',g).

Proof. Let x1 < ... < xy be the zeroes of f’. So we have f(z;) = g(x;), so we have the signs
here. By Lemma 2.1 the sign of f on (x;,;11) are determined by the signs of f(x;) = g(z;) and
sgn f'(z;, ;). Similarly for (—oo,z;) and (zy, 00). ]

Although this yields a recursive algorithm to compute the sign table of any polynomial, it has
exponential complexity (Fibonacci).

Example (Cubic Equation). We know we can restrict ourselves to the case f = X3 + pX +
q. Then we have f' = 3X? + p. The question is, when do we have the sign table SGN(f) =
(—,0,4,0,—,0,+)2 Computing the polynomial division we get X3+ pX +q = %X -(BX%2+q)+g
with g := %X +q. Let x1, x5 be the roots of f' and xo be the root of g. If f has 3 roots, then the
picture of ' and g looks like the example above. For the sign table we get

+0———0+)

soxtra = (10T 20T

for this to happen we need p < 0, f'(x3) < 0. Rewriting this we get p < 0 and 27¢* + 4p® < 0,
which nicely turn out to be the discriminant. Actually we may drop the first condition.
But all computations are equivalences. So we get a simple criterion whether f has 3 roots in R.

Let f1,..., [, € R[X] with deg f; < m. Then SGN(f1,..., f.) € {—,0,+}*¥*D where for the
number of zeroes we have N < r-m. Let W,,, be the set of all matrices of format r x (2N * 1)
over {—,0,+} where N <r-m.

2.2 Lemma. There is a map ¢ : Wy — W, such that for all real closed fields R and all lists
fi,---, [r € RIX] with deg f; <m, f, ¢ R we have

SGN(fla"’7fT—17fT) - SO(SGN(fh’“Jfr—laf;ugla"‘ng))
where for i < r we put g; := f, mod f; and g, :== f, mod f.

Proof sketch. We show that SGN(fi, ..., f.) is completely determined by SGN(f1, ..., fr_1, [l 91, -, Gr)-
Let 77 < ... < xy be he zeroes in R of fi,..., f._1, f.. From the table of (fi,..., fr_1, f.) we
obtain a function © : {1,..., N} — {1,...,r} such that

foa(z:)) =0:0() #r
fi(x;)=0:00)=r

Then f,(x;) = gow)(x;) for all i (since go;) = f» mod fo(;)). From the sign table of (fi,..., frc1, fl 91, -, 9r)
we can derive the sign of f,(x;) fori =1,..., N. Moreover we know the sign of f on the intervals
(i, 2;41). Thus by Lemma 2.1 we obtain the sign of f, on each of these intervals. O

11



Remark. In Lemma 2.2, for r = 1 we get the above corollary.

2.3 Theorem. Let fi,..., f. € Z|X,Y1,...,Y,]. Weput m := max{degy fi : i} and let W' CW,,
(the set of “allowed” tables). Then there is a Boolean combination B(Y') of polynomial equations
and inequalities in Y1, ...,Y, over Z such that for all real closed fields R and for all y € R™ we
have

SGN(f1(X,¥), ..., r(X,y)) € W' & B(y)

Example. We look at the simple case r = 1, where f = Y"1 [ V; X" € Z[X,Yy,...,Y,]. For any
y € R"™ we get f(X,y) € R[X]. Then there are some conditions B : R""' — bool such thal
Jr.f(z,y) =0 < B(y).

Proof of Theorem 2.3. Induction on m:

IB m = 0: Then all polynomials contain no X. So in this case take
By)= \/  AGenfiy)=¢)

IS m > 0: Wlog let m = deg f,. Write f; := hjm,(Y)X™ + ... 4+ hio(Y) where h;,,, (Y) # 0.
Claim: Tt is sufficient to find a quantifier-free formula for

my - Hhi7mi 7é 0OA (SGN(fl(X7 y)v s 7fT(X7 y)) < W,)
i=1
=:h(y)

So we have one case where all leading coeflicients are non-zero.

