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ABSTRACT
Data are naturally produced at different locations and hence stored
on different DBMSes. To maximize the value of the collected data,
today’s users combine data from different sources. Research in data
integration has proposed the Mediator-Wrapper (MW) architecture
to enable ad-hoc querying processing over multiple sources. The
MW approach is desirable for users, as they do not need to deal
with heterogeneous data sources. However, from a query processing
perspective, the MW approach is inefficient: First, one needs to pro-
vision the mediating execution engine with resources. Second, dur-
ing query processing, data gets “centralized” within the mediating
engine, which causes redundant data movement. Recently, we pro-
posed in-situ cross-database query processing, a paradigm for feder-
ated query processingwithout amediating engine. Our approach op-
timizes runtime performance and reduces data movement by lever-
aging existing systems, eliminating the need for an additional fed-
erated query engine. In this demonstration, we showcase XDB, our
prototype for in-situ cross-database query processing. We demon-
strate several aspects of XDB, i.e. the cross-database environment,
our optimization techniques, and its decentralized execution phase.
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1 INTRODUCTION
Today’s data is produced at different locations, and hence also stored
on different DBMSes in a geo-distributed fashion. Recently, there
has been an ongoing effort toward data democratization, i.e., making
data more accessible [1, 7]. Inter-organizational examples include
open datasets and data marketplaces while intra-organizational
examples include breaking data silos across teams. This means
that data scientists now have more opportunities for supporting
data-driven decisions, by enriching their datasets.
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However, with data spread across multiple systems, data scien-
tists need solutions that allow combining all available data effi-
ciently. A naive approach is to load the data into a data warehouse.
However, this is not desirable, as manually crafted ETL pipelines
tend to be error-prone and cannot query fresh data. In addition, it
may not always be possible to centralize all data in a data warehouse
(e.g., due to regulations [3]). Furthermore, data warehouses are
costly due to hardware and software resource requirements. Hence,
we need solutions that allow ad-hoc querying underlying DBMSes.

The research community proposed the mediator-wrapper (MW)
architecture for ad-hoc querying multiple DBMSes [6, 10]. The MW
approach abstracts away DBMSes, such that users solely interact
with a mediator. From a system’s perspective, the mediator per-
forms query optimization and execution. During optimization, the
mediator decides which operations can be pushed down to the
sources, and places remaining operations (e.g., cross-database joins)
on its mediating engine. During execution, the wrappers execute
the pushed-down operations on the source and forward the results
to the mediating engine to execute the cross-database operations.

From the user’s perspective, the MW architecture is desirable,
as it abstracts away all the complexity of dealing with different
systems. Compared to the data warehousing approach, the MW
architecture allows users to query underlying DBMSes ad-hoc and
does not need a storage backend. However, from a query process-
ing perspective, the MW architecture has two drawbacks. First, we
need to provision the mediating engine with hardware and human
resources for maintaining the software and infrastructure, leading
to additional monetary cost. Second, the centralized MW query pro-
cessing approach leads to monetary cost in the cloud, as vendors
charge by network traffic, and to performance bottlenecks, as trans-
ferring data to the mediator involves costly movement operations.

Recently, we introduced in-situ cross-database query processing,
an approach to decentrally process queries on heterogeneous geo-
distributed DBMSes [11]. Our goal is to execute cross-database
queries more efficiently and with less operational cost. We argue
that we do not need a mediating meta-engine, as existing DBMSes
can already execute all operations. XDB, our middleware for cross-
database query processing, is only responsible for query planning.
It delegates all operations onto underlying systems, such that they
handle execution in a decentralized fashion, i.e., without coordi-
nation by a mediator. After performing optimization and operator
placement, i.e., the mapping of operators to systems, XDB deploys
the processing operations onto the systems using views and the data
movement operations using foreign tables (through SQL/MED [17]).
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The purpose of this demonstration is three-fold, viz., to:
• illustrate the characteristics of cross-database environments by

letting the audience create and interact with DBMS topologies.
• delve into XDB’s internals by letting the audience interact with

XDB and visualize delegation plans.
• showcase the efficiency of in-situ cross-database query process-

ing, by comparing XDB to state-of-the-art cross-db systems.

