
US009576000B2

(ΐ2) United States Patent
Balmin et al.

(ΐο) Patent No.: US 9,576,000 Β2
(45) Date of Patent: Feb. 21, 2017

(54) ADAPTIVE FRAGMENT ASSIGNMENT FOR (56)
PROCESSING FILE DATA IN A DATABASE

References Cited

U.S. PATENT DOCUMENTS

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: Andrey Balmin, San Jose, CA (US);
Romulo Antonio Pereira Goncalves,
San Jose, CA (US); Fatma Ozcan, San
Jose, CA (US); Jonas Traub, Stuttgart
(DE)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 294 days.

(21) Appl. No.: 14/261,699

(22) Filed: Apr. 25, 2014

(65) Prior Publication Data

US 2015/0310030 Al Oct. 29, 2015

(51) Int. Cl.
G06F17/30 (2006.01)

(52) U.S. Cl.
CPC ... G06F 17/30283 (2013.01); G06F 17/30171

(2013.01); G06F 17/30194 (2013.01); GOOF
17/30386 (2013.01)

(58) Field of Classification Search
CPC G06F 17/30283; G06F 17/30979
See application file for complete search history.

8,417,727 Β2
2008/0133698 Al
2008/0133706 Al
2011/0314174 Al
2012/0311581 Al

4/2013 Slezak
6/2008 Chavez
6/2008 Chavez

12/2011 Joung
12/2012 Balmin

OTHER PUBLICATIONS

Hakimzadeh, Kamal, Hooman Peiro Sajjad, and Jim Dowling.
“Scaling HDFS with a strongly consistent relational model for
metadata.” Distributed Applications and Interoperable Systems.
Springer Berlin Heidelberg, 2014.*
Data Locality in Hadoop, accessed Apr. 8, 2016 at http://www.
hadoopinrealworld.com/data-locality-in-hadoop/.*
Dwerryhouse, Handling Cassandra concurrency issues, using
Apache Zookeeper, Aug. 10, 2012, accessed Apr. 7, 2016 at
http://weblog.leapster.org/archives/295-handling-cassandra-con-
currency-issues-using-apache-zookeeper.html.*
Stack Overflow, About Hadoop/HDFS file splitting, accessed Apr. 8,
2016 at http://stackoverflow.com/questions/9258134/about-
hadoop-hdfs-file-splitting.*

(Continued)

Primary Examiner — William Spieler
(74) Attorney, Agent, or Firm — Erik Huestis; Stephen
Kenny; Foley Hoag LLP

(57) ABSTRACT

Scheduling mechanisms for assigning data in a distributed
file system to database workers are provided. In one embodi­
ment, a method of and computer program product for
assignment of data blocks to database workers are provided.
A request for table data is received. Metadata for a plurality
of blocks in a file system is retrieved from a metadata store.
Each of the plurality of blocks contains a subset of the table
data. A request for work is received from a requestor. An
assignment of one or more of the plurality of blocks is
provided to the requestor.

16 Claims, 9 Drawing Sheets

US009576000B2

US 9,576,000 Β2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Hadoop Fair Scheudler Design Document, Oct. 18, 2010, accessed
Sep. 29, 2016 at http://www.valleytalk.org/wp-content/uploads/
2013/03/fair_scheduler_design_doc .pdf. *
Lamb et al., “The Objectstore Database System.” (1991) Commu­
nications of the ACM, vol. 34 (10).
Ames et al., “A Metadata-Rich File System.” University of Cali­
fornia, Santa Cruz. IBM.
Traub, J. “Integration of JagI into DB2 Data Partitioning Feature for
handling file data” IBM Almaden Research Center, San Jose, CA.

* cited by examiner

U.S. Patent Feb. 21,2017 Sheet 1 of 9 US 9,576,000 Β2

λ
\

\
)>101
/

f
/

103-

U.S. Patent Feb. 21, 2017 Sheet 2 of 9 US 9,576,000 Β2

201 'j
/

MapReduce Client

U.S. Patent Feb. 21, 2017 Sheet 3 of 9 US 9,576,000 Β2

S
O
S
-

U.S. Patent Feb. 21,2017 Sheet 4 of 9 US 9,576,000 Β2

οο

U.S. Patent Feb. 21,2017 Sheet 5 of 9 US 9,576,000 Β2

502£ "'X
__ Υ_________] f

Try to Rec ister Task

.....)

504--,\\ \

YES

Get and Register Input Splits

505"-,,____ ________3

Add First of Queue! to Ωυ℮υ℮2

Remove hirst from Queue!
“T“

507-^

G. 5

U.S. Patent Feb. 21, 2017 Sheet 6 of 9 US 9,576,000 Β2

U.S. Patent Feb. 21,2017 Sheet 7 of 9 US 9,576,000 Β2

rly, /

U.S. Patent Feb. 21, 2017 Sheet 8 of 9 US 9,576,000 Β2

GO

ο
OO

U.S. Patent Feb. 21, 2017 Sheet 9 of 9 US 9,576,000 Β2

US 9,576,000 Β2

ADAPTIVE FRAGMENT ASSIGNMENT FOR
PROCESSING FILE DATA IN A DATABASE

BACKGROUND

Embodiments of the present invention relate to fragment
assignment for processing file data in a database, and more
specifically, to scheduling mechanisms for assigning data in
a distributed file system to database workers.