AU ) = Bam, ()X ™ 4 By, 2 () X™ 7

-~

2
=0

20
The idea is that if leading coefficients vanish, we may apply the IH.

Let g1,...,9, € Z(Y)[z] be the remainders of the division of f. by fi,.., fr_1, f;. More
precisely h*f, = qf; + g; where ¢,g; € Q[X,Y] and degg; < m = degf,, gi = 7%. In
particular h(y) # 0 implies ¢1(X,y) = f-(X,y) mod f1(X,y). Note that g; and g; have the
same sign, so they can be exchanged in the table. Now we use Lemma 2.2. Let W” be the

inverse image of W’ under ¢ : Wa,.,,, = W, ,,,. For all R and all y € R" we have

h(y) # 0 ASGN(fi(X,y), ..., (X)) € W' & h(y) # 0 ASGN(fi(X,y), ..., [i(X 9), 1(X,p), .«

The new polynomials f/(X,y), g1(X,v), ..., g-(X,y) have degree < m. If degree m appeared
p times among f1(X,y), ..., f-(X,y) then we have eliminated one occurrence, so it appears
i — 1 times now. By repeating that procedure we can achieve that the maximum of the
degrees is m — 1. Thus we can apply the IH.

m
2.4 Corollary. Let K be a real field and fi,...,ry € K[X,Y1,....Y,], (e1,...,&) € {—,0,+}".
Then there is a boolean combination B(Y') of polynomial equations and inequalities in Y1, ...,Y,

with coefficients in K such that for all real closed field extensions K C R and all y € R™ we have

3z € R. \sgn fi(z,y) =& & B(y)

=1
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Proof. In the f; replace the coefficients in K by indeterminants T1,...,T),, thus obtaining poly-
nomial F; € Z[X,Y,T]. Then apply Theorem 2.3 to Fy,..., F, and W’ where W' consists of the
tables containing the column ”. In the resulting boolean formula B(Y,T) we replace the T; by
the original coefficients of the f;. m

Notions from logic

Let K be a real field. We regard the signature o = {0,1,+,-, —, (-)7', <}. A first order formula in
the language of ordered field is obtained by the above signature, i.e. using variables, quantification
over elements of K, using the elements of ¢ and boolean combinations. Denote by L(K) the
set of these formulas. A formula without free variable is called a sentence. But even a sentence
is neither true nor false on its own. It requires a field to be evaluated. As example regard
Vy.32.0 <y — y = 22, which holds in R but not in Q. For a formula with free variables we need
an additional assignment.

2.1 Quantifier elimination

2.5 Theorem (Tarski ’31, Seidenberg ’54). Let K be a real field and ¢ € L(K) with free

variables xv, ..., x,. Then there is a quantifier-free formula ¢ € L(K) with the same free variables
such that for all real closed extensions K C R and all x € R" we have
R = ¢(r) < R|= ()

Proof. Induction on ¢, where A, —, 3 is sufficient. The base case is clear (choose ¥ := ), similarly
— and A. Additionally any atomic formula (created by = and <) can be stated via the sgn-function.
Wlog we can regard any boolean combination in disjunctive normal form

B(X,Y) = \/ /\(sgn fi(X.Y) = eij)

Z43X.B(X,Y) = \ (HX. M\ (sgn fi;(X,Y) = sij)> =\/B(X.Y)=B'(X,Y) O

)

2.6 Corollary (Transfer priciple). Let Ry C Ry be extensions of real closed field. Let ¢ € L(R;)
be a sentence. Then Ry = ¢ < Rs = .

2.7 Corollary (Artin-Lang-Theorem). Let R C Ry be real closed fields, A a finitely generated
R-algebra and ¢ : A — Ry be an R-homomorphism. Then there exists an R-algebra morphism
Y:A— R.

Proof. We can write A = R[Xy,...,X,]/] where I = (fi,..., f.) (note A is the homomorphic
image of a polynomial ring). Put & = ¢(X;) € Ry. Then & := (&,...,&,) € R} satisfies
fi(&) = o(fi(X)) = 0. The statement

EXlEIXn /\ fi(l'l, . 71'71) =0

is true over R;. By transfer principle (Corollary 2.6) this formula is true over R as well. Hence
there exist £, € R (and putting & := (&,...,¢,)) such that f;(§) = 0 for ¢ = 1,...,r. Thus
evaluation at & gives an R-algebra morphism ¢ : A — R.

We can evaluate R[X,..., X,] — R via X; — £. But under that evaluation f; — f;(') = 0. so
(I) =0 and we get the diagramme O
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A=R[Xy,... X,)/I

Compare this with the following theorem from Algebra 2:

Theorem. Let L. C K, be algebraically closed field and A a finitely generated K-algebra with
K -algebra morphism ¢ : A — Ki. Then there exists a K-algebra morphism A — K.