2 CROSS-DATABASE QUERY PROCESSING
Today’s data practitioners perform analytics in complex data land-
scapes. Data are spread across modern or legacy DBMSes, which are
hosted on different on-premise or cloud environments and main-
tained by different entities. The research and industry communities
have proposed several approaches for distributed query processing.
Federated DBMSes propose to integrate data across multiple het-
erogeneous DBMSes and data models [2, 6, 10, 18, 19]. They employ
a MW architecture, where the mediator exposes a unified language
and data model. However, w.r.t. query processing the MW approach
has two inherent drawbacks. First, the mediator’s additional execu-
tion engine introduces costs for maintaining and running the engine
itself. Second, it introduces redundant data movement as all datasets
are “centralized” on the mediator. This centralization results in addi-
tional costs and sub-optimal runtime performance as data transfer,
which dominates the execution time is also an expensive operation.
Parallel & Distributed DBMSes propose to scale storage and
computation across multiple physical nodes, to improve perfor-
mance [4, 8, 9, 16, 20]. State-of-the-art systems assume homoge-
neous setups, i.e. participating DBMSes are of the same type/vendor.
Furthermore, such systems assume complete control over DBMSes:
They decide on partitioning strategies when storing data and phys-
ical operators when processing data. While distributed DBMSes
propose adequate solutions w.r.t. scalability, state-of-the-art sys-
tems do not offer out-of-the-box solutions for querying multiple
heterogeneous, autonomous and geo-distributed DBMSes.
P2P DBMSes relax the assumptions about DBMS topologies. They
propose query processing and data integration techniques without
a central entity [5, 14, 15]. During query processing, nodes forward
queries and data between them. However, P2P systems focus on
lookup queries rather than complex SQL queries. Furthermore, they
require installing additional communication components and also
replicate data among nodes. Overall, no existing work completely
addresses query processing in today’s cross-db environments.

3 XDB: DECENTRAL QUERY PROCESSING
We now provide an overview of XDB, our system for processing
cross-database queries in a decentralized manner [11].

3.1 Overview
We illustrate XDB’s architecture and its main components in Fig-
ure 1. From a user’s perspective, XDB acts as a mediator: Users
submit cross-database queries, and XDB returns the result. From
a system perspective, XDB is a thin middleware between users
and DBMSes: It features an Optimizer and a Delegation Engine,
but does not feature an execution engine (unlike traditional MW
systems). XDB performs query processing as follows: Users send
queries to XDB through the XDB Client 1 . Then, the Cross-DBMS
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Figure 1: XDB architecture.

Query Optimizer performs logical optimizations and operator
placement and outputs a Delegation Plan 2 . The Delegation Plan
is XDB’s query plan abstraction and contains i) query execution “in-
structions” for each underlying DBMS, and ii) data movement oper-
ations. The Delegation Engine deploys the Delegation Plan onto the
DBMSes 3 . At this point, communication only involves registering
the Delegation Plan’s tasks as views and movement operations as
foreign tables (using the SQL/MED standard [17]) on the underlying
DBMSes. During plan delegation, XDB registers a view cascade, i.e.,
views with recursive dependencies, spanning multiple DBMSes. Af-
ter plan delegation, the Delegation Engine returns the so-called XDB
Query 4 , a query of the form SELECT * FROM <last view>which
will allow to recursively unfold the view cascade during execution.
Finally, XDB triggers the decentralized execution by sending the
XDB Query on the DBMS where it registered the <last view> 5 .
Evaluating the view cascade leads to a decentralized inter-DBMS
query execution pipeline that computes the user results 6 .

3.2 Cross-Database Optimization & Delegation
The goal of our optimizer is to derive an optimal Delegation Plan,
which is XDB’s query plan abstraction. In the following, we briefly
describe XDB’s Delegation Plan and our optimization process.
Delegation Plan: A Delegation Plan describes the order, the place-
ment, and the movement types between operators. Essentially, a
Delegation Plan is a directed acyclic graph, where nodes resemble
tasks and edges data movement. A task consists of an algebraic
expression that corresponds to a segment of the query plan and an
annotation. The annotation defines the DBMS that will evaluate a
task’s expression. An edge defines the type of data movement be-
tween two tasks. We consider two movement types: implicit, where
data is pipelined and explicit, where data is materialized. To create
an optimal Delegation Plan, we employ a three-phase optimizer.
Three-phase Optimizer: The goal of XDB’s optimizer is to gen-
erate a Delegation Plan that reduces the overall execution cost.
The challenge in our environment is the extremely large search
space, as we must consider all combinations for operation order,
placement, and data movement. To simplify the search space, we
employ a three-phase optimizer, as shown in Figure 2: In the first
phase, we perform logical optimizations, i.e., query rewrites such
as operator push-downs and join reordering. In the second phase,
we perform operator placement. For that, we traverse the tree in
a depth-first manner and annotate all operators with the base table
annotation, until reaching cross-database operators. Then, for each
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Figure 2: XDB’s Optimization Pipeline.
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Figure 3: In-Situ Cross-Database Query Execution.

cross-database operator, we decide its placement and data move-
ment. After annotating all operators, in the third phase, we create
the Delegation Plan by grouping operators with the same annota-
tion into tasks and connecting them through movement operations.
Placement: In our case, operator placement refers to assigning
(cross-database) operators on DBMSes. What makes placement
challenging is XDB’s environment, i.e., a topology that consists of
heterogeneous black-box DBMSes (w.r.t. vendor and available phys-
ical operator sets) running on heterogeneous physical nodes (w.r.t.
hardware and network properties). In particular, costing operators
in such a heterogeneous and black-box DBMS environment is not
straightforward. Thus, in this demonstration, instead of costing
individual operators, we treat placement as a classification task
where the prediction indicates the DBMS an operation such be
placed. We train our model in an offline fashion, and utilize user-
provided sample cross-database queries on the underlying DBMSes
that collect runtime information to generate training data. After
investigating several methods, we chose random forests, as they are
easy to build, and provide explainable predictions. XDB’s optimizer
consults the classifier during operator placement.
Delegation: After optimizing the Delegation Plan, XDB deploys it
onto the underlying DBMSes. Therefore, we traverse the Delegation
Plan and translate it to DBMS-specific SQL statements. We translate
tasks to views, and task dependencies, i.e., data movement opera-
tions, to (SQL/MED) foreign tables. Essentially, we recursively regis-
ter views on top of foreign tables, until the last task is registered. Af-
ter the Delegation Engine has finished translating and deploying the
plan, it returns the XDB Query, i.e., SELECT * FROM <last view>.