BRIEF SUMMARY

According to one embodiment of the present invention, a
method of and computer program product for assignment of
data blocks to database workers are provided. Metadata of a
plurality of blocks of a file system is stored in a metadata
store. A process is executed that requires data from at least
one of the blocks of the file system. Exclusive access to the
at least one of the blocks is acquired. Data from the at least
one of the blocks is supplied to the process.

According to another embodiment of the present inven­
tion, a method of and computer program product for assign­
ment of data blocks to database workers are provided. A
request for table data is received. Metadata for a plurality of
blocks in a file system is retrieved from a metadata store.
Each of the plurality of blocks contains a subset of the table
data. A request for work is received from a requestor. An
assignment of one or more of the plurality of blocks is
provided to the requestor.

According to another embodiment of the present inven­
tion, a system for assignment of data blocks to database
workers is provided. The system includes a plurality of data
nodes each comprising a plurality of data blocks, a plurality
of database workers, a metadata store comprising metadata
of the plurality of data blocks, and a scheduler. The sched­
uler receives requests for table data. The scheduler retrieves
metadata for the plurality of blocks from the metadata store.
Each of the plurality of blocks contains a subset of the table
data. The scheduler receives a request for work from a
requestor. The scheduler provides an assignment of one or
more of the plurality of blocks to the requestor.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts a method of running an adaptive user
defined function according to en embodiment of the present
disclosure.

FIG. 2 depicts an exemplary workflow of an Adaptive
MapReduce application.

FIG. 3 depicts an exemplary workflow for adaptive file
parallelism according to an embodiment of the present
disclosure.

FIG. 4 depicts a protocol for parallel registration accord­
ing to embodiments of the present disclosure.

FIG. 5 depicts the protocol for the register phase of
parallel registration according to embodiments of the present
disclosure.

FIG. 6 depicts the protocol for the check phase of parallel
registration according to embodiments of the present dis­
closure.

FIG. 7 depicts an optimized single-read protocol accord­
ing to embodiments of the present disclosure.

FIG. 8 depicts a scheduler according to embodiments of
the present disclosure.

1
FIG. 9 depicts a computing node according to an embodi­

ment of the present invention.

DETAILED DESCRIPTION

According to embodiments of the present disclosure,
mechanisms are provided to assign portions of one or more
files stored in a distributed file system (DFS) to workers in
a parallel database dynamically as the file is processed at
run-time. In many enterprises, only a small percentage of
enterprise data is stored in a relational database. Instead,
most data is stored in a file system. There is a need to
process, combine and correlate data in relational databases
with the data stored in DFS. Relational databases may
provide mechanisms including external table functions and
federation techniques to ingest file data to the database. In a
parallel database setting, a database optimizer may create a
static plan and the file data may be partitioned statically
among the database workers. There remains a need in the art
for a mechanism to dynamically assign portions of a given
file to database workers and hence provide the ability to
balance work adaptively.

Distributed File Systems (DFS) include Google File Sys­
tem (GFS), Ceph, Windows Distributed File System, Fraun­
hofer Parallel File System (FhGFS), GlusterFS, Lustre,
Ibrix, and Hadoop distributed file system (HDFS). Although
several exemplary embodiments herein are described with
respect to HDFS, the systems and methods of the present
disclosure may be applied to other distributed file systems
according to the present disclosure.

In some embodiments of the present disclosure, adaptive
assignment mechanisms are provided that make use of a
Distributed MetaData Store (DMDS). In some embodi­
ments, the DMDS is Apache ZooKeeper. The DMDS stores
a global status of file partitions. Such file partitions may be
referred to as “splits,” for example in HDFS. File partitions
may also be referred to as blocks, for example in other DFS.
Database Workers lock splits in the DMDS in order to
acquire exclusive access before processing them. By keep­
ing processing units small, this mechanism allows dynami­
cally balancing the work among the database workers.

Providing a fixed assignment of input files to database
partitions using a control file has certain disadvantage in a
distributed database. This approach requires generating
many files, and a plan for ingestion into the database.
However, HDFS stores data independent of a DBMS. More­
over, static assignment may not be possible in systems that
organize data outside of the control of the database. Another
alternative would be to provide static assignment using
HDFS metadata. However, this approach would not balance
the load dynamically and account for slower nodes. For
example, if a partition is slower than others, then it is not
possible to reassign its work to other nodes. This slow node
will cause long evaluation times. In addition, the require­
ment to split large input files manually into smaller files may
impose a burden on the user.