This was used to prove Hilbert’s Nullstellensatz. So it is reasonable that we use Artin-Lang to
show the real Nullstellensatz.

2.2 Hilbert’s 17-th problem

Let f € R[Xy,...,X,] be such that Vz € R™. f(x) > 0.
Question: Is f a sum of squares?
The degree must be even, so out 2d = deg f. Some easy answers we know from Linear Algebra:

e true forn =1
o trueford=1and n > 1.
e true for n = 2 and d = 2, bivariate quartics

Hilbert: The answer is “no” in all other cases.

Example (Motzkin’s counter-example). Define f := Z% + 2'Y? + X1Y?2 — 3X2Y2Z% Then
by AM-GM-inequality we have

% (Z° + X*Y? + X2Y*) > VZ6 - X4Y2 . X2Y4 = XPY? 7
Thus f(x,y,z) > 0 for all x,y, z € R.

Now suppose f = ¢° + ...+ g2 with g; € R[X,Y,Z]. Note that f is homogeneous of degree 6,
so wlog the g; are homogeneous of degree 3. None of the g; may contain X? or higher, since
the leading coefficient of X% would be a sum of squares, hence positive. Neither do they contain
Y3 X272 Y2Z XZ2 Y Z?. Hence they are linear combinations of X?Y, XY? XY Z,7Z3. Therefore
the only way to obtain X?Y?Z? is to square XY Z, but this always yields a positive coefficient.

Remark (Barvinok, Blekkerman). Let P, := {f € R[Xy,...,X,]oa : f > 0}. This is a
convex cone. But

k
En,d = {ZQZQ - gi S R[Xla o 7Xn]d} g Pn,d

=1

s a convex cone as well. It can be shown that this is a proper cone, but even more, if we restrict
to the unit ball in R™, then

V01<En,d) n—00

0
VOl(Pmd)

with an exponential decrease (d fized).
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2.8 Theorem (Hilbert’s 17-th problem, Artin 1927). Let f € R[Xy,...,X,] be such that
Ve € R™.f(x) > 0. Then f is a sum of squares of rational functions.

Proof. Put K := R(Xy,...,X,). Suppose f ¢ XK?. By chapter 1 there is an ordering < on K
such that f < 0. Let R be the real closure of (K,<). We have —f > 0, so there is some z € R
such that —f = z2. Consider the following statement in £(R):

e:=3X,...3X, 32 f(X1,..., X)) +22=0A2#0

We know that ¢ holds over R, but it also is a statement over R. By Corollary 2.6 we have
Ary, .. wp, 2 € Rof(my, ..o 2,)+22 =0A2 # 0. So f(xy,...,1,) < 0which is a contradiction. [

Remark (Supplement). Let k C R be some subfield (e.g. k = Q) and f € k[X,...,X,] such
that V¢ € k™.f(§) > 0. Then there are ay,...,a; € k with a; > 0 and g1,...,9; € k(Xq,...,X,)
such that f =" a;g?.

Proof. Look at

¢
P .= {Zaigf ca; €k,a; >0,g; € k?(X1,~--aXn)}

i=1

This is the cone in k(Xy,...,X,) generated by {a € k : a > 0}. So P is the intersection of all
positive cones of orderings of k(X7,...,X,) containing {a € k : a > 0}. Now suppose f ¢ P.
Then there is an ordering < of k(Xy,...,X,) such that f < 0. Let R be the real closure of
(k(X1,...,X,),<) and let k denote the real closure of k, so k € R. By Corollary 2.6 we have
3¢ € k. f(€) < 0. But Q C k and Q is dense in R. By assumption we have V¢ € R".f(£) >0 4
[Check

3 Real Algebra

3.1 Digression on commutative Algebra

Let A be a commutative ring, I C A an ideal.

Definition. A minimal prime ideal over I is a prime ideal p of A such that I C p and p is minimal
with that property. That is if p' is a prime ideal with I C p' C p, then p =p'.

Definition. The radical of I is the ideal /I := {a € A:3n € N.a" € I}.

Note that I C V/T.

Example. Let A = 7, so every ideal is principal. Let I = (a) for a = p{*...p¢. Then \/(a) =

(p1---pr) = ﬂle(pi).
Theorem. 1. Every proper ideal has a minimal prime ideal.
2. VT is the intersection of the minimal prime ideals over I.