3.3 Cross-Database Execution
After deploying the delegation plan, XDB enters the execution
phase, illustrated in Figure 3. XDB triggers the execution by send-
ing the XDB Query to the DBMS of the lastly registered view. To
evaluate this view, the DBMS joins a local and a foreign table, which
leads to evaluating a view on another DBMS, and so on, until the
firstly registered view is reached. Essentially, evaluating the view
cascade leads to a decentralized execution pipeline over multiple
DBMSes. Note that during execution each DBMS’s optimizer may
further optimize the query locally, e.g. choose an index.

For more details on XDB, we point readers to previous work [11].
Ongoing work includes exploring optimization techniques for cross-
db and composable DBMS [12] environments, and investigating
optimizations for data science pipelines on multiple DBMSes [13].

Figure 4: Cross-Database topology setup interface.

4 DEMONSTRATION SCENARIOS
The goal of our demonstration is threefold. First, to show the char-
acteristics of cross-database environments, and demonstrate the
challenges w.r.t. query processing. Second, to demonstrate how
XDB addresses the aforementioned challenges by exposing internal
functionality w.r.t. query processing. Third, to let users interact
with XDB, and showcase its advantages compared to state-of-the-
art systems. For this demonstration, we developed a GUI that allows
users to create cross-database topologies with DBMSes, interact
with XDB by sending and explaining queries, and compare XDB’s
performance to state-of-the-art federated query engines. We unfold
the demonstration by impersonating an organization’s imaginary
data team and guiding the audience through the GUI.

4.1 Plug (DBMSes) & Play (Cross-DB Queries)
As a first step, the data team registers its available DBMSes and
defines the network topology. Therefore, the data team uses the
GUI, as shown in Figure 4. We will provide existing docker con-
tainers running multiple systems, e.g., PostgreSQL, MariaDB, Hive,
DB2, Oracle, Clickhouse, or MSSQL with different datasets from the
TPC-H benchmark. After adding the DBMSes, XDB assumes a mesh
network topology, i.e., all DBMSes (nodes) are interconnected with
network links (edges). However, the data team might have some
DBMSes in intranets that can only be “connected” to specific DBM-
Ses. Therefore, the data team can refine the topology, i.e., add and
remove edges between DBMSes. After that, users see a catalog with
the available datasets and a topology of arbitrarily interconnected
DBMSes, which XDB takes into account during optimization.

4.2 Learning the Topology
After defining the topology, it is time for the data team to “tune”
XDB’s optimizer. Therefore, one can either use existing training data
or generate new by providing cross-database workloads. Using this
data, a Learning Component trains a random forest model, which
is then used by XDB’s optimizer during operator placement. Users
can view the updated topology and explore the workload execution
log (Figure 4, right). The execution log is used as a training dataset
and includes features for training the model, i.e., data and query
runtime characteristics of cross-database operations.
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Figure 5: XDB Query Interface.

4.3 Running & Explaining Cross-DB Queries
After configuring and learning the topology, it is time for the data
team to interact with XDB. Users can write cross-database queries
in the Query Interface pane (shown in Figure 5), or pick existing
queries. To understand how queries are executed, we expose the
cross-database explain functionality. Similar to conventional ex-
plain commands, XDB returns its query plan. As we are in a cross-
database environment, XDB shows the Delegation Plan, i.e., a plan
where operators are annotated with the DBMSes the Optimizer as-
signed them to (Figure 6, left). To show howXDB’s optimization pro-
cess differs from typical MW systems, we also visualize MW query
plans (Figure 6, right). To see how different topologies influence
optimization, users can interactively change the topology and rerun
the cross-database queries to explore different delegation plans.

4.4 KPIs: Runtime & Data Transfer Performance
After interacting with XDB through ad-hoc queries, the data team
explores the overall applicability and operational costs of XDB. In
particular, the team is interested in the potential performance gain
by switching to XDB, with their KPIs being runtime performance
and data transferred during execution. Therefore, users can up-
load their workloads to our benchmarking component, or utilize
existing workloads. The benchmarking component then runs the
workloads on XDB and state-of-the-art MW systems (e.g., Presto),
and generates a performance report. The report features two main
metrics: runtime and data transfer. Furthermore, the GUI features
a price calculator, for estimating monetary cloud vendor costs for
the different cross-database query processing approaches.
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