Algebra 3

Inofficial lecture notes for the lecture held by Prof. Bürgisser, WS2016/17 geschrieben von Henning Seidler henning.seidler@mailbox.tu-berlin.de

Henning Seidler

Contents

1	Rea	l Algebra	1
	1.1	Real Fields	1
	1.2	Real Closed Field (reell abgeschlossene Körper)	3
	1.3	Counting real roots	6
2	Tarski-Seidenberg principles and applications		10
	2.1	Quantifier elimination	13
	2.2	Hilbert's 17-th problem	14
3	Rea	l Algebra	15
	3.1	Digression on commutative Algebra	15
	3.2	Real Nullstellensatz	16
	3.3	Cones in Commutative Rings	19
	3.4	Link to semidefinite optimisation	22

1 Real Algebra

In previous lectures we focused on extension of \mathbb{Q} , or we took \mathbb{C} when we needed an algebraically closed field. Now we regard \mathbb{R} as basis.

Much is based on work of E.Artin, U. Schreyer. The standard textbook is "Real Algebraic Geometry" by Bochnak, Coste and Roy.

1.1 Real Fields

Definition. An ordered field (angeordneter Körper) is a field K together with a total order \leq on K such that

- (1) $\forall x, y, z \in K : x \leq y \implies x + z \leq y + z$
- (2) $\forall x, y \in K : 0 \le x, 0 \le y \implies 0 \le xy$

We will use the notation $x < y : \Leftrightarrow x \leq y \land x \neq y$.

Example. • Of course, \mathbb{Q} and \mathbb{R} are ordered fields.

• For $f \in \mathbb{R}[X] \setminus \{0\}$, with $f = \sum_{i=m}^{d} a_i X^i$ and $a_m \neq 0$ we define $0 < f : \Leftrightarrow 0 < a_m$. This can be expanded to $\mathbb{R}(X)$, where we say $0 < \frac{f}{g} \Leftrightarrow 0 < f \cdot g$. To obtain a total order we define $q_1 \leq q_2 : \Leftrightarrow q_1 = q_2 \lor 0 < q_2 - q_1$.

For any $r \in \mathbb{R}$ we have 0 < X < r. So X is like an infinitesimal.

Remark. Let (K, \leq) be an ordered field. Then $\forall x \in K : 0 \leq x^2$. So we have $0 < 1^2 = 1$ and by induction n < n + 1, which implies char K = 0.

Proof. If $0 \le x$, then $0 \le x \cdot x$ by the second axiom. Otherwise x < 0. So we have 0 < -x so we get $0 < (-x)(-x) = x^2$.

Definition. A cone (Kegel) of a field K is a subset $P \subseteq K$ such that

- (1) $\forall x, y \in P : x + y \in P$
- (2) $\forall x, y \in P : xy \in P$
- (3) $\forall x \in K : x^2 \in P$.

A cone is called proper is $-1 \notin P$.

Lemma. Let (K, \leq) be an ordered field.

- (1) Then $P := \{x \in K : x \ge 0\}$ is a proper cone, the positive cone of (K, \le) , and we have $P \cup (-P) = K$.
- (2) Conversely, if P is a proper cone with $P \cup (-P) = K$, then $x \leq y :\Leftrightarrow y x \in P$ defines a total order of K.

Proof. The first is clear.

For the second we claim $P \cap (-P) = \{0\}$. Assume $0 \neq a \in P \cap (-P)$. Let $x \in K \setminus P$. Thus $-x \in P$. But then we get $x = (a^{-1})^2 \cdot a(-x)(-a) \in P$, which is a contradiction.

Remark. The set $\sum K^2 := \{x_1^2 + \ldots + x_n^2 : x_i \in K, n \in \mathbb{N}\}$ is a cone. It is contained in any cone of K.

1.1 Lemma. Let P be a proper cone of K and $a \in K$.

1. $-a \notin P$ implies $P[a] := \{x + ay : x, y \in P\}$ is a proper cone of K.

- 2. P is contained in the positive cone of an ordering of K.
- *Proof.* 1. The first two axioms are calculation and use of $a^2 \in P$. The third follows from $P \subseteq P[a]$ (take y = 0). So P[a] is a cone.

Assume $-1 \in P[a]$ with -1 = x + ay. Then $y \neq 0$, because $-1 \notin P$. But in this case $-a = (x+1)y^{-1} = (x+1)y(y^{-1})^2 \in P$ we get a contradiction.

2. By applying the above construction, we get a chain, whose union forms an upper bound. By Zorn's Lemma there is a maximal proper cone Q containing P. So we need to check $Q \cup (-Q) = K$: Let $-a \notin Q$. Then $a \in Q[a]$, but Q[a] is a proper cone, so Q[a] = Q.

Theorem. Let K be a field. TFAE (The following are equivalent)

- 1. K has an ordering.
- 2. K has a proper cone.
- 3. $-1 \notin \sum K^2$
- 4. $\forall x_1, \dots, x_n \in K : \sum x_i^2 = 0 \implies \forall i : x_i = 0$

Proof. The chain $(1) \Rightarrow (2) \Rightarrow (3)$ is clear with the above.

Assume (3) and $\sum_{i=1}^{n} x_i^2 = 0$ with $x_1 \neq 0$. Then $-1 = \sum_{i=2}^{n} \left(\frac{x_i}{x_1}\right)^2$, which is a contradiction. (4) \Rightarrow (3): Assume $-1 = \sum x_i^2 \in \sum K^2$. Then we can add 1² on both sides, so $0 = 1^2 + \sum x_i^2$. By (4) this implies 1 = 0. \notin . (3) \Rightarrow (1): Since $-1 \notin \sum K^2$, this cone is proper. By Lemma 1.1 the cone $\sum K^2$ is contained in the positive cone of an ordering of K. So in particular K has an ordering.

Definition. A field K which has these properties is called real field.

Remark. Every real field contains a copy of \mathbb{Q} . This already follows from the characteristic.

Proposition. Let K be a real field, P a proper cone. Then P is the intersection of the positive cones Q of all orderings of K where $P \subseteq Q$. In particular $\sum K^2$ is the intersection of positive cones of all orderings.

Proof. Assume $-a \notin P$. By Lemma 1.1.(1) P[a] is a proper cone of K. By Lemma 1.1.(2) P[a] is contained on the positive cone Q of some ordering of K. Then $a \in Q$, so $-a \notin Q$. so each element not contained in P is cut off by some ordering.

Example. • Every subfield of \mathbb{R} is a real field.

• Recall our ordering on $\mathbb{R}(X)$. Then this also becomes a real field.

1.2 Real Closed Field (reell abgeschlossene Körper)

Definition. A real field K is called real closed if it does not have a proper real algebraic extension. That is: if $K \leq K_1$ is an algebraic extension and K_1 is a real field, then $K = K_1$.

Example. \mathbb{R} is real closed: Let $\mathbb{R} \leq K_1$ be an algebraic extension. But we already know this allows only for $K_1 = \mathbb{R}$ or $K_1 = \mathbb{C}$. But \mathbb{C} is not real, since $-1 \in \sum \mathbb{C}^2$.

Example. $\mathbb{R}_{\text{alg}} := \{x \in \mathbb{R} : a \text{ alg. over } \mathbb{Q}\}$ is a real closed field. The proof idea is $\mathbb{R}_{\text{alg}}(i) = \overline{\mathbb{Q}}$.

More general we will show: If K real and K(i) alg. closed, then K is real closed.

1.2 Theorem. Let K be a real field. TFAE

- 1. K is real closed.
- 2. $K^2 = \{a \in K : a \ge 0\}$ and any polynomial of odd degree as a root in K.
- 3. $K(i) = K[X]/(X^2 + 1)$ is algebraically closed.

Proof. (1) \Rightarrow (2) Put $Q := K^2$. We want to show $Q = \sum K^2$. Assume $a = \sum b_i^2 \notin Q$. Then $K < K(\sqrt{a})$ is a proper algebraic extension. Since K is real closed, this is not a real field. By the above characterisation we can write -1 as a sum of squares:

$$-1 = \sum_{i=1}^{m} (x_i + y_q \sqrt{a})^2 \qquad \text{with } x_i, y_i \in K$$
$$= \sum_{i=1}^{m} (x_i^2 + ay_i^2) + \lambda \sqrt{a} \qquad \text{compare coefficients}$$
$$-1 = \sum x_i^2 + a \sum y_i^2$$
$$-a = \left(1 + \sum x_i^2\right) \left(\sum y_i^2\right) \left(\sum y_i^2\right)^{-2} \in \sum K^2$$
$$\Rightarrow -a =: \sum z_i^2$$

But then $\sum b_i^2 + \sum z_i^2 = 0$, which only is possible if $b_i = z_i = 0$, so a = 0. \notin Next we claim $Q \cup -Q = K$: We just showed if $a \notin Q$, then $-a \in \sum K^2 = Q$. Therefore Q is the positive cone of an ordering of K.

Claim 3: If $f \in K[X]$, $d := \deg f$ is odd, then f has a root in K. To this end assume f has no root and is of minimal degree. We know f has an irreducible factor of odd degree, so wlog f is irreducible. Then consider K < K[X]/(f) =: L, which cannot be a real field. Again -1is a sum of squares $-1 = \sum \overline{h_i} = \sum h_i + gf$, so $h_i \in K[X]$ with deg $h_i < d$ and $g \in K[X]$. Then we have deg $(\sum h_i^2) = 2 \max\{\deg h_i : i\} \le 2(s-1)$. Note that we do not have any cancellation of the leading coefficients since they are sums of squares. From $\sum h_i^2 = -1 - gf$ we conclude

$$\deg g + d = \deg(gf) = \deg\left(\sum h_i^2\right) \le 2d - 2$$

so deg $g \leq d-2$, but also deg g is odd. By minimality of f we know g has a root $x \in K$. But then $-1 = \sum h_i(x)$ in K, which is a contradiction.