3. (E.Noether) If A is noetherian, then there are only finitely many minimal primes.

15
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Proof. 1. The set {p prime ideal : I C p} is non-empty, since I can be extended to a maximal
ideal. With Zorn’s Lemma we can show that this set has a minimal element.

2. Note that if p is prime and I C p, then I C p. (If a € V1, then a” € I, so a € 1.) Hence
VT is contained in the intersection. To show equality we assume wlog I = 0 (otherwise go to
A/I). Assume a ¢ /0, so a is not nilpotent, which means Vn.a™ # 0. Thus S := {a" : n € N}
does no intersect 0. (Then S is muliplicative, and we can work in S7'A.) There is a maximal
ideal J not intersection S (Zorn’s Lemma).

Claim: J is a prime ideal.

Suppose a,b € A\ J, but ab € J. Then by maximality ((a)+J)NS # 0 and ((b)+J)NS # 0.
Therefore we get s = ca +x and ' = b+ y for some ¢, € A, s,s € S and x,y € J. Thus
S>3 ss =cdab+ z € J for some z € J. But S and J do not intersect. %

3. Suppose there is an ideal I of A with infinitely many minimal primes. Since A is noetherian,
we can assume that [ is maximal with this property. Then [ is not prime. Hence there are
a,b € A\ I such that ab € I. For any prime p O I we must have a € porb € p. SoI+(a) Cp
or [+ (b) Cb. So if py,pa,... are infinitely many minimal primes over I, there is a partition
N, =C, @ Cysuch that i € ¢4 = [+ (a) Cp;and j € Cy = I+ (b) C p;. Wlog
(1 is infinite, so I + (a) has infinitely many minimal primes, contradicting the maximality
of I. O]

3.2 Real Nullstellensatz
Definition. An ideal I C A is called real if
Vn¥aq,...,a, GA.a%+...+ai el = ay,...,a, €1

Compare this to R where " a? =0 = a; = 0, which holds in any real field.

Remark. Assume I is a prime ideal of A. Let K be the quotient field of A/I. Then I is real iff
K is a real field.

As a motivation we recall from Algebra 2

Theorem (Hilbert’s Nullstellensatz, weak version). Let K be an algebraically closed field
and fi,...,fs € K[X1,...,X,] such that fi(xz) = 0,..., fs(x) = 0 has no solution in K™. Then
there are g, ...,9s € K[Xy,...,X,] such that Y ;_, g;f; = 1.

Now we replace “algebraically closed” by “real closed”.

3.1 Theorem (Real Nullstellensatz). Let R be a real close field, fi,..., fs € R[X1,..., X,] be
such that fi(x) = 0,..., fs(x) = 0 has no solution in R™. Then there are g1,...,gs,P1,--.,Pt €
R[X1,...,X,] such that

s t
Zgifi:1+zp§ (5)
i=1 j=1

Remark. Again, as in Hilbert’s case, the converse holds as well. If we had the above representation
and & were a common solution, then 0 =3 g:fi(&) = 14 X_p3(§) > 1 is a contradiction.

3.2 Lemma. Assume A is a noetherian commutative ring and I C A is a real ideal. Then we
have:
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1. I is a radical ideal.

2. All minimal prime ideals of I are real.

Proof. 1. Let a™ € I. We do induction on n. For n = 1 we have a € I, solet n > 1. If n is even,
we have (a%)2 = a" € I, but the left part is a (sum of) square(s). So a2 € I. If n is odd, we

2
get (a%l> =a"t €1, so a™3 € I. Tn both cases we are done by induction hypothesis.

2. By item 1 [ is redical. Let py,...,p; be the minimal prime ideals of I. Suppose p; is not
real and assume a? + ...+ a2 € p; for some ay,...,a, € A\ p; (we do not have to regard
squares which lie in p;, since those get absorbed anyway). Let b; € p; \ p; for i = 2,... t.
Then b :=by...b; & py, since it is a prime ideal, but b € p, N ... N b;. Now we multiply the
above sum with ? and obtain

(@b + ...+ (@b epn.. Op=VI=1

Since [ is real, we get a;b € I C p;, which is a contradiction. O]
Notation. Let V C R, F C R[Xy,...,X,] and R be real closed. Then we define

JV):={f€eR[Xy,....X,] :VE€V.f(§) =0} the vanishing ideal

Z(F):={{eR":VfeF.f(& =0} the zero set

For F ={fi,..., fa} we also write Z(F) = Z(f1,..., fa)-

Remark. o Let I := (F) be the generated ideal. Then Z(I) = Z(F).
o V= Z(J(V)) is the Zariski-closure of V, by definition.
o Suppose V. =Z(F). ThenV =V, i.e. V is Zariski-closed.