Adaptive file parallelism according to embodiments of the
present disclosure avoids the limitations of a fixed assign­
ment of input files to database partitions. As set forth further
below, input splits are created automatically and a dynamic
assignment of these splits is made to the workers at runtime.
Situation aware mappers may be implemented in a MapRe­
duce system such as a Hadoop, using Jaql, HDFS and
Adaptive MapReduce. In some implementations using
Hadoop, User Defined Functions (UDF) may be defined that
perform various of the methods set out herein. In some
embodiments, one or more UDF are independent from a

2

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2

running Hadoop instance. Wrapper classes may be defined
that allow any Hadoop InputFormat^^ to read data using
user-defined parallel table functions. Alternatively, some
embodiments may be implemented by a database process
rather than a UDF. This process may be integrated into the
database platform, or may be included through a library or
plugin. Although various exemplary embodiments herein
refer to a UDF, these are to be understood as including
implementations using a more general database process.

With reference now to FIG. 1, a method of running an
adaptive user defined function is provided. In a registration
phase 101, a data structure is created 111. Input splits are
registered 112 to this structure. In some embodiments, the
data structure is created in a DMDS such as Apache Zoo-
Keeper. Creation of the data structure may comprise creation
of a new folder or the creation of a status flag without
reference to external data. In some embodiments, registra­
tion of a split may include saving a description of the split
in the DMDS. In some embodiments, pre-existing splits are
registered in the registration phase. In other embodiments,
splits are generated during the registration phase. In such
embodiments, an InputFormat^^ may be used to get
descriptions of input splits for registration. Descriptions may
contain the path of an input file, an offset and the number of
bytes to read.

In a check phase 102, the database partition waits for
other partitions currently in the register phase.

In a read phase 103 a script is executed. The result is
parsed and returned to the database as a table. In some
embodiments, the script comprises Jaql code. In such
embodiments, each read statement included in the Jaql script
provided by a user may be referred to as a read task. In other
embodiments, alternative tools including but not limited to
Impala and Hive are used to execute the script that reads the
file data. These tools may exploit map reduce jobs to execute
the script, or utilize other mechanisms, such as long running
daemons. In some embodiments, these tools run in a special
database process and do not require map reduce at all.
Although various exemplary embodiments herein refer to
Jaql, these are to be understood as including implementa­
tions using other Hadoop systems as well.

In some embodiments, Adaptive Map Reduce (MR) is
used. In a standard MR application there are some assump­
tions. One of them is that each Mapper in a Hadoop Map
Reduce job runs fully individually and in isolation. Adaptive
MR departs from this assumption while integrating a com­
munication protocol that allows each mapper to communi­
cate with others through distributed meta-data storage. Situ­
ation-Aware Mappers (SAMs) are able to optimize the
execution of the program at run time depending on the
global state of the application. In some embodiments, the
application status is saved at a ZooKeeper server. The
amount of work a mapper does effects the overall perfor­
mance of an MR job. If a mapper does too little, then the MR
job will have too many mappers and resulting overhead. If
a mapper does too much, then there are fewer checkpoints
and the degree of parallelism goes down. SAMs adjust the
amount of work done by a mapper adaptively at run time.

In some embodiments of the present disclosure, the par­
allelism is driven by the database and not by Hadoop.
Instead of having mappers in place, there is a completely
separated Jaql instance on each logical database partition
that is started by a parallel Java UDF. The Jaql instance on
each logical DB partition is started with identical param­
eters.

Referring to FIG. 2, an exemplary workflow of an Adap­
tive MapReduce application is depicted. MapReduce client

3
201 creates 202 the data structures 203 in a DMDS 204 such
as Zookeeper. MapReduce client 201 takes care of the
generation of input splits and the physical location of these
splits. In exemplary data structure 203, the location folder
205 holds all splits by location while the assignment of the
splits will get saved in the assignment folder 206. However,
alternative data structures that associate splits with locations
may be used in various embodiments of the present disclo­
sure. When splits are saved in DMDS 204 they do not
contain the real data but a description of the split. In some
embodiments, the description may include the path to the
file, an offset, and the number of bytes that belong to the
split.

MapReduce client 201 uses virtual splits to start mappers
207, 208. Multiple mappers may be started spread over
multiple hosts 209, 210—the arrangement of mappers 207,
208 on host 209 is merely exemplary. In some embodiments,
each mapper may connect automatically to the DMDS. For
example, in Hadoop, an InputSplit^^ may connect to the
DMDS upon initialization. Each virtual split selects the list
of locally available real splits 211 from the DMDS 204. For
example, as pictured, Splitl 212 is available locally on
Hostl 209. The adaptive Mapper selects a random Split from
the list and tries to lock 213 this split. A Split is locked if a
lock flag 214 is set in the assigned folder 206. If the lock was
successful the SAM can process the split. The selection and
locking processes repeat until all locally available real splits
are locked. This allows each adaptive mapper is able to
process multiple input splits.