- $(2) \Rightarrow (3)$ See Algebra II
- (3) \Rightarrow (1) Take $K \leq K_1$ an algebraic field extension. Since any extension is contained in the algebraic closure, so $K_1 \leq K(i)$. That leaves only $K_1 = K$ and $K_1 = K(i)$. But the latter is not real, since -1 is a sum of squares. So $K_1 = K$, hence K is real closed.

1.3 Proposition (Intermediate Value Theorem). Let R be a rial closed field, $a, b \in R$ with a < b. Let $f \in R[X]$ such that f(a)f(b) < 0. Then there is some $\xi \in [a, b]$ with $f(\xi) = 0$.

Proof. By Theorem 1.2 R(i) is algebraically closed, so f splits into linear factors. But as in \mathbb{C} , if x = c + di is a root, then also the conjugate $\overline{x} = c - di$ is a root. So all factors of f are of the form $X - e_i$ and $(X - c_i)^2 + d_i^2$. From f(a)f(b) < 0 we know that in the interval, one of the factors must have a sign change. But the quadratic ones always yields non-negative values. So one of the e_i mus be in the interval. So $e_i \in [a, b]$ with $f(e_i) = 0$ as desired. \Box

Definition. Let (K, \leq) be an ordered field. A real closure of (K, \leq) is a field extension $K \leq R$ such that

1. R is real closed

2. The inclusion $K \leq R$ is order preserving. If $x \geq 0$ in K, then $x \geq 0$ in R and $x = y^2$ for some $y \in R$.

change subfield to \subseteq , because \leq is taken

1.4 Theorem. Every ordered field (K, \leq) has a real closure. This is unique up to isomorphism: If $K \leq R$ and $K \leq R'$ are real closures, then there exists a unique order-preserving K-isomorphism $R \rightarrow R'$.

Proof. Let \overline{K} be an algebraic closure of K. Thus every algebraic extension of K is a subfield of \overline{K} , so we just look at the real ones. Consider

 $\{(F, \leq) \text{ ordered field} : K \leq F \leq \overline{K}, K \hookrightarrow F \text{ order preserving}\}$

We say $(F, \leq) \leq (F', \leq')$ iff $F \leq F'$ and $F \hookrightarrow F'$ preserves order. Thus the above set gets an order, so we can apply Zorn's Lemma. As is the proof for the algebraic closure, the union of a chain is an upper bound, so we have a maximal element (R, \leq) . It remains to show that R is real closed. Put $P := \{x \in R : x \geq 0\}$ and $Q := \{y^2 : y \in R\}$. Clearly $Q \subseteq P$, by axioms. But we claim P = Q.

Assume $a \in P \setminus Q$. The set of elements

$$\sum_{i} b_i \left(c_i + d_i \sqrt{q} \right)^2 \qquad \qquad b_i, c_i, d_i \in R, b_i \ge 0$$

is the cone generated by P and \sqrt{a} in $R(\sqrt{a})$. This cone P' is proper, because otherwise we would have

$$-1 = \sum_{i} b_i \left(c_i + d_i \sqrt{a} \right)^2 = \sum_{i} b_i (c_i^2 + d_i^2) + (\dots) \cdot \sqrt{a}$$

and by comparing coefficients, we get $-1 = \sum_i b_i (c_i^2 + d_i^2)$, which is an equation in R. But R is ordered, so -1 is not positive, while the sum is. So P' is proper.

Therefore there is an ordering of $R(\sqrt{a})$ whose positive cone is P'. But that is a contradiction to the maximality of R. Hence P = Q.

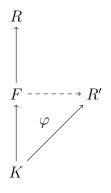
Let $R \leq E \leq \overline{K}$ be a field extension, with E real. Let \leq_E be an ordering of E. Since $\{x \in R : x \geq 0\} = \{y^2 : y \in R\}$ we know that \leq_E extends he order of R: If $x \geq_R 0$, then $x = y^2$ for some $y \in R \subseteq E$. So $x = y^2$ in E, so $x \geq_E 0$. By the maximality of R, we get R = E. Hence R is real closed.

For the proof of uniqueness, we need the following

Theorem. Let (K, \leq) be an ordered field and $f \in K[X]$. Let $K \leq R$ be a real closure. The number of distinct zeros of f in R is the same for all real closures.

of Theorem 1.4 cont. Assume we have the following picture Where R, R' is real closed and $K \leq F$ is a finite algebraic extension. Then we claim every order-preserving morphism $\varphi : K \to R'$ can be extended to an order preserving morphism $\varphi' : F \to R'$.

Let F = K(a) for a primitive element a. Let $f \in K[X]$ be the minimal polynomial of a. Let $a_1 < a_2 < \ldots < a_n$ be the zeros of f in R, say $a = a_j$. By the above theorem, f has exactly n zeros in R', say $b_1 < \ldots < b_n$. Define $\varphi' : F = K(a) \to R'$ via $a = a_j \mapsto b_j$. By our knowledge from Algebra, we know such a morphism exists. But it remain to show that φ' actually preserves order.



Take $y \in K(a)$, with $y \ge 0$. Then y is a square in R, say $y = z^2$ for some $z \in R$. Let $x_i^2 := a_{i+1} - a_i$ for some $x_i \in R$. Then there is a morphism $\psi : K(a_1, \ldots, a_n, x_1, \ldots, x_{n-1}, y, z) =: K(\alpha) \to R'$, which extends φ . Now we can say $\psi(a_{i+1}) - \psi(a_i) = \psi(x_i)^2 \ge 0$, and $\psi(a_i)$ are the zeros of f. Together with the order we get $\psi(a_i) = b_i$ and in particular $\psi(a_j) = b_j = \varphi'(a_j)$. Thus $\psi_{|K(a)} = \varphi'$, so $\varphi'(y) = \psi(y) = \psi(z)^2 \ge 0$, so φ' is order preserving.

Let $K \leq R$ be an algebraic extension. Using Zorn's Lemma any $\varphi : K \to R$ has an order preserving extension $R \to R'$. This is unique, because if $a \in R$ is the *j*-th root of its minimal polynomial $f \in K[X]$, then *a* has to be mapped to the *j*-th root of *f* in R'.

Definition. An ordered field (K, \leq) is called archimedian if for any $\alpha \in K$ there is some $n \in \mathbb{N}$ such that $\alpha < n$.

Remark. Note that $1 + \ldots + 1 \neq 0$ in any ordered field, so every ordered field contains (a copy of) the natural numbers, so the above comparison actually makes sense.

Example. 1. Subfield of \mathbb{R} are archimedian.

2. The field $\mathbb{R}(X), \leq$) with infinitesimal X > 0 is not archimedian, because X^{-1} is not bounded by any natural number.

1.5 Exercise. Let (K, \leq) be archimedian. Then \mathbb{Q} is dense in K, which means for all $a, b \in K$ where is some $q \in \mathbb{Q}$ with a < q < b.

1.6 Exercise. Let (K, \leq) be archimedian. Then there is an order preserving mophism $K \hookrightarrow \mathbb{R}$ of fields. Up to isomorphism, the archimedian fields are exactly the subfield of \mathbb{R} . See: "Real Algebra", by A. Prestel.

1.3 Counting real roots

Let R be a real closed field.

Proposition. Let $f \in K[X]$ and $a, b \in R$ with a < b.

- 1. (Rolle) If f(a) = f(b) = 0 then f'(c) = 0 for some a < c < b.
- 2. (Mean Value Theorem) There is some $c \in (a, b)$ with f(b) f(a) = f'(c)(b a).
- 3. If for all $x \in (a, b)$ we have f'(x) > 0, then f is strictly increasing in (a, b).
- *Proof.* 1. Wlog a, b are consecutive zeros of f, say $f = (X a)^m (X b)^m g$ with $n, m \ge 1$ and g without root in (a, b). By Proposition 1.3 g has constant sign on (a, b). Furthermore we

have

$$f' = (X-a)^{m-1}(X-b)^{n-1}g_1 \text{ for } g_1 = m(X-b)g + n(X-a)g + (X-a)(X-b)g'$$

Then $g_1(a) = m(a-b)g(a) < 0$ and $g_1(b) = n(b-a)g(b) > 0$ have opposite sign. By Proposition 1.3 there is some $c \in (a,b)$ with $g_1(c) = 0$, so f'(c) = 0.

- 2. Apply 1 to $\tilde{f} = f f(a) m(X a), m := \frac{f(b) f(a)}{b a}.$
- 3. Clear after 2.

For this section let R be a real closed field.

Definition. The variation $\operatorname{var}(a_1, \ldots, a_n)$ of a sequence (a_1, \ldots, a_n) in R is the number of its strict sign changes. For some polynomial $f = \sum_{i=0}^{n} a_i X^i$ we put $\operatorname{vc}(f) := \operatorname{var}(a_0, \ldots, a_n)$.

Example. var(1, -2, 3, 4) = 2, but var(1, 0, -2, 0, 3, 0, 0, 4) = 2, because the zeroes are no strict changes. $vc(f)(X^n - 1) = var(-1, 0, ..., 0, 1) = 1$; $vc(X^n + 1) = 0$.

Remark. If f hat t terms, then $vc(f) \le t - 1$.

Denote by $N_+(F)$ the number of positive roots in R, counted with multiplicity.