Remark. J(V) is a real ideal.

Proof. Suppose ff+...+ f2 € J(V) for some f; € R[X1,...,X,]. Take £ € V and evaluate, then
f1(E)*+.. .+ fs(£)* = 0, which is an equality in the real field R. Therefore fi(£) = ... = f,(§) =0,
which means fi,..., f; € J(V). O

Now we can reformulate the real Nullstellensatz.

3.3 Theorem (Real Nullstellensatz, (Dubois ’69, Risler ’70)). Let R be a real closed field
and I C R[Xy,...,X,] a real ideal. Then

J(Z(1)) =1
Proof. J(Z(I)) D I: Let f € I and & € Z(I). Then by definition f(£) =0, so f € J(Z(I)).

J(Z(I)) CI: For f € R[Xy,...,X,] \ I there exists some x € Z(I) such that f(z) #0. If f ¢ I,
then there is some minimal prime ideal p such that I C P and f ¢ p. By Lemma 3.2 p is real.
Assume gy, ..., g; generate the ideal p (finitely many, since noetherian). The quotient field
K of R[X]/p is real. Let Ry be the real closure of K. Then we obtain a canonical morphism

¢ : R[X] — R[X]/p~ K ~ Ry denoted X; — X;

We have f(X;,...,X,) # 0 and ¢;(X3,...,X,) = 0 for i = 1,...,t (as polynomials). By
transfer principle there are xq,...,x, € R such that f(xy,...,2,) # 0 and g;(z1,...,2,) =0
fori=1,...,t. Soz:= (x1,...,x,) € R" satisfies z € Z({¢g1,...,9:}) = Z(p) C Z(I), since
I Cp. Soxe Z(I) but f(x)#D0. O
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Definition. Let A be a commutative ring, I C A an ideal. The real radical VI is defined as the
smallest real ideal containing I.

Proposition. We have the explicit form
Vi={a€cA:ImeNIb,....by € Ad® + 03 +...+b} e}
Proof. RHS is an ideal: Let a« € RHS and ¢ € A. Then
(ac)®™ + (bic™)? 4 ...+ (bc™)? = - (...) el = ac € RHS
Let a,a’ € RHS, say a®™ +>_b? € I and (a’)*™ + . 0> € I. We use the trick
(a + a)2mtm) 4 (g — a)2mHm) = @2 e 4 (a))P - ¢

for some c, ¢/, which are sums of squares, since all the odd powers cancel out and at least one
of a,a’ has sufficiently high power. Finally this yields

(a+a)2m ) 4(q — a2 ) Lo+ D)+ WP+ )
=c (agm + Z bf) +c <(a')2m’ + Z b?) el
and on the left hand side we in fact have a sum of squares.

RHS is real ideal: Let a? + ...+ a? € RHS. We have

ai™ +ssq. = (al+...+a2) +ssq. €1
so a; € RHS, the same for all a;.

minimal: Let I C J, J a real ideal. Let a € RHS via (a™)? + 03+ ...+ b2 € I C J. Since J is
real we get a™ € J and since J is radical, this means a € J. m

Remark. 1. We have I C /1 C VT for any ideal I in a commutative ring.

2. Let I C R[Xy,...,X,] for some real field R, then Z( V1) = Z(I).

Proof. 1. Let a € VI, via @™ € I. Then a®" € I,s0 a € V1.