Referring to FIG. 3 an exemplary workflow is provided
for processing of a UDF using adaptive file parallelism. In
this exemplary workflow, nodes 301Α . . . Ν run Jaql
processes 302Α . . . Ν. Initially, node 301Ν generates and
registers input splits 303 while the other nodes wait
304Α . . . Β. The splits are registered 305 to a DMDS 306
such as Zookeeper. As each Jaql process 302Α . . . Ν runs,
the next split to process is requested 307 from DMDS 306.
After each Jaql process 302Α... Ν has completed, the JSON
output is merged and converted to a table 308. In embodi­
ments in which alternatives to Jaql are used, the data can be
read as text or from a binary format.

In some embodiments, registration phase 101 handles
registration of a single task and registration of multiple tasks
separately. This separate handling may be provided through
two functions optimized to register a single task and to
register multiple tasks, respectively.

In the case of a single read task, the registration step
cannot run in parallel, because at the beginning of each task
some partition has to create the structures that are accessed
by all UDF instances during the read phase. So, one of the
DB partitions must be first, and gets permission to run the
register phase. The other instances will directly proceed with
the check phase.

In the case of multiple read tasks, the registration phase
can run in parallel. This allows different UDF instances to
register the splits for different read tasks. Because of the
higher complexity in the register phase, the usage of the
function optimized to register multiple tasks creates over­
head if it is used to register only one task. However, the
benefit outweighs the overhead when creating multiple
tasks.

In an exemplary embodiment, the registration function is
defined according to Inset 1, below. In this embodiments, the
registration function has five parameters: JaqlScript, provid­
ing the path to the Jaql script the user wants to run; confJson,
configuration parameters required for the reading task pro­
viding the input argument of Jaql’s read function, which it

4

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2

is also referred to as the input descriptor; frequency, pro­
viding time in milliseconds to wait in the check phase before
checking the creation status of a task again; timeout, pro­
viding the time in milliseconds in the check phase after
which the function will abort with an exception if the task(s)
is/are not completely created; linesToSkip, providing a spe­
cific number of lines in the beginning of Jaql’s temporary
output file to be skipped without evaluation. In addition to
these parameters, a list of predicates to be evaluated and a
list of columns to be returned may also be included in
various embodiments.

5

CREATE FUNCTION ΖΚ TABLE SE
(VARCHAR(255) ,VARCHAR(2000) .INTEGER, INTEGER,
INTEGER)
RETURNS GENERIC TABLE
EXTERNAL NAME ‘sqlmrJaqlJAR:com.ibm.sqlmrJaql.

ZK_TABLE_SE.ZK_TABLE_RUN’
LANGUAGE JAVA
SPECIFIC zktablese
PARAMETER STYLE DB2GENERAL
DETERMINISTIC
FENCED THREADSAFE
NOT NULL CALL
NO SQL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL EXECUTE ON ALL DATABASE
PARTITIONS

RESULT TABLE DISTRIBUTED
DBINFO;

Referring to FIG. 4, a protocol for parallel registration
according to embodiments of the present disclosure is pro­
vided. In some embodiments, the protocol is implemented
by adaptive Java UDFs. Flowever, one of skill in the art will
appreciate that alternative implementations, for example in
other languages, will not depart from the scope of the
present disclosure. As depicted in FIG. 4, there are two
queues. Queue 1 is for tasks that this instance is trying to
register. Queue 2 is for tasks that this instance is waiting for
others to register. After the program starts 401, all task
names are added to queue 1 402. Then the subprogram
register 403 gets executed for each of these tasks. The
program flow depicted in FIG. 4 gets executed on each
partition of the database in parallel.

Referring now to FIG. 5, a register subprogram according
to embodiments of the present disclosure is depicted. This
subprogram will try to register the first task 502, which in
some embodiments includes creating the required folder in
a DMDS such as ZooKeeper. It is determined whether
registration was successful 503. If the data node or folder is
already there, it may be inferred that one of the other
partitions was faster. In embodiments using ZooKeeper, a
KeeperExceptionjava called NodeExistsExceptionjava will be
thrown 508, however, another indication may be provided
by alternative implementations. In this case the current first
task from queue 1 gets added to queue 2 509 and removed
from queue 1 507 before the subprogram ends 514. This
procedure will repeat 404 for each task in queue 1. Queue 2
will contain all tasks which are not created by the specific
instance of the UDF and whose creation status needs to be
checked in check phase 405.

If the registration was successful 503 the UDF will create
and register the input splits 504 to the DMDS. In some
embodiments, the Java Class Loader is used to create an
instance of the real InputFormaq,^ and call its getSplits

method. In some embodiments, the register step 403 is
completely implemented in the UDF. This means that in
Java-based implementations, the InputFormat^^ is invoked
in the UDF before the Jaql script starts running Afterwards
the UDF tries to set the creation flag 505 that shows the other
database partitions that all splits of this task are registered
completely.