1.7 Theorem (Décartes Rule,1637). For $f \in R[X] \setminus R$ we have $N_+(f) \leq vc(f)$. In particular, a polynomial with t terms has at most t - 1 positive roots.

Example. 1. Let $f = X^n - 1$, so t = 2 terms and $N_+(f) = 1$ (only 1), so this bound is sharp.

- 2. $f = \sum_{i=0}^{n-1} X^i = \frac{X^{n-1}}{X^{-1}}$. We have $\operatorname{vc}(f) = 0 = N_+(f)$.
- 3. For $f = X^3 X^2 + X 1$ we have vc(f) = 3 but $N_+(f) = 1$.

of Theorem 1.7. Induction over the number of terms: For the case t = 1 the polynomial has the form $f = a_n X^n$, which has no sign change and no positive root. Now let $f = \sum_{i=m}^n a_i X^i$ with m < n and $a_n a_m \neq 0$. This we rewrite as

$$f = X^m \left(a_n X^{n-m} + \ldots + a_m \right) =: X^m \cdot \widetilde{f},$$

so wlog we can assume m = 0. Then we look at the next coefficient after a_0 (note that we allow gaps), so $f = a_n X^n + \ldots + a_q X^q + a_0$ where $a_q a_0 \neq 0$ and q > 1. Regard the derivative $f' = n a_n X^{n-1} + \ldots + q a_q x^{q-1}$. Note that f' has one term less, so we can apply our induction hypothesis. We have

$$vc(f) = \begin{cases} vc(f') & : a_q a_0 > 0\\ vc(f') + 1 & : a_q a_0 < 0 \end{cases}$$

It is sufficient to show

$$N_{+}(f) \leq \begin{cases} N_{+}(f') & : a_{q}a_{0} > 0\\ N_{+}(f') + 1 & : aqa_{0} < 0 \end{cases}$$
(1)

Let $0 < x_1 < \ldots < x_s$ be the positive roots of f with multiplicities μ_i . By Rolle, there are roots y_1, \ldots, y_{s-1} of f' such that $0 < x_1 < y_1 < x_2 < \ldots < x_{s-1} < y_{s-1} < x_s$. Moreover x_i is root if

f' with multiplicity μ_i . Note that $N_+(f) = \sum \mu_i$. Furthermore $N_+(f') \ge (s-1) + \sum (\mu_i - 1)$. Therefore eq. (1) follows in the case $a_q a_0 < 0$. So now assume $a_q a_0 > 0$, so wlog both are positive. Hence f(0) > 0 and f'(0) > 0, so we start positive and have a positive slope. Thus between 0 and x_1 there must be a maximum y_0 of f. But in that point we must have $f'(y_0) = 0$, so we have found another root of f'. So in this case we get $N_+(f') \ge 1 + (s-1) + \sum (\mu_i - 1) = N_+(f)$.

Remark (Supplement to Décartes Rule). For $f \in R[X] \setminus R$ we have $N_+(f) \equiv vc(f) \mod 2$.

Example. Let $f = \sum_{k=0}^{n} (-1)^k X^{n-k}$, so vc(f) = n. But also we have $N_+(f) = 0$ if n is even, and $N_+(f) = 1$ if n is odd.

Generalisation: Let $f \in R[X]$ and $\xi \in R$. We define the variation of the derivatives of f at ξ via

$$\operatorname{vder}_{\xi}(f) := \operatorname{var}(f(\xi), f'(\xi), f''(\xi), \ldots)$$

For $-\infty \leq a < b \leq \infty$ denote by $N_{(a,b]}(f)$ the number of roots in f in the interval (a,b], counted with multiplicity. Earlier we had the special case $N_+(f) = N_{(0,\infty]}(f)$.

1.8 Theorem (Budan (1807), Fourier (1820)). Let $f \in R[X] \setminus R$ and $-\infty \leq a < b \leq \infty$. Then

$$N_{(a,b]}(f) \le \operatorname{vder}_a(f) - \operatorname{vder}_b(f)$$
$$N_{(a,b]}(f) \equiv \operatorname{vder}_a(f) - \operatorname{vder}_b(f) \mod 2$$

Remark. • We have shown the special case a = 0 and $b = \infty$.

- $\operatorname{vder}_0(f) = \operatorname{var}(f(0), f'(0), \ldots) = \operatorname{var}(k! \cdot a_k : k = 0, \ldots, n) = \operatorname{vc}(f)$
- $\operatorname{vder}_{\infty}(f) = 0$ (that means $\operatorname{vder}_{M}(f)$ for some sufficiently large number M)

Given $f \in R[X]$ square-free (i.e. gcd(f, f') = 1). We apply the Euclidean Algorithm to f and f', putting $f_0 := f$ and $f_1 := f'$. The recursive steps are written as $f_{i-1} = q_i f_i - f_{i+1}$ for i = 1, ..., l. (We already know the final result, but we are interested in the f_i we obtain during the computation.) Note that

$$gcd(f_{i+1}, f_i) = gcd(f_i, f_{i-1}) = \ldots = gcd(f', f) = 1$$

For $\xi \in R$ we define $V_{\xi}(f) := \operatorname{var}(f_0(\xi), \dots, x_l(\xi))$.

1.9 Theorem (Sturm, 19th cent.). Let $f \in R[X]$ (be square-free), $a, b \in R$ with a < b and $f(a) \neq 0 \neq f(b)$. Then

$$\#\{\xi \in (a,b) : f(\xi) = 0\} = V_a(f) - V_b(f)$$

Remark. The condition square-free can be removed, because that would just add the same factor in our sequence in the variation. But $var(a_i : i) = var(a_i \cdot b : i)$.

Example. Take $f = X^3 - X = (X-1)X(X+1) =: f_0$. Then $f_1 = f' = 3X^2 - 1$. The algorithm yields $f = \frac{1}{3}Xf' - \frac{2}{3}X$ and $f_1 = \frac{9}{2}f_2 - 1$, that is $f_2 = \frac{2}{3}X$ and $f_3 = 1$. So we get the following table

$$\begin{array}{cccc} f_0 & f_1 \\ \hline \xi_- & - & + \\ \xi & 0 & + \\ \xi_+ & + & + \end{array}$$

Remark. Denote by $lc(f) := a_n$ the leading coefficient for $f = a_n X^n + \ldots$, where $a_0 \neq 0$. Put $V_{\infty}(f) := var(lc(f_0), lc(f_1), \ldots)$ and likewise $V_{-\infty} := V_{\infty}(f(-X))$.

If ξ is the largest root of f, then f has constant sign on the interval (ξ, ∞) and this sign is the same one as lc(f).

Corollary. Sturm's theorem also holds for $-\infty \leq a < b \leq \infty$. In particular

$$\#\{\xi \in R : f(\xi) = 0\} = V_{-\infty}(f) - V_{\infty}(f).$$

Proof. Assume as zeroes of f_0, \ldots, f_l are contained in the interval (-M, M). Then by the previous observation $\operatorname{sgn}(f_i(M)) = \operatorname{sgn}(\operatorname{lc}(f_i))$ for all $0 \le i \le l$. Hence $V_{\infty}(f) = V_M(f)$. Similarly $V_{-\infty}(f) = V_{-M}(f)$. Now we apply Sturm on the interval (-M, M) and obtain the result. \Box

of Theorem 1.9. Let $\xi_1 < \ldots < \xi_s$ be the roots in R of f_0, \ldots, f_l . In the open interval (ξ_i, ξ_{i+1}) all of the functions f_0, \ldots, f_l have constant sign. In particular $\xi \mapsto V_{\xi}(f)$ is constant on these intervals.

Let $\xi \in {\xi_1, \ldots, \xi_s}$ and ξ_- and ξ_+ are "close" to ξ (i.e. $\xi = \xi_i$ and $\xi_{i-1} < \xi_- < \xi_i < \xi_+ < \xi_{i+1}$). It suffices to show

$$V_{\xi_{-}}(f) = \begin{cases} V_{\xi_{+}}(f) + 1 & : f(\xi) = 0\\ V_{\xi_{+}}(f) & \text{else} \end{cases}$$
(2)

To that end we have the following observations

- (A) $f_i(\xi) > 0$ implies $f_i(\xi_-) > 0$ and $f_i(\xi_+) > 0$ by intermediate value theorem. Likewise we have $f_i(\xi) < 0$ implies $f_i(\xi_-) < 0$ and $f_i(\xi_+) < 0$
- (B) Let $f(\xi) = 0$, i.e. $f_0(\xi) = 0$. Since f is square-free we get $f'(\xi) \neq 0$; wlog $f'(\xi) > 0$. Then for the sign we get the following table Therefore $\operatorname{var}(f_0(\xi_-), f_1(\xi_-) = 1 \text{ and } \operatorname{var}(f_0(\xi_+), f_1(\xi_+) = 0)$.
- (C) Let $f_i(\xi) = \text{for some } i > 0$. Since $gcd(f_{i-1}, f_i) = 1$ we get $f_i(\xi) \cdot f_{i-1}(\xi) \neq 0$ (otherwise $X \xi$ would be a common factor). From the above algorithm we have $f_{i-1}(\xi) = q_i(\xi)f_i(\xi) f_{i+1}(\xi) = f_{i+1}(\xi)$. So these have different sign; wlog $f_{i-1}(\xi) < 0$ and $f_{i+1}(\xi) > 0$. Hence we obtain the sign table No mater which sign we have at the unknown places, we still have one sign change

in every line. Therefore

$$\operatorname{var}(f_{i-1}(\xi_{-}) =, f_i(\xi_{-}), f_{i+1}(\xi_{-})) = \operatorname{var}(f_{i-1}(\xi_{+}) =, f_i(\xi_{+}), f_{i+1}(\xi_{+})) = 1$$

From item B and item C we get that eq. (2) is "locally true". There may be several *i* such that $f_i(\xi) = 0$. But from that it is easy to see that eq. (2) holds in general.