2. Z(-) has inverse inclusion, so Z(I) C Z(*/I) is clear with the above. For the other way, let
¢e Z(I)and f e VI, say f> + ¢+ ...+ g? € I. This we evaluate at £ and obtain

FEO™ + g€+ .. +qE)?=0mR

Thus f(£)™ =0, so f(¢) = 0. Hence (&) € Z( V1. O
3.4 Theorem (Real Nullstellensatz’). Let R be a real closed field, I C R[Xy,...,X,] an ideal.
Then J(Z(I)) = /1.
Proof. We have Z({/I) = Z(I). Now apply the Real Nullstellensatz (Theorem 3.3) to the real
ideal /1. O

Theorem. Let R be real closed, fi,...,fs € R[Xy,...,X,] such that the system f1(X) =0, ...,
fs(X) = 0 has no solution in R™. Then there are polynomials gy, ..., s, pD1,--.,pt € R[ X1, ..., X,)
such that

s t
Z 9ifi =1+ ZPZQ
i=1 i=1
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Proof. Put I :=(f1,..., fs). Since we do not have a solution, we have Z(I) = 0. Thus J(Z(I)) =
R[X1,...,X,]. By Theorem 3.4 we have 1 € /1. Using the characterisation, there exist py, ..., p
such that 1?™ +p? + ... +p? € I. ]

Example. Consider R[X,Y] with [ = (X?+Y?+1). Then Z(I) = 0 and thus J(Z(I)) = (1) =
R[X,Y] = V1. However, if we lift the definition to C, then V1 =1I.

Now we alter the ideal to I = (X*+Y?). Then Z(I) = {(0,0)}, and J(Z(I)) = (X,Y).

Check (X,Y) = VX2 +Y2: Clearly X*+Y? € (X,Y) and by the characterisation of real ideals

we have equality.

3.3 Cones in Commutative Rings

In section 1.1 we defined cones in fields.

Definition. A cone P of A is a subset P C A such that
1. Ya,be Pa+be P
2. Ya,be Pabe P
3. Va € A.a® € P.

The cone P is called proper if —1 ¢ P.

Remark. The set
YA = {Za?:nE]N,al,...,an EA}
i=1
is a cone of A. It is contained in all cones of A.

Example. Let M C R", for some real closed field R. Then{f € R[Xy,...,X,] :Vé € M.f(&) >0}
is a cone of A. Basically, we just took J(M) and replaced “=" by “>".

Remark. The intersection of a family of cones of A is a cone of A.

Definition. Letay,...,a, € A. Denote by Play, ..., a,] the smallest cone of A containing ay, . .., a,.

Example. 1. Pla] = {z+ya:x,y € LA?}, because any powers of a get absorbed in x and y.

2. P[al, CL2} = {xoo + Z10G1 + To1a9 + 110102 : Ti; € EAZ}
So technically, we just have Play,. .., a,] = (3A?)[a1,...,a,] in the sense of adjoining elements
and every adjunction is of degree 2.
Definition. A prime cone P of A is a proper cone P of A such that
Va,be Aabe P — a€ PV —-beP

Example. Let A = K be a field and P = {x € K : x > 0} be the positive cone of some ordering.
Then P 1s a prime cone:
Assume ab € P, i.e. ab> 0. If a > 0 we’re fine. Otherwise a < 0. But then b <0, so —b > 0.

3.5 Proposition. Let P be a prime cone of A and put —P :={—a:a € P}. Then
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1. PU-P=A
2. PN —P is a prime ideal of A, called the support, supp P.

Proof. 1. Letac€ A, thena-a=a*>€ P,soa € P or —a € P, which means a € —P.

2. P and —P are closed under addition and negation, so it is an additive subgroup. Let
ac€ PN—Pandbe A Thenbe Porbe —P. Assume b € P. Then ab € P and (—a)b € P,
so ab € PN —P. Similarly for b € —P, so PN —P is an ideal.

Check prime: Let ab € PN—P and a ¢ PN—P. If a ¢ P, then from the above ab € P implies
—b € P. But we also have a(—b) € P, which implies b € P, so b € PN —P. Analogous for
—a ¢ P. u

Example (cont.). We have P = {x € K : © > 0}. Then PN —P = {0}, by computation or
because it is the only prime ideal of a field.

Remark. Prime cones of a field K are the positive cones of orderings of K.

3.6 Proposition. A subset P of A is a prime cone of A iff there is an ordered field (K, <) and a
ring homomorphism ¢ : A — K such that

P={aecA:p(a) >0} (6)

Proof. Suppose we have ¢ : A — K with eq. (6). Then clearlyP is a proper cone, just use the
properties of the cone of K. To show that P is prime suppose ab € P. Then ¢(a)p(b) = ¢(ab) > 0.
Then either ¢(a) > 0, which means a € P or p(a) < 0. But then ¢(b) < 0,80 p(—b) > 0, which
means —b € P.