Where the creation flag is not successfully set, a parent
data node (e.g., a parent folder in ZooKeeper) may not exist
512. In Java-based embodiments, a KeeperExceptionjava
called NoNodeExistsExceptionjava may be thrown 512. This
means that the folder that contains all the creation flags was
not created yet. In this case the program will try to create it
511 and retry to set the creation flag afterwards. During
recreation, errors resulting from the existence of the target
node are ignored. Such errors may arise because of race
conditions between the UDF instances on different database
partitions and may indicate that another instance was faster
with the creation of the parent folder for the creation flags.
After the flag is set the task gets removed from queue 1 507
but not added to queue 2, because the current UDF instance
must not wait for other instances to register the task. As soon
as queue 1 is empty 404 the UDF will switch to the check
phase 405.

Referring now to FIG. 6, a protocol for the check phase
of parallel registration according to embodiments of the
present disclosure is depicted. In this phase the program will
wait until all tasks that were not created by its self are
completely created by other partitions. The UDF checks the
creation status 602 at a rate determined by the frequency
parameter at initialization. If a task is marked as created 603,
the task is removed from queue 2 604. The subprogram ends
normally 607 if queue 2 is empty and with an exception 606
if the timeout parameter is reached first 605. In some
embodiments, an exception anywhere in the UDF that is not
otherwise described herein will cause the function to termi­
nate abnormally.

Referring now to FIG. 7, an optimized single-read pro­
tocol according to embodiments of the present disclosure is
depicted. The single-read protocol assumes that there is only
one task to be created. This allows an optimization in the
protocol. The two queues are no longer required, because the
program can directly switch from the creation to the check
phase if a data node already exists while trying to register the
task (indicated by, e.g., a NodeExistsException^q. In this
case the task creation needs to be checked in the check
phase. Otherwise the UDF instance creates the task on its
own and can just skip the check phase.

Whenever Jaql reads any data, whether from HDFS, a
database or from local file system, the Jaql read function is
used. Since Jaql is based on JSON data type the function
takes a JSON record as parameter. This record contains the
classes that should be used for the read and the location(s)
of the input. In some embodiments, this structure is extended
to enable adaptive file assignment. The format (InputFor-
matjaVa) and the configurator (InitializableConfSetter^q in
the inoptions subrecord is replaced with wrapper classes.

In some embodiments, the replacement format extends
FilelnputFormaq,^ as an implementation of the InputFor-
matjava interface. It provides a getSplits and a getRecor-
dReader method. Normally the getSplits method returns an
array of InputSplits but in embodiments according to the
present disclosure, only one fake split is returned. During
execution, Jaql will call getRecordReader with this fake split
as a parameter. The method will return a record that manages
the communication with the DMDS and assigns the real
splits.

6

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2
7

In some embodiments using Hadoop, a wrapper class
instead of the real input configurator (instance of Initial-
izableConfSetter^^) is placed in the inoptions subrecord.
This ZooKeeperlnputConfigurator^^ creates the
JobConf,.^ objects required by Hadoop and sets the values
for the additional parameters. Then it takes the given “real-
InputConfigurator” parameter value and creates an instance
of this class using Javas Class Loader. The resulting instance
is used to set all non-additional configurations to the Job-
ConfJava object in order to add additional parameters to the
input of Jaqls read function.

In some embodiments, a similar architecture to store
configurations is used for the adaptive parallel UDFs as for
existing input formats. This maintains compatibility with the
alternative implementations of Adaptive MR, and Jaql.

In some embodiments, at the top level of the JSON input
record four new key value pairs are required. “realConfigu-
rator” takes the InitializableConfSetter,^ and “reallnput-
Format” takes the InputFormat^^ where replaced with
wrapper classes. “taskName” contains a unique name for the
task defined by the user. “numberOfSplits” specifies how
many splits are created and registered to ZooKeeper.

In an exemplary case, a user can get a word count for each
word included in multiple input files. An adaptive file
assignment is provided, optimized for multiple tasks. As the
first step the user specifies a unique task name for each read
task (e.g., taskl, task2 and task3). According to this the input
files are called inputFilel, inputFile2 and inputFile3 assum­
ing that these placeholders contain absolute paths of the
input files.

Because the user should not be asked to type the JSON
input for the Jaql read function twice, this value is referred
in the Jaql script with markers which get replaced by the
UDF, as shown in Inset 2.

Inset 2

read (Staskl) -> transform strSplit ($, “ ”) -> expand ;
read ($task2) -> transform strSplit ($, “ ”) -> expand ;
read ($task3) -> transform strSplit ($, “ ”) -> expand ;

Assuming that all input files are standard text files, the
SQL query for the word count looks like shown in Inset 3.
Although this is a relatively simple example, the systems
and method of the present disclosure provide the ability to
handle combined data sources with various types in a single
query.

SELECT word , COUNT(*) AS count
FROM

TABLE(ZK TABLE ΕΕ(‘test.jaql’ , ‘{
“location”: “inputFilel”,

“taskName”: “taskl”,
“numberOfSplits”: 10,
“reallnputFormat”: “com.ibm.biginsights.compress.mapred.