Exercise. Show the statement still holds if you drop the condition gcd(f, f') = 1.

Proof. The main idea is $\operatorname{var}(f_0(\xi), \ldots, f_l(\xi)) = \operatorname{var}(f_0(\xi) \cdot g(\xi), \ldots, f_l(\xi), g(\xi))$ as long as $g(\xi) \neq 0$.

2 Tarski-Seidenberg principles and applications

Let R be a real closed field.

Motivation: We regard the quadratic equation, let $a, b, c \in R$.

$$\exists X \in R.aX^2 + bX + c = 0 \tag{3}$$

As over \mathbb{R} we have $\exists X \in R.X^2 + pX + q = 0 \Leftrightarrow \frac{p^2}{4} - q \ge 0$. The important observation is that the left hand side has an existential quantifier, whereas the right hand side is quantifier-free. So we eliminated a quantifier, which makes the decision easier by far. Thus eq. (3) is equivalent to

$$(a \neq 0 \land b^2 - 4ac \ge 0) \lor (a = 0 \land b \neq 0) \land (a = b = c = 0)$$
(4)

By Theorem 1.9 we have a way to check eq. (3) for arbitrary degree. For $f \in R[X]$ the question $\exists x \in R.f(X) = 0$ can be expressed by a quantifier-free formula.

Furthermore this can be generalised to an arbitrary number of variables. We iterate the single variable case and eliminate a quantifier in each step.

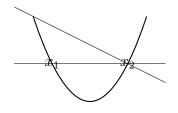
In particular the existence of a root of $f \in R[X_1, \ldots, X_n]$ is decidable. In contrast the question $\exists x \in \mathbb{Z}^n . f(x) = 0$ is undecidable. It was proven by Julia Robinson, Putnam, David and Matjasevich, which solved Hilbert's 10th problem.

Definition. Let R be a real closed field. Then we define the sign function $sgn : R \to \{+, 0, -\}$ in the canonical way.

Let $f_1, \ldots, f_r \in R[X]$ and let $x_1 < x_2 < \ldots < x_N$ be the roots of the $f_i \neq 0$. By intermediate value theorem the sign of the f_i on each interval (x_j, x_{j+1}) is constant. Denote this by $\operatorname{sgn} f_i(x_j, x_{j+1})$. Define the sign table $\operatorname{SGN}(f_1, \ldots, f_r) \in \{-, 0, +\}^{r \times (2N+1)}$. For the number of columns we have N + 1 intervals and the N roots.

$$\operatorname{sgn} f_1(-\infty, x_1) \quad \operatorname{sgn}(f_1(x)) \quad \dots \quad \operatorname{sgn} f_1(x_N, \infty)$$
$$\vdots$$
$$\operatorname{sgn} f_r(-\infty, x_1) \quad \dots \quad \operatorname{sgn} f_r(x_N, \infty)$$

Example. Assume we have the following picture. Thus we get the sign table



 $SGN(f_1, f_2) = \begin{pmatrix} + & 0 & - & 0 & + \\ + & + & + & 0 & - \end{pmatrix}$

2.1 Lemma. Let $f \in R[X]$ and $a, b \in R$ with a < b. Let $\varepsilon := \operatorname{sgn}(f')$ be constant on (a, b). Then the sign table of f on [a, b] is determined by $\varepsilon_a := \operatorname{sgn} f(a), \varepsilon_b := \operatorname{sgn} f(b)$ and ε . If $b = \infty$, then the sign table of f on $[a, \infty)$ is determined by ε_a and ε . Similarly for $a = -\infty$.

Proof. Wlog let $\varepsilon = +$. By Rolle f has at most one root in (a, b). Now we have some case distinctions.

Case $\varepsilon_a = +$: We start positive and go up, so it remains positive.

Case $\varepsilon_a = 0$: We start at zero, then go up.

Case $\varepsilon_a = -, \varepsilon_b = +$: We have some root.

Case $\varepsilon_a = -$, $\varepsilon_b = 0$: We end with a root.

Case $\varepsilon_a = -$, $\varepsilon_b = -$: We stay negative all the time.

Corollary. Let $f \in R[X]$ with $f' \neq 0$. We compute the division f = qf' + g with deg $g < \deg f'$. Then the sign table of f is determined by the sign table of (f', g).

Proof. Let $x_1 < \ldots < x_N$ be the zeroes of f'. So we have $f(x_i) = g(x_i)$, so we have the signs here. By Lemma 2.1 the sign of f on (x_i, x_{i+1}) are determined by the signs of $f(x_i) = g(x_i)$ and $\operatorname{sgn} f'(x_i, x_{i+1})$. Similarly for $(-\infty, x_1)$ and (x_N, ∞) .

Although this yields a recursive algorithm to compute the sign table of any polynomial, it has exponential complexity (Fibonacci).

Example (Cubic Equation). We know we can restrict ourselves to the case $f = X^3 + pX + q$. Then we have $f' = 3X^2 + p$. The question is, when do we have the sign table SGN(f) = (-,0,+,0,-,0,+)? Computing the polynomial division we get $X^3 + pX + q = \frac{1}{3}X \cdot (3X^2 + q) + g$ with $g := \frac{2p}{3}X + q$. Let x_1, x_3 be the roots of f' and x_2 be the root of g. If f has 3 roots, then the picture of f' and g looks like the example above. For the sign table we get

$$SGN(f',g) = \begin{pmatrix} + & 0 & - & - & - & 0 & + \\ + & + & + & 0 & - & - & - \end{pmatrix}$$

for this to happen we need p < 0, $f'(x_2) < 0$. Rewriting this we get p < 0 and $27q^2 + 4p^3 < 0$, which nicely turn out to be the discriminant. Actually we may drop the first condition. But all computations are equivalences. So we get a simple criterion whether f has 3 roots in R.

Let $f_1, \ldots, f_r \in R[X]$ with deg $f_i \leq m$. Then $SGN(f_1, \ldots, f_r) \in \{-, 0, +\}^{r \times (2N+1)}$ where for the number of zeroes we have $N \leq r \cdot m$. Let $W_{r,m}$ be the set of all matrices of format $r \times (2N * 1)$ over $\{-, 0, +\}$ where $N \leq r \cdot m$.

2.2 Lemma. There is a map $\varphi : W_{2r,m} \to W_{r,m}$ such that for all real closed fields R and all lists $f_1, \ldots, f_r \in R[X]$ with deg $f_i \leq m$, $f_r \notin R$ we have

$$\operatorname{SGN}(f_1,\ldots,f_{r-1},f_r) = \varphi\left(\operatorname{SGN}(f_1,\ldots,f_{r-1},f_r',g_1,\ldots,g_r)\right)$$

where for i < r we put $g_i := f_r \mod f_i$ and $g_r := f_r \mod f'_r$.

Proof sketch. We show that $SGN(f_1, \ldots, f_r)$ is completely determined by $SGN(f_1, \ldots, f_{r-1}, f'_r, g_1, \ldots, g_r)$. Let $x_1 < \ldots < x_N$ be he zeroes in R of $f_1, \ldots, f_{r-1}, f'_r$. From the table of $(f_1, \ldots, f_{r-1}, f'_r)$ we obtain a function $\Theta : \{1, \ldots, N\} \to \{1, \ldots, r\}$ such that

$$f_{\Theta(i)}(x_i) = 0 : \Theta(i) \neq r$$
$$f'_r(x_i) = 0 : \Theta(i) = r$$

Then $f_r(x_i) = g_{\Theta(i)}(x_i)$ for all *i* (since $g_{\Theta(i)} = f_r \mod f_{\Theta(i)}$). From the sign table of $(f_1, \ldots, f_{r-1}, f'_r, g_1, \ldots, g_r)$ we can derive the sign of $f_r(x_i)$ for $i = 1, \ldots, N$. Moreover we know the sign of f'_r on the intervals (x_i, x_{i+1}) . Thus by Lemma 2.1 we obtain the sign of f_r on each of these intervals. \Box

Remark. In Lemma 2.2, for r = 1 we get the above corollary.

2.3 Theorem. Let $f_1, \ldots, f_r \in \mathbb{Z}[X, Y_1, \ldots, Y_n]$. We put $m := \max\{\deg_X f_i : i\}$ and let $W' \subseteq W_{r,n}$ (the set of "allowed" tables). Then there is a Boolean combination B(Y) of polynomial equations and inequalities in Y_1, \ldots, Y_n over \mathbb{Z} such that for all real closed fields R and for all $y \in R^n$ we have

$$\operatorname{SGN}(f_1(X, y), \dots, f_r(X, y)) \in W' \Leftrightarrow B(y)$$

Example. We look at the simple case r = 1, where $f = \sum_{i=0}^{n} Y_i X^i \in \mathbb{Z}[X, Y_0, \dots, Y_n]$. For any $y \in \mathbb{R}^{n+1}$ we get $f(X, y) \in \mathbb{R}[X]$. Then there are some conditions $B : \mathbb{R}^{n+1} \to \text{bool such that} \exists x. f(x, y) = 0 \Leftrightarrow B(y)$.