For the other direction, if we had ¢, we would have

kerp={a€ A:¢p(a)>0AN¢p(—a) >0} =PN—P=suppP

Let P be some prime cone. Then we put I := supp P, which is a prime ideal. Then we take
the canonical morphism ¢ : A — A/l < Fr(A/I) =: K. For K we define the cone @ :=
{f}(((;; ca,be P)b ¢}, which induces an ordering of K. ]

3.7 Theorem. Let A be a commutative ring. TFAE

1. A has a proper cone.

2. A has a prime cone.

3. There is a morphism ¢ : A — K for some real field K.
4. A has a real prime ideal.

5. —1¢xA?

(gap )

Definition. A Real algebraic set V' C R" is the zero set of polynomials fi,. .., fm € R[X1,..., X,].
V=A{{+R": fi(§) =... = fm(§) =0}

The coordinate ring R[V| consists of the restrictions of the polynomial functions to V.

V=R §—p()
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RIX1, ..., X,] R[V]

R[Xy,..., X,]/1(V)

This gives the picture

Corollary (Variants of the Positivstellensatz). Let V' C R" be a real algebraic set, R some
real closed field. Let g1, ...,9s € R[V] and

Wi={{eV:g(§) 20,...,9:(§) 2 0}
Let P C R[V] denote the cone generated by g1, ...,gs. Let f € R[V]. Then
1. VEEW.f(€)>04ff Jee NIp,qe P.fp= f*+q

2.VEeW.f(&) >0iff Ip,qe P.fp=1+4¢q
S NEeWf&)=0iff ee NIpe Pf*+p=0

Proof. Let I(V)) = (hyq,...,h,) for some h; € R[V] (these exist since the ideal is finitely generated).

1. V€ € W.f(§) > 0 means S :={{ € R": hy(§) =0,g;(&) > 0,—f(§) >0, f(&) # 0} is empty.
The elements of the cone generated by g1, ..., gs, —f are of the form p(—f)+q with p,q € P.

By theorem 2we get S = (0 < Ip,.q € P3e € Np(—f) + g+ f** € (hy.....h.). So in R[V] r-
we get the equality g + f2¢ = fp.

2. The LHS-condition means S := {{ € R" : hi(§) = 0,9;(§) > 0,—f(§) > 0} is empty. By
theorem 2S5 = 0 < 3p.g € Pp(—f) +qg+ 12 € (hy,....h). So in R[V] this becomes
fp=1+¢

3. The LHS-condition means S := {{ € R" : hy(§) = 0,g,(§) > 0,—f(§) # 0} is empty. By
theorem 2S = ) < 3p € P.3e € N.p+ 1% € (hy,....h,). Soin R[V] this becomes p+ ?¢ = 0. r-

]

Example (Blekherman, Parillo, Thomas; STAM). Let f = X2 + X2 — 1 be the circle, g, :=
3Xy — X3 — 2 and gy := X1 — 8X3. We consider the system f(z) = 0,g1(X) > 0 and g2(X) > 0.

By drawing you see that the system has no solution. By theorem 2this means that there exists some
p € Plg1, o) such that p+ 1 € (f). In other words, there exist Sg, s1, 52,512 € Y. R[X1, X5]? and
t € R[ Xy, Xy such that

So + 5191 + 292 + S12g192 + tf = —1
The problem 1is, that the theory does not tell us how to find these values. One can take

5 387 32 0\ 11 1 5 ?
= X2+ (X1 X, — —X — ([ =X?— — X1 Xy — =X, + X2
%0 431+44(121291)+5( 1221211+2)

1
X AN X+ X4 5X0) D (2 X XD - X))’

20 4
s1=3
S =1
S12 =10

t=-3X7+X; —3X]+6X,—2
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It turns out there is a nice connection to optimisation.

3.4 Link to semidefinite optimisation
Linear programming deals with optimising a linear function over a polyhedra.
minimise ¢! x
subject to Ax = b
z >0

For the feasibility problem we only ask whether there is some x € R’} such that Az = b. There are
efficient (polynomial time) algorithms for both of the problems.

e Simplex method: Start somewhere, in each step go to a neighbouring node of the polytope
with higher target value; exponential worst-case, but best average case

e interior-point method: going through the inner part of the polytope, using Newton method

e Semidefinie Programming: S, := {X € R . XT = X, positive semideﬁnite}, that is Vv €
R™.vT Xv > 0.
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