CompressedTextlnputFormat”,
“realConfigurator”: “com.ibm.jaql.io.hadoop.

FilelnputConfigurator”,
“inoptions”: {

“adapter”: “com.ibm.jaql.io.hadoop.
DefaultHadoopInputAdapter”,

“format”: “com.ibm.zookeeper.jaqlsqlmr.
LinesTestlnputFormat”,

8
-continued

“configurator”: “com.ibm.zookeeper.jaqlsqlmr.
TestlnputConfigurator”,

“converter”: “com.ibm.jaql.io.hadoop.
FromLinesConverter”

}i{
“location”: “inputFile2”,
“taskName”: “task2”,
“numberOfSplits”: 10,
“reallnputFormat”: “com.ibm.biginsights.compress.mapred.

CompressedTextlnputFormat”,
“realConfigurator”: “com.ibm.jaql.io.hadoop.

FilelnputConfigurator”,
“inoptions”: {

“adapter”: “com.ibm.jaql.io.hadoop.
DefaultHadoopInputAdapter”,

“format”: “com.ibm.zookeeper.jaqlsqlmr.
LinesTestlnputFormat”,

“configurator”: “com.ibm.zookeeper.jaqlsqlmr.
TestlnputConfigurator”,

“converter”: “com.ibm.jaql.io.hadoop.
FromLinesConverter”

}[-]
}’ ,1000 ,120000 ,0)) AS A (word VARCHAR(30))

GROUP BY word ;

The final result table in the database contains all word
with their count, as shown in Inset 4.

Inset 4

“sollicitudin” 24
“taciti” 3
“ultrices.” 6
“varius” 27
“velit” 12
“venenatis.” 3

“vulputate” 24
291 record (s) selected.

Referring now to FIG. 8, a scheduler according to
embodiments of the present disclosure is depicted. FIG. 8
shows a central and separate scheduler for assignment of
HDFS blocks to readers. Coordinator 801 passes the name
of the table to be read 802, and the split elimination
predicates to scheduler 803 (prepareForScan). Scheduler
803 consults a Hadoop catalogue (for example, HCatalog)
804 for inputFormat and split information; first it checks an
optional cache for table metadata, then goes to meta-store, if
needed. In some embodiments, HCatalog is a DMDS as
described above. Scheduler 803 runs partition elimination,
runs getSplits, applies split elimination (if needed), and
inserts the list of splits 805 in its in-memory work assign­
ment data structure. Scheduler 803 generates a unique id for
the scan, and returns 806 the scanID and the list of HDFS
nodes that contain table data to the database coordinator 801,
which sends 807 subsections to those nodes 808Α . . . Ν.
Nodes 808Α . . . Ν, which in some embodiments may
include Impala-based readers, make requests 809 for work
from the scheduler 803. Readers can also use Jaql scripts
without map reduce functions, or the I/O layer of any
Hadoop system such as Hive or Impala, or any special
program that reads data from HDFS. The scheduler 803
returns split assignments (η at a time). At the first call, the
scheduler also returns the table metadata.

In some embodiments using a central scheduler, scatter
partitioning is assumed for Hadoop tables. The scheduler

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2

makes a best effort to provide data locality. It can also make
remote data block assignments. The scheduler will make
sure that each data block is assigned to a single HDFS
reader, and that all blocks are assigned. In some embodi­
ments, the scheduler uses a db2 node.cfg file to find the
locations of DB2 workers (hence impala readers in such
embodiments). In other embodiments, the database sends its
cluster state to the scheduler when the scheduler starts, and
this information is refreshed as needed during execution. If
the coordinator (e.g., a DB2 coordinator) detects a node
failure when trying to send a subsection, the database engine
(e.g., DB2) ignores it and sends the section to the other
nodes in the list sent by the scheduler. The scheduler will
make sure to assign all the splits of the table to readers. If
a node fails after the readers start reading, the query aborts.

Various scheduling algorithms may be employed by a
scheduler in accordance with the present disclosure.

In some embodiments, a static scheduling algorithm is
employed. The scheduler distributes the total number splits
to the available nodes, as evenly as possible. It tries to
maximize local data assignments. It uses a round robin
algorithm and an in-memory matrix to make sure all splits
are assigned to the DB2 nodes. In one embodiment, the
scheduler picks a DB2 node and it first tries to assign a local
split, if not possible it assigns a remote split. For remote split
assignment, it first looks for splits that are not local to any
other DB2 node, if not possible, it then picks a split from the
DB2 with the largest list of local splits to be assigned. Once
a split is assigned, it picks another DB2 node and repeats the
algorithm until all the splits are assigned.

In other embodiments, a dynamic scheduling algorithm is
employed. In one such embodiment, DB2 readers on each
call request Ν splits, where Ν is a tunable parameter
(specified in the scheduler configuration file). Once a DB2
reader has read all the assigned splits it requests another Ν.
They keep requesting for more work until all the splits have
been assigned. On each call the splits are assigned using the
same algorithm of static assignment, but instead of one split
per iteration, “N” splits are assigned to the DB2 node
making the request.