Proof of Theorem 2.3. Induction on m:

IB m = 0: Then all polynomials contain no X. So in this case take

$$B(Y) := \bigvee_{(\varepsilon_1, \dots, \varepsilon_r)^T \in W'} \bigwedge_{i=1}^r (\operatorname{sgn} f_i(y) = \varepsilon_i)$$

IS m > 0: Wlog let $m = \deg f_r$. Write $f_i := h_{i,m_i}(Y)X^{m_i} + \ldots + h_{i,0}(Y)$ where $h_{i,m_i}(Y) \neq 0$. Claim: It is sufficient to find a quantifier-free formula for

$$\underbrace{m_r \cdot \prod_{i=1}^r h_{i,m_i}}_{=:h(y)} \neq 0 \land (\operatorname{SGN}(f_1(X, y), \dots, f_r(X, y)) \in W')$$

So we have one case where all leading coefficients are non-zero.

$$f_1(X,y) = \underbrace{h_{1,m_1}(y)X^{m_1}}_{\stackrel{?}{=}0} + \underbrace{h_{1,m_1-1}(y)X^{m_1-1}}_{\neq 0} + \dots$$

The idea is that if leading coefficients vanish, we may apply the IH.

Let $g_1, \ldots, g_r \in \mathbb{Z}(Y)[x]$ be the remainders of the division of f_r by $f_1, \ldots, f_{r-1}, f'_r$. More precisely $h^{2e}f_r = qf_i + \tilde{g}_i$ where $q, g_i \in \mathbb{Q}[X, Y]$ and $\deg g_i < m = \deg f_r, g_i = \frac{\tilde{g}_i}{h^{2e}}$. In particular $h(y) \neq 0$ implies $g_1(X, y) = f_r(X, y) \mod f_1(X, y)$. Note that g_1 and \tilde{g}_1 have the same sign, so they can be exchanged in the table. Now we use Lemma 2.2. Let W'' be the inverse image of W' under $\varphi: W_{2r,m} \to W_{r,m}$. For all R and all $y \in R^n$ we have

$$h(y) \neq 0 \land \mathrm{SGN}(f_1(X, y), \dots, f_r(X, y)) \in W' \Leftrightarrow h(y) \neq 0 \land \mathrm{SGN}(f_1(X, y), \dots, f_r'(X, y), g_1(X, y), \dots, g_r(X, y)) \in W'$$

The new polynomials $f'_r(X, y), g_1(X, y), \ldots, g_r(X, y)$ have degree < m. If degree *m* appeared μ times among $f_1(X, y), \ldots, f_r(X, y)$ then we have eliminated one occurrence, so it appears $\mu - 1$ times now. By repeating that procedure we can achieve that the maximum of the degrees is m - 1. Thus we can apply the IH.

2.4 Corollary. Let K be a real field and $f_1, \ldots, r_f \in K[X, Y_1, \ldots, Y_n]$, $(\varepsilon_1, \ldots, \varepsilon_r) \in \{-, 0, +\}^r$. Then there is a boolean combination B(Y) of polynomial equations and inequalities in Y_1, \ldots, Y_n with coefficients in K such that for all real closed field extensions $K \subseteq R$ and all $y \in R^n$ we have

$$\exists x \in R. \bigwedge_{i=1}^{r} \operatorname{sgn} f_i(x, y) = \varepsilon_i \Leftrightarrow B(y)$$

Proof. In the f_i replace the coefficients in K by indeterminants T_1, \ldots, T_p , thus obtaining polynomial $F_i \in \mathbb{Z}[X, Y, T]$. Then apply Theorem 2.3 to F_1, \ldots, F_r and W' where W' consists of the tables containing the column ε^T . In the resulting boolean formula B(Y, T) we replace the T_j by the original coefficients of the f_i .

Notions from logic

Let K be a real field. We regard the signature $\sigma = \{0, 1, +, \cdot, -, (\cdot)^{-1}, \leq\}$. A first order formula in the language of ordered field is obtained by the above signature, i.e. using variables, quantification over elements of K, using the elements of σ and boolean combinations. Denote by $\mathcal{L}(K)$ the set of these formulas. A formula without free variable is called a sentence. But even a sentence is neither true nor false on its own. It requires a field to be evaluated. As example regard $\forall y. \exists x. 0 \leq y \rightarrow y = x^2$, which holds in \mathbb{R} but not in \mathbb{Q} . For a formula with free variables we need an additional assignment.

2.1 Quantifier elimination

2.5 Theorem (Tarski '31, Seidenberg '54). Let K be a real field and $\varphi \in \mathcal{L}(K)$ with free variables x_1, \ldots, x_n . Then there is a quantifier-free formula $\psi \in \mathcal{L}(K)$ with the same free variables such that for all real closed extensions $K \subseteq R$ and all $x \in R^n$ we have

$$R \models \varphi(x) \Leftrightarrow R \models \psi(x)$$

Proof. Induction on φ , where \wedge, \neg, \exists is sufficient. The base case is clear (choose $\psi := \varphi$), similarly \neg and \wedge . Additionally any atomic formula (created by = and \leq) can be stated via the sgn-function. Wlog we can regard any boolean combination in disjunctive normal form

$$B(X,Y) = \bigvee_{i} \bigwedge_{j} (\operatorname{sgn} f_{ij}(X,Y) = \varepsilon_{ij})$$

$$\stackrel{2.4}{\Longrightarrow} \exists X.B(X,Y) \equiv \bigvee_{i} \left(\exists X. \bigwedge (\operatorname{sgn} f_{ij}(X,Y) = \varepsilon_{ij}) \right) \equiv \bigvee_{i} B'(X,Y) \equiv B''(X,Y) \qquad \Box$$

2.6 Corollary (Transfer priciple). Let $R_1 \subseteq R_2$ be extensions of real closed field. Let $\varphi \in \mathcal{L}(R_1)$ be a sentence. Then $R_1 \models \varphi \Leftrightarrow R_2 \models \varphi$.

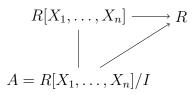
2.7 Corollary (Artin-Lang-Theorem). Let $R \subseteq R_1$ be real closed fields, A a finitely generated R-algebra and $\varphi : A \to R_1$ be an R-homomorphism. Then there exists an R-algebra morphism $\psi : A \to R$.

Proof. We can write $A = R[X_1, \ldots, X_n]/I$ where $I = \langle f_1, \ldots, f_r \rangle$ (note A is the homomorphic image of a polynomial ring). Put $\xi_i := \varphi(X_i) \in R_1$. Then $\xi := (\xi_1, \ldots, \xi_n) \in R_1^n$ satisfies $f_i(\xi) = \varphi(f_i(X)) = 0$. The statement

$$\exists X_1. \exists X_n. \bigwedge_i f_i(x_1, \dots, x_n) = 0$$

is true over R_1 . By transfer principle (Corollary 2.6) this formula is true over R as well. Hence there exist $\xi'_i \in R$ (and putting $\xi' := (\xi'_1, \ldots, \xi'_n)$) such that $f_i(\xi) = 0$ for $i = 1, \ldots, r$. Thus evaluation at ξ' gives an R-algebra morphism $\psi : A \to R$.

We can evaluate $R[X_1, \ldots, X_n] \to R$ via $X_i \mapsto \xi'_i$. But under that evaluation $f_i \mapsto f_i(\xi') = 0$. so $\psi(I) = 0$ and we get the diagramme



Compare this with the following theorem from Algebra 2:

Theorem. Let $L \subseteq K_1$ be algebraically closed field and A a finitely generated K-algebra with K-algebra morphism $\varphi : A \to K_1$. Then there exists a K-algebra morphism $A \to K$.

This was used to prove Hilbert's Nullstellensatz. So it is reasonable that we use Artin-Lang to show the real Nullstellensatz.

2.2 Hilbert's 17-th problem

Let $f \in \mathbb{R}[X_1, \dots, X_n]$ be such that $\forall x \in \mathbb{R}^n . f(x) \ge 0$. Question: Is f a sum of squares?

The degree must be even, so out $2d = \deg f$. Some easy answers we know from Linear Algebra:

- true for n = 1
- true for d = 1 and $n \ge 1$.
- true for n = 2 and d = 2, bivariate quartics

Hilbert: The answer is "no" in all other cases.

Example (Motzkin's counter-example). Define $f := Z^6 + x^4Y^2 + X^4Y^2 - 3X^2Y^2Z^2$. Then by AM-GM-inequality we have

$$\frac{1}{3} \left(Z^6 + X^4 Y^2 + X^2 Y^4 \right) \ge \sqrt[3]{Z^6 \cdot X^4 Y^2 \cdot X^2 Y^4} = X^2 Y^2 Z^2$$

Thus $f(x, y, z) \ge 0$ for all $x, y, z \in \mathbb{R}$.

Now suppose $f = g_1^2 + \ldots + g_t^2$ with $g_i \in \mathbb{R}[X, Y, Z]$. Note that f is homogeneous of degree 6, so wlog the g_i are homogeneous of degree 3. None of the g_i may contain X^3 or higher, since the leading coefficient of X^6 would be a sum of squares, hence positive. Neither do they contain $Y^3, X^2Z, Y^2Z, XZ^2, YZ^2$. Hence they are linear combinations of X^2Y, XY^2, XYZ, Z^3 . Therefore the only way to obtain $X^2Y^2Z^2$ is to square XYZ, but this always yields a positive coefficient.