In a shared storage, F1DFS data nodes may co-exist with
DB2 nodes. DB2 nodes that are also F1DFS data nodes with
the data to be scanned may be referred to as hot-nodes. In
some embodiments, the selection of compute nodes for each
scan depends on the number of splits that compose a table
and the number of hot-nodes. If the list of DB2 nodes is a
subset of the list of table locations, the scheduler uses all the
DB2 nodes for the scan. If the list of F1DFS data nodes that
contains table’s data is a subset of the list of DB2 nodes, the
scheduler uses only hot-nodes. If the list of DB2 nodes
partly overlaps with the list of F1DFS data nodes that contain
table’s data, all DB2 nodes that have an overlap, i.e.,
hot-nodes, will be used, as well as some of the other DB2
nodes without any accompanying F1DFS data node. In the
latter, the number nodes depends on the total number of
splits that need to be read.

In shared storage, such as F1DFS running on GSS, the
F1DFS data nodes are located in a different set of physical
machines, i.e., hot nodes do not exist. In some such embodi­
ments, there are not any preferred nodes, the scheduling
algorithms consider all DB2 nodes as hot-nodes.

In an embodiment of the present disclosure, a database
system is provided that uses shared-nothing ΜΡΡ database
technology, and processes SQF queries over F1DFS data,
whether it is shared-nothing or shared storage. To read
F1DFS data, the database system uses a scan operator. In
F1DFS, files are divided into blocks. To support the scan

9
operator, F1DFS blocks must be assigned to database work­
ers. The scheduler 803 described above is used to assign
F1DFS blocks within the database system.

The scheduler 803 comprises a set of scheduling algo­
rithms and a data structure to store the state of each scan. In
some embodiments, the data structure is an in-memory data
structure, which is a matrix of all F1DFS blocks to be read
and their location, and all available database nodes. In other
embodiments, this data structure can be stored in a DMDS,
such as ZooKeeper.

The scheduler needs to decide which database workers
will participate in each scan. For this purpose, it needs to
know the list of active database workers, as well as F1DFS
data nodes. For the former, the scheduler retrieves the
information from the database server. The scheduler
retrieves the list of F1DFS data nodes from the F1DFS name
node 810.

As noted above, in shared nothing local storage architec­
ture, the F1DFS data nodes co-exist with the database work­
ers. In the context of scan, database workers that are
collocated with F1DFS data nodes that contain the table data
are called hot-nodes. In the presence of hot-nodes the
scheduling algorithms exploit data locality, i.e., they are the
preferred ones to read the data. The selection depends on the
number of F1DFS blocks the table has and the number of
hot-nodes.

If the list of database workers is a subset of the list of table
locations (list of data nodes that contain table’s data), the
scheduler uses all the database workers for the scan. If the
list of F1DFS data nodes that contains table’s data is a subset
of the list of database workers, the scheduler uses only
hot-nodes. If the list of database workers partly overlaps
with the list of F1DFS data nodes that contain table’s data, all
database workers that are in the overlap, i.e., hot-nodes, will
be used, as well as some of the other database workers,
which do not have a collocated F1DFS data node. In the latter
the number such workers depends on the total number of
F1DFS blocks that need to be read. In this case the latter set
of database workers will be reading remotely.

In shared storage, such as F1DFS running on GSS, the
F1DFS data nodes are located in a different set of physical
machines, i.e., hot nodes do not exist. In such a scenario
there is no preferred nodes, the scheduling algorithms con­
sider all database workers as hot-nodes, and they all read
remote F1DFS blocks.

For each scan, a ScanState represents the scheduling
decisions taken for a specific scan during its execution. The
scheduling decision is done using two scheduling algo­
rithms: static and dynamic.

For static assignment the database workers make a single
call to the scheduler, and get back both their block assign­
ments as well as the table metadata. The scheduler distrib­
utes the total number blocks to the available database
workers, as evenly as possible, while maximizing local data
assignments. For this purpose, it uses a round robin algo­
rithm and an in-memory matrix to make sure all blocks are
assigned to the database workers. The scheduler picks a
database worker and it first tries to assign a local F1DFS
block. If this is not possible, then it assigns a remote F1DFS
block. For remote block assignment, it first looks for blocks
that are not local to any other database workers. If there are
none, it then picks an F1DFS block from the database worker
with the largest list of local F1DFS blocks that need to be
assigned. Once a block is assigned, it picks another database
worker and repeats the algorithm until all the blocks are
assigned.

10

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2

For dynamic assignment, the database workers on each
call request Ν F1DFS blocks, where Ν is a tunable parameter
(specified in the scheduler configuration file). Once a data­
base worker has read all its assigned blocks it requests
another set of Ν F1DFS blocks. They keep requesting for
more work until all the F1DFS blocks have been assigned.
The scheduler returns an empty list when there are no blocks
to assign. On each call the F1DFS blocks are assigned using
the same algorithm of static assignment, but instead of one
block per iteration, Ν blocks are assigned to the database
worker making the request.