Remark (Barvinok, Blekkerman). Let $P_{n,d} := \{f \in \mathbb{R}[X_1, \ldots, X_n]_{2d} : f \ge 0\}$. This is a convex cone. But

$$\Sigma_{n,d} = \left\{ \sum_{i=1}^{k} g_i^2 : g_i \in \mathbb{R}[X_1, \dots, X_n]_d \right\} \subseteq P_{n,d}$$

is a convex cone as well. It can be shown that this is a proper cone, but even more, if we restrict to the unit ball in \mathbb{R}^n , then

$$\frac{\operatorname{vol}(\Sigma_{n,d})}{\operatorname{vol}(P_{n,d})} \xrightarrow{n \to \infty} 0$$

with an exponential decrease (d fixed).

2.8 Theorem (Hilbert's 17-th problem, Artin 1927). Let $f \in \mathbb{R}[X_1, \ldots, X_n]$ be such that $\forall x \in \mathbb{R}^n . f(x) \ge 0$. Then f is a sum of squares of rational functions.

Proof. Put $K := \mathbb{R}(X_1, \ldots, X_n)$. Suppose $f \notin \Sigma K^2$. By chapter 1 there is an ordering \leq on K ref such that f < 0. Let R be the real closure of (K, \leq) . We have -f > 0, so there is some $z \in R$ such that $-f = z^2$. Consider the following statement in $\mathcal{L}(\mathbb{R})$:

$$\varphi := \exists X_1 \dots \exists X_n . \exists z . f(X_1, \dots, X_n) + z^2 = 0 \land z \neq 0$$

We know that φ holds over R, but it also is a statement over \mathbb{R} . By Corollary 2.6 we have $\exists x_1, \ldots, x_n, z \in \mathbb{R}. f(x_1, \ldots, x_n) + z^2 = 0 \land z \neq 0$. So $f(x_1, \ldots, x_n) < 0$ which is a contradiction. \Box

Remark (Supplement). Let $k \subseteq \mathbb{R}$ be some subfield (e.g. $k = \mathbb{Q}$) and $f \in k[X_1, \ldots, X_n]$ such that $\forall \xi \in k^n . f(\xi) \ge 0$. Then there are $a_1, \ldots, a_t \in k$ with $a_i > 0$ and $g_1, \ldots, g_t \in k(X_1, \ldots, X_n)$ such that $f = \sum a_i g_i^2$.

Proof. Look at

$$P := \left\{ \sum_{i=1}^{t} a_i g_i^2 : a_i \in k, a_i > 0, g_i \in k(X_1, \dots, X_n) \right\}$$

This is the cone in $k(X_1, \ldots, X_n)$ generated by $\{a \in k : a > 0\}$. So P is the intersection of all positive cones of orderings of $k(X_1, \ldots, X_n)$ containing $\{a \in k : a > 0\}$. Now suppose $f \notin P$. Then there is an ordering \leq of $k(X_1, \ldots, X_n)$ such that f < 0. Let R be the real closure of $(k(X_1, \ldots, X_n), \leq)$ and let \tilde{k} denote the real closure of k, so $\tilde{k} \subseteq R$. By Corollary 2.6 we have $\exists \xi \in \tilde{k}^n . f(\xi) < 0$. But $\mathbb{Q} \subseteq k$ and \mathbb{Q} is dense in \mathbb{R} . By assumption we have $\forall \xi \in \mathbb{R}^n . f(\xi) \geq 0$ \notin check

3 Real Algebra

3.1 Digression on commutative Algebra

Let A be a commutative ring, $I \subset A$ an ideal.

Definition. A minimal prime ideal over I is a prime ideal p of A such that $I \subseteq p$ and p is minimal with that property. That is if p' is a prime ideal with $I \subseteq p' \subseteq p$, then p = p'.

Definition. The radical of I is the ideal $\sqrt{I} := \{a \in A : \exists n \in \mathbb{N} . a^n \in I\}.$

Note that $I \subseteq \sqrt{I}$.

Example. Let $A = \mathbb{Z}$, so every ideal is principal. Let I = (a) for $a = p_1^{e_1} \dots p_r^{e_r}$. Then $\sqrt{(a)} = (p_1 \dots p_r) = \bigcap_{i=1}^r (p_i)$.

Theorem. 1. Every proper ideal has a minimal prime ideal.

- 2. \sqrt{I} is the intersection of the minimal prime ideals over I.
- 3. (E.Noether) If A is noetherian, then there are only finitely many minimal primes.

- *Proof.* 1. The set $\{p \text{ prime ideal} : I \subseteq p\}$ is non-empty, since I can be extended to a maximal ideal. With Zorn's Lemma we can show that this set has a minimal element.
 - 2. Note that if p is prime and $I \subseteq p$, then $\sqrt{I} \subseteq p$. (If $a \in \sqrt{I}$, then $a^n \in I$, so $a \in I$.) Hence \sqrt{I} is contained in the intersection. To show equality we assume wlog I = 0 (otherwise go to A/I). Assume $a \notin \sqrt{0}$, so a is not nilpotent, which means $\forall n.a^n \neq 0$. Thus $S := \{a^n : n \in \mathbb{N}\}$ does no intersect 0. (Then S is multiplicative, and we can work in $S^{-1}A$.) There is a maximal ideal J not intersection S (Zorn's Lemma).

Claim: J is a prime ideal.

Suppose $a, b \in A \setminus J$, but $ab \in J$. Then by maximality $((a) + J) \cap S \neq 0$ and $((b) + J) \cap S \neq 0$. Therefore we get s = ca + x and s' = c'b + y for some $c, c' \in A$, $s, s' \in S$ and $x, y \in J$. Thus $S \ni ss' = cc'ab + z \in J$ for some $z \in J$. But S and J do not intersect. \notin

3. Suppose there is an ideal I of A with infinitely many minimal primes. Since A is noetherian, we can assume that I is maximal with this property. Then I is not prime. Hence there are $a, b \in A \setminus I$ such that $ab \in I$. For any prime $p \supseteq I$ we must have $a \in p$ or $b \in p$. So $I + (a) \subseteq p$ or $I + (b) \subseteq b$. So if p_1, p_2, \ldots are infinitely many minimal primes over I, there is a partition $\mathbb{N}_+ = C_1 \oplus C_2$ such that $i \in C_1 \implies I + (a) \subseteq p_i$ and $j \in C_2 \implies I + (b) \subseteq p_j$. Wlog C_1 is infinite, so I + (a) has infinitely many minimal primes, contradicting the maximality of I.

3.2 Real Nullstellensatz

Definition. An ideal $I \subseteq A$ is called real if

$$\forall n. \forall a_1, \dots, a_n \in A. a_1^2 + \dots + a_n^2 \in I \implies a_1, \dots, a_n \in I$$

Compare this to \mathbb{R} where $\sum a_i^2 = 0 \implies a_i = 0$, which holds in any real field.

Remark. Assume I is a prime ideal of A. Let K be the quotient field of A/I. Then I is real iff K is a real field.

As a motivation we recall from Algebra 2

Theorem (Hilbert's Nullstellensatz, weak version). Let K be an algebraically closed field and $f_1, \ldots, f_s \in K[X_1, \ldots, X_n]$ such that $f_1(x) = 0, \ldots, f_s(x) = 0$ has no solution in K^n . Then there are $g_1, \ldots, g_s \in K[X_1, \ldots, X_n]$ such that $\sum_{i=1}^s g_i f_i = 1$.

Now we replace "algebraically closed" by "real closed".

3.1 Theorem (Real Nullstellensatz). Let R be a real close field, $f_1, \ldots, f_s \in R[X_1, \ldots, X_n]$ be such that $f_1(x) = 0, \ldots, f_s(x) = 0$ has no solution in R^n . Then there are $g_1, \ldots, g_s, p_1, \ldots, p_t \in R[X_1, \ldots, X_n]$ such that

$$\sum_{i=1}^{s} g_i f_i = 1 + \sum_{j=1}^{t} p_j^2 \tag{5}$$

Remark. Again, as in Hilbert's case, the converse holds as well. If we had the above representation and ξ were a common solution, then $0 = \sum g_i f_i(\xi) = 1 + \sum p_i^2(\xi) \ge 1$ is a contradiction.

3.2 Lemma. Assume A is a noetherian commutative ring and $I \subseteq A$ is a real ideal. Then we have:

1. I is a radical ideal.

- 2. All minimal prime ideals of I are real.
- *Proof.* 1. Let $a^n \in I$. We do induction on n. For n = 1 we have $a \in I$, so let n > 1. If n is even, we have $\left(a^{\frac{n}{2}}\right)^2 = a^n \in I$, but the left part is a (sum of) square(s). So $a^{\frac{n}{2}} \in I$. If n is odd, we get $\left(a^{\frac{n+1}{2}}\right)^2 = a^{n+1} \in I$, so $a^{\frac{n+1}{2}} \in I$. In both cases we are done by induction hypothesis.
 - 2. By item 1 *I* is redical. Let p_1, \ldots, p_t be the minimal prime ideals of *I*. Suppose p_1 is not real and assume $a_1^2 + \ldots + a_n^2 \in p_1$ for some $a_1, \ldots, a_n \in A \setminus p_1$ (we do not have to regard squares which lie in p_1 , since those get absorbed anyway). Let $b_i \in p_i \setminus p_i$ for $i = 2, \ldots, t$. Then $b := b_2 \ldots b_t \notin p_1$, since it is a prime ideal, but $b \in p_2 \cap \ldots \cap b_t$. Now we multiply the above sum with b^2 and obtain

$$(a_1b)^2 + \ldots + (a_nb)^2 \in p_1 \cap \ldots \cap p_t = \sqrt{I} = I$$

Since I is real, we get $a_1b \in I \subseteq p_1$, which is a contradiction.

Notation. Let $V \subseteq \mathbb{R}^n$, $F \subseteq \mathbb{R}[X_1, \ldots, X_n]$ and \mathbb{R} be real closed. Then we define

$$J(V) := \{ f \in R[X_1, \dots, X_n] : \forall \xi \in V. f(\xi) = 0 \}$$
 the vanishing ideal
$$Z(F) := \{ \xi \in R^n : \forall f \in F. f(\xi) = 0 \}$$
 the zero set

For $F = \{f_1, ..., f_n\}$ we also write $Z(F) = Z(f_1, ..., f_n)$.

Remark. • Let $I := \langle F \rangle$ be the generated ideal. Then Z(I) = Z(F).

- $\overline{V} := Z(J(V))$ is the Zariski-closure of V, by definition.
- Suppose V = Z(F). Then $\overline{V} = V$, i.e. V is Zariski-closed.

Remark. J(V) is a real ideal.

Proof. Suppose $f_1^2 + \ldots + f_s^2 \in J(V)$ for some $f_i \in R[X_1, \ldots, X_n]$. Take $\xi \in V$ and evaluate, then $f_1(\xi)^2 + \ldots + f_s(\xi)^2 = 0$, which is an equality in the real field R. Therefore $f_1(\xi) = \ldots = f_s(\xi) = 0$, which means $f_1, \ldots, f_s \in J(V)$.

Now we can reformulate the real Nullstellensatz.

3.3 Theorem (Real Nullstellensatz, (Dubois '69, Risler '70)). Let R be a real closed field and $I \subseteq R[X_1, \ldots, X_n]$ a real ideal. Then

$$J(Z(I)) = I$$

Proof. $J(Z(I)) \supseteq I$: Let $f \in I$ and $\xi \in Z(I)$. Then by definition $f(\xi) = 0$, so $f \in J(Z(I))$.

 $J(Z(I)) \subseteq I$: For $f \in R[X_1, \ldots, X_n] \setminus I$ there exists some $x \in Z(I)$ such that $f(x) \neq 0$. If $f \notin I$, then there is some minimal prime ideal p such that $I \subseteq P$ and $f \notin p$. By Lemma 3.2 p is real. Assume g_1, \ldots, g_t generate the ideal p (finitely many, since noetherian). The quotient field K of R[X]/p is real. Let R_1 be the real closure of K. Then we obtain a canonical morphism

$$\varphi: R[X] \to R[X]/p \rightsquigarrow K \rightsquigarrow R_1 \text{ denoted } X_i \mapsto \overline{X_i}$$

We have $f(\overline{X_1}, \ldots, \overline{X_n}) \neq 0$ and $g_i(\overline{X_1}, \ldots, \overline{X_n}) = 0$ for $i = 1, \ldots, t$ (as polynomials). By transfer principle there are $x_1, \ldots, x_n \in R$ such that $f(x_1, \ldots, x_n) \neq 0$ and $g_i(x_1, \ldots, x_n) = 0$ for $i = 1, \ldots, t$. So $x := (x_1, \ldots, x_n) \in R^n$ satisfies $x \in Z(\{g_1, \ldots, g_t\}) = Z(p) \subseteq Z(I)$, since $I \subseteq p$. So $x \in Z(I)$ but $f(x) \neq 0$.

Definition. Let A be a commutative ring, $I \subseteq A$ an ideal. The real radical $\sqrt[R]{I}$ is defined as the smallest real ideal containing I.

Proposition. We have the explicit form

$$\sqrt[R]{I} = \left\{ a \in A : \exists m \in \mathbb{N}. \exists b_1, \dots, b_t \in A.a^{2m} + b_1^2 + \dots + b_t^2 \in I \right\}$$

Proof. **RHS is an ideal:** Let $a \in \text{RHS}$ and $c \in A$. Then

$$(ac)^{2m} + (b_1c^m)^2 + \ldots + (b_tc^m)^2 = c^{2m} \cdot (\ldots) \in I \implies ac \in \text{RHS}$$

Let $a, a' \in \text{RHS}$, say $a^{2m} + \sum b_i^2 \in I$ and $(a')^{2m'} + \sum b_i'^2 \in I$. We use the trick

$$(a+a')^{2(m+m')} + (a-a')^{2(m+m')} = a^{2m} \cdot c + (a')^{2m'} \cdot c'$$

for some c, c', which are sums of squares, since all the odd powers cancel out and at least one of a, a' has sufficiently high power. Finally this yields

$$(a+a')^{2(m+m')} + (a-a')^{2(m+m')} + c(b_1^2 + \ldots + b_t^2) + c'(b_1'^2 + \ldots + b_t'^2)$$

= $c\left(a^{2m} + \sum b_i^2\right) + c'\left((a')^{2m'} + \sum b_i'^2\right) \in I$

and on the left hand side we in fact have a sum of squares.

RHS is real ideal: Let $a_1^2 + \ldots + a_n^2 \in \text{RHS}$. We have

$$a_1^{4m} + s.sq. = (a_1^2 + \ldots + a_n^2)^{2m} + s.sq. \in I$$

so $a_1 \in \text{RHS}$, the same for all a_i .

minimal: Let $I \subseteq J$, J a real ideal. Let $a \in \text{RHS}$ via $(a^m)^2 + b_1^2 + \ldots + b_t^2 \in I \subseteq J$. Since J is real we get $a^m \in J$ and since J is radical, this means $a \in J$.

Remark. 1. We have $I \subseteq \sqrt{I} \subseteq \sqrt[R]{I}$ for any ideal I in a commutative ring.

2. Let $I \subseteq R[X_1, \ldots, X_n]$ for some real field R, then $Z(\sqrt[R]{I}) = Z(I)$.

Proof. 1. Let $a \in \sqrt{I}$, via $a^m \in I$. Then $a^{2m} \in I$, so $a \in \sqrt[R]{I}$.

2. $Z(\cdot)$ has inverse inclusion, so $Z(I) \subseteq Z(\sqrt[n]{I})$ is clear with the above. For the other way, let $\xi \in Z(I)$ and $f \in \sqrt[n]{I}$, say $f^{2m} + g_1^2 + \ldots + g_t^2 \in I$. This we evaluate at ξ and obtain

$$f(\xi)^{2m} + g_1(\xi)^2 + \ldots + g_t(\xi)^2 = 0$$
 in R

Thus $f(\xi)^m = 0$, so $f(\xi) = 0$. Hence $(\xi) \in \mathbb{Z}(\sqrt[R]{I}$.

3.4 Theorem (Real Nullstellensatz'). Let R be a real closed field, $I \subseteq R[X_1, \ldots, X_n]$ an ideal. Then $J(Z(I)) = \sqrt[R]{I}$.

Proof. We have $Z(\sqrt[R]{I}) = Z(I)$. Now apply the Real Nullstellensatz (Theorem 3.3) to the real ideal $\sqrt[R]{I}$.

Theorem. Let R be real closed, $f_1, \ldots, f_s \in R[X_1, \ldots, X_n]$ such that the system $f_1(X) = 0, \ldots, f_s(X) = 0$ has no solution in \mathbb{R}^n . Then there are polynomials $g_1, \ldots, g_s, p_1, \ldots, p_t \in R[X_1, \ldots, X_n]$ such that

$$\sum_{i=1}^{s} g_i f_i = 1 + \sum_{i=1}^{t} p_i^2$$

Proof. Put $I := \langle f_1, \ldots, f_s \rangle$. Since we do not have a solution, we have $Z(I) = \emptyset$. Thus $J(Z(I)) = R[X_1, \ldots, X_n]$. By Theorem 3.4 we have $1 \in \sqrt[R]{I}$. Using the characterisation, there exist p_1, \ldots, p_t such that $1^{2m} + p_1^2 + \ldots + p_t^2 \in I$.

Example. Consider $\mathbb{R}[X, Y]$ with $I = (X^2 + Y^2 + 1)$. Then $Z(I) = \emptyset$ and thus $J(Z(I)) = (1) = \mathbb{R}[X, Y] = \sqrt[R]{I}$. However, if we lift the definition to \mathbb{C} , then $\sqrt[R]{I} = I$. Now we alter the ideal to $I = (X^2 + Y^2)$. Then $Z(I) = \{(0,0)\}$, and J(Z(I)) = (X,Y). Check $(X,Y) = \sqrt[R]{X^2 + Y^2}$: Clearly $X^2 + Y^2 \in (X,Y)$ and by the characterisation of real ideals we have equality.

3.3 Cones in Commutative Rings

In section 1.1 we defined cones in fields.

Definition. A cone P of A is a subset $P \subseteq A$ such that

- 1. $\forall a, b \in P.a + b \in P$
- 2. $\forall a, b \in P.ab \in P$
- 3. $\forall a \in A.a^2 \in P.$

The cone P is called proper if $-1 \notin P$.

Remark. The set

$$\Sigma A^{2} = \left\{ \sum_{i=1}^{n} a_{i}^{2} : n \in \mathbb{N}, a_{1}, \dots, a_{n} \in A \right\}$$

is a cone of A. It is contained in all cones of A.

Example. Let $M \subseteq \mathbb{R}^n$, for some real closed field \mathbb{R} . Then $\{f \in \mathbb{R}[X_1, \ldots, X_n] : \forall \xi \in M. f(\xi) \ge 0\}$ is a cone of A. Basically, we just took J(M) and replaced "=" by " \ge ".

Remark. The intersection of a family of cones of A is a cone of A.

Definition. Let $a_1, \ldots, a_r \in A$. Denote by $P[a_1, \ldots, a_r]$ the smallest cone of A containing a_1, \ldots, a_r .

Example. 1. $P[a] = \{x + ya : x, y \in \Sigma A^2\}$, because any powers of a get absorbed in x and y.