Referring now to FIG. 9, a schematic of an example of a
computing node is shown. Computing node 10 is only one
example of a suitable computing node and is not intended to
suggest any limitation as to the scope of use or functionality
of embodiments of the invention described herein. Regard­
less, computing node 10 is capable of being implemented
and/or performing any of the functionality set forth herein­
above.

In computing node 10 there is a computer system/server
12, which is operational with numerous other general pur­
pose or special purpose computing system environments or
configurations. Examples of well-known computing sys­
tems, environments, and/or configurations that may be suit­
able for use with computer sy stem/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys­
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib­
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 9, computer system/server 12 in com­
puting node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control­
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi­
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

11
System memory 28 can include computer system readable

media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com­
puter system/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor­
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov­
able, non-volatile magnetic media (not shown and typically
called a “hard drive”). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non­
volatile magnetic disk (e.g., a “floppy disk”), and an optical
disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple­
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 22. Still yet, com­
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under­
stood that although not shown, other hardware and/or soft­
ware components could be used in conjunction with com­
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod­
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory

12

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2

(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore­
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave­
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com­
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan­
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec­
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro­
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod­
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple­
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro­

13
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process­
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple­
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow­
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro­
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi­
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia­
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech­
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:
1. A method comprising:
receiving a database query for table data;
retrieving metadata for a plurality of blocks in a distrib­

uted file system from a distributed metadata store, each
of the plurality of blocks containing a subset of the
table data;

receiving at a scheduler a plurality of requests for work
from a plurality of requestors, each of the plurality of
requestors comprising a database worker; and

providing by the scheduler an assignment of one or more
of the plurality of blocks to the plurality of requestors,

14

5

10

15

20

25

30

35

40

45

50

55

60

65

US 9,576,000 Β2

such that each of the plurality of blocks is assigned, and
wherein a first of the plurality of requestors having no
local blocks of the plurality of blocks is assigned a
remote block of the plurality of blocks associated with
a second requestor of the plurality of requestors having
a largest list of local blocks to be assigned.

2. The method of claim 1, wherein the metadata store is
ZooKeeper.

3. The method of claim 1, wherein the file system is
HDFS and the blocks are splits.

4. The method of claim 1, wherein the file system com­
prises a plurality of splits, and each of the plurality of splits
comprises a plurality of the blocks of the distributed file
system.

5. The method of claim 1, wherein the table data com­
prises a plurality of files and each of the plurality of files
comprises at least one of the plurality of blocks, the method
further comprising:

determining from a file system the blocks included in each
of the plurality of files.

6. The method of claim 1, wherein the assignment is of a
predetermined number of the plurality of blocks.

7. The method of claim 1, wherein the assignment is of
only those of the plurality of blocks necessary for the
database process to complete a first query.

8. The method of claim 1, wherein the assignment is of
blocks local to at least one requestor.

9. A computer program product for assigning data in a
distributed file system to database workers, the computer
program product comprising a computer readable storage
medium having program instructions embodied therewith,
the program instructions executable by a processor to cause
the processor to perform a method comprising:

receiving a database query for table data;
retrieving metadata for a plurality of blocks in a distrib­

uted file system from a distributed metadata store, each
of the plurality of blocks containing a subset of the
table data;

15
receiving at a scheduler a plurality of requests for work

from a plurality of requestors, each of the plurality of
requestors comprising a database worker;

providing by the scheduler an assignment of one or more
of the plurality of blocks to the plurality of requestors,
such that each of the plurality of blocks is assigned, and
wherein a first of the plurality of requestors having no
local blocks of the plurality of blocks is assigned a
remote block of the plurality of blocks associated with
a second requestor of the plurality of requestors having
a largest list of local blocks to be assigned.

10. The computer program product of claim 9, wherein
the table data comprises a plurality of files and each of the
plurality of files comprises at least one of the plurality of
blocks, the method further comprising:

determining from a file system the blocks included in each
of the plurality of files.

11. The computer program product of claim 9, wherein the
assignment is of a predetermined number of the plurality of
blocks.

12. The computer program product of claim 9, wherein
the assignment is of only those of the plurality of blocks
necessary for the database process to complete a first query.

13. The computer program product of claim 9, wherein
the assignment is of blocks local to at least one requestor.

14. The computer program product of claim 9, wherein
the metadata store is ZooKeeper.

15. The computer program product of claim 9, wherein
the file system is HDFS and the blocks are splits.

16. The computer program product of claim 9, wherein
the file system comprises a plurality of splits, and each of the
plurality of splits comprises a plurality of the blocks of the
distributed file system.

16

5

10

15

20

25

30

35

	Bibliographic data
	Abstract
	Description
	Claims
	Drawings