2. $P[a_1, a_2] = \{x_{00} + x_{10}a_1 + x_{01}a_2 + x_{11}a_1a_2 : x_{ij} \in \Sigma A^2\}.$ So technically, we just have $P[a_1, \ldots, a_r] = (\Sigma A^2)[a_1, \ldots, a_r]$ in the sense of adjoining elements and every adjunction is of degree 2.

Definition. A prime cone P of A is a proper cone P of A such that

$$\forall a, b \in A.ab \in P \implies a \in P \lor -b \in P$$

Example. Let A = K be a field and $P = \{x \in K : x \ge 0\}$ be the positive cone of some ordering. Then P is a prime cone:

Assume $ab \in P$, i.e. $ab \ge 0$. If $a \ge 0$ we're fine. Otherwise a < 0. But then $b \le 0$, so $-b \ge 0$.

3.5 Proposition. Let P be a prime cone of A and put $-P := \{-a : a \in P\}$. Then

check word

- 1. $P \cup -P = A$
- 2. $P \cap -P$ is a prime ideal of A, called the support, supp P.

Proof. 1. Let $a \in A$, then $a \cdot a = a^2 \in P$, so $a \in P$ or $-a \in P$, which means $a \in -P$.

2. P and -P are closed under addition and negation, so it is an additive subgroup. Let $a \in P \cap -P$ and $b \in A$. Then $b \in P$ or $b \in -P$. Assume $b \in P$. Then $ab \in P$ and $(-a)b \in P$, so $ab \in P \cap -P$. Similarly for $b \in -P$, so $P \cap -P$ is an ideal.

Check prime: Let $ab \in P \cap -P$ and $a \notin P \cap -P$. If $a \notin P$, then from the above $ab \in P$ implies $-b \in P$. But we also have $a(-b) \in P$, which implies $b \in P$, so $b \in P \cap -P$. Analogous for $-a \notin P$.

Example (cont.). We have $P = \{x \in K : x \ge 0\}$. Then $P \cap -P = \{0\}$, by computation or because it is the only prime ideal of a field.

Remark. Prime cones of a field K are the positive cones of orderings of K.

3.6 Proposition. A subset P of A is a prime cone of A iff there is an ordered field (K, \leq) and a ring homomorphism $\varphi : A \to K$ such that

$$P = \{a \in A : \varphi(a) \ge 0\}$$
(6)

Proof. Suppose we have $\varphi : A \to K$ with eq. (6). Then clearly P is a proper cone, just use the properties of the cone of K. To show that P is prime suppose $ab \in P$. Then $\varphi(a)\varphi(b) = \varphi(ab) \ge 0$. Then either $\varphi(a) \ge 0$, which means $a \in P$ or $\varphi(a) < 0$. But then $\varphi(b) \le 0$, so $\varphi(-b) \ge 0$, which means $-b \in P$.

For the other direction, if we had φ , we would have

$$\ker \varphi = \{a \in A : \varphi(a) \ge 0 \land \varphi(-a) \ge 0\} = P \cap -P = \operatorname{supp} P$$

Let P be some prime cone. Then we put $I := \operatorname{supp} P$, which is a prime ideal. Then we take the canonical morphism $\varphi : A \to A/I \hookrightarrow \operatorname{Fr}(A/I) =: K$. For K we define the cone $Q := \left\{\frac{\varphi(a)}{\varphi(b)} : a, b \in P, b \notin \right\}$, which induces an ordering of K.

3.7 Theorem. Let A be a commutative ring. TFAE

- 1. A has a proper cone.
- 2. A has a prime cone.
- 3. There is a morphism $\varphi : A \to K$ for some real field K.
- 4. A has a real prime ideal.
- 5. $-1 \notin \Sigma A^2$

gap

Definition. A Real algebraic set $V \subseteq \mathbb{R}^n$ is the zero set of polynomials $f_1, \ldots, f_m \in \mathbb{R}[X_1, \ldots, X_n]$.

$$V = \{\xi + R^n : f_i(\xi) = \ldots = f_m(\xi) = 0\}$$

The coordinate ring R[V] consists of the restrictions of the polynomial functions to V.

$$V \to R \quad \xi \mapsto p(\xi)$$

$$R[X_1,\ldots,X_n]$$
 $R[V]$

 $R[X_1,\ldots,X_n]/I(V)$

This gives the picture

Corollary (Variants of the Positivstellensatz). Let $V \subseteq \mathbb{R}^n$ be a real algebraic set, \mathbb{R} some real closed field. Let $g_1, \ldots, g_s \in \mathbb{R}[V]$ and

$$W := \{\xi \in V : g(\xi) \ge 0, \dots, g_s(\xi) \ge 0\}$$

Let $P \subseteq R[V]$ denote the cone generated by g_1, \ldots, g_s . Let $f \in R[V]$. Then

- 1. $\forall \xi \in W.f(\xi) \geq 0$ iff $\exists e \in \mathbb{N}.\exists p, q \in P.fp = f^{2e} + q$
- 2. $\forall \xi \in W.f(\xi) > 0$ iff $\exists p, q \in P.fp = 1 + q$
- 3. $\forall \xi \in W.f(\xi) = 0$ iff $\exists e \in \mathbb{N}. \exists p \in P.f^{2e} + p = 0$

Proof. Let $I(V) = \langle h_1, \ldots, h_r \rangle$ for some $h_i \in R[V]$ (these exist since the ideal is finitely generated).

- 1. $\forall \xi \in W.f(\xi) \ge 0$ means $S := \{\xi \in \mathbb{R}^n : h_i(\xi) = 0, g_j(\xi) \ge 0, -f(\xi) \ge 0, f(\xi) \ne 0\}$ is empty. The elements of the cone generated by $g_1, \ldots, g_s, -f$ are of the form p(-f) + q with $p, q \in P$. By theorem 2we get $S = \emptyset \Leftrightarrow \exists p, q \in P. \exists e \in \mathbb{N}.p(-f) + q + f^{2e} \in \langle h_1, \ldots, h_r \rangle$. So in $\mathbb{R}[V]$ reference we get the equality $q + f^{2e} = fp$.
- 2. The LHS-condition means $S := \{\xi \in \mathbb{R}^n : h_i(\xi) = 0, g_j(\xi) \ge 0, -f(\xi) \ge 0\}$ is empty. By theorem $2S = \emptyset \Leftrightarrow \exists p, q \in P.p(-f) + q + 1^2 \in \langle h_1, \ldots, h_r \rangle$. So in $\mathbb{R}[V]$ this becomes ref fp = 1 + q.
- 3. The LHS-condition means $S := \{\xi \in \mathbb{R}^n : h_i(\xi) = 0, g_j(\xi) \ge 0, -f(\xi) \ne 0\}$ is empty. By theorem $2S = \emptyset \Leftrightarrow \exists p \in P. \exists e \in \mathbb{N}. p + f^{2e} \in \langle h_1, \ldots, h_r \rangle$. So in R[V] this becomes $p + f^{2e} = 0$. ref

Example (Blekherman, Parillo, Thomas; SIAM). Let $f = X_1^2 + X_2^2 - 1$ be the circle, $g_1 := 3X_2 - X_1^3 - 2$ and $g_2 := X_1 - 8X_2^3$. We consider the system $f(x) = 0, g_1(X) \ge 0$ and $g_2(X) \ge 0$. draw the g_i

By drawing you see that the system has no solution. By theorem 2<u>this means that there exists some</u> ref $p \in P[g_1, g_2]$ such that $p + 1 \in \langle f \rangle$. In other words, there exist $s_0, s_1, s_2, s_{12} \in \sum \mathbb{R}[X_1, X_2]^2$ and $t \in \mathbb{R}[X_1, X_2]$ such that

$$s_0 + s_1g_1 + s_2g_2 + s_{12}g_1g_2 + tf = -1$$

The problem is, that the theory does not tell us how to find these values. One can take

$$s_{0} = \frac{5}{43}X_{1}^{2} + \frac{387}{44}\left(X_{1}X_{2} - \frac{32}{129}X_{1}\right)^{2} + \frac{11}{5}\left(-X_{1}^{2} - \frac{1}{22}X_{1}X_{2} - \frac{5}{1}X_{1} + X_{2}^{2}\right)^{2} + \frac{1}{20}\left(-X_{1}^{2} + 2X_{1}X_{2} + X_{2}^{2} + 5X_{2}\right)^{2} + \frac{3}{4}\left(2 - X_{1}^{2} - X_{2}^{2} - X_{2}\right)^{2}$$

$$s_{1} = 3$$

$$s_{2} = 1$$

$$s_{12} = 0$$

$$t = -3X_{1}^{2} + X_{1} - 3X_{2}^{2} + 6X_{2} - 2$$

It turns out there is a nice connection to optimisation.

3.4 Link to semidefinite optimisation

Linear programming deals with optimising a linear function over a polyhedra.

$$\begin{array}{l} \text{minimise } c^T x\\ \text{subject to } Ax = b\\ x > 0 \end{array}$$

For the *feasibility problem* we only ask whether there is some $x \in \mathbb{R}^n_+$ such that Ax = b. There are efficient (polynomial time) algorithms for both of the problems.

- Simplex method: Start somewhere, in each step go to a neighbouring node of the polytope with higher target value; exponential worst-case, but best average case
- interior-point method: going through the inner part of the polytope, using Newton method
- Semidefinite Programming: $S_+ := \{ X \in \mathbb{R}^{n \times n} : X^T = X, \text{ positive semidefinite} \}$, that is $\forall v \in \mathbb{R}^n . v^T X v \ge 0$.