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ment, a method of and computer program product for 
assignment of data blocks to database workers are provided. 
A request for table data is received. Metadata for a plurality 
of blocks in a file system is retrieved from a metadata store. 
Each of the plurality of blocks contains a subset of the table 
data. A request for work is received from a requestor. An 
assignment of one or more of the plurality of blocks is 
provided to the requestor.
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ADAPTIVE FRAGMENT ASSIGNMENT FOR 
PROCESSING FILE DATA IN A DATABASE

BACKGROUND

Embodiments of the present invention relate to fragment 
assignment for processing file data in a database, and more 
specifically, to scheduling mechanisms for assigning data in 
a distributed file system to database workers.

BRIEF SUMMARY

According to one embodiment of the present invention, a 
method of and computer program product for assignment of 
data blocks to database workers are provided. Metadata of a 
plurality of blocks of a file system is stored in a metadata 
store. A process is executed that requires data from at least 
one of the blocks of the file system. Exclusive access to the 
at least one of the blocks is acquired. Data from the at least 
one of the blocks is supplied to the process.

According to another embodiment of the present inven­
tion, a method of and computer program product for assign­
ment of data blocks to database workers are provided. A 
request for table data is received. Metadata for a plurality of 
blocks in a file system is retrieved from a metadata store. 
Each of the plurality of blocks contains a subset of the table 
data. A request for work is received from a requestor. An 
assignment of one or more of the plurality of blocks is 
provided to the requestor.

According to another embodiment of the present inven­
tion, a system for assignment of data blocks to database 
workers is provided. The system includes a plurality of data 
nodes each comprising a plurality of data blocks, a plurality 
of database workers, a metadata store comprising metadata 
of the plurality of data blocks, and a scheduler. The sched­
uler receives requests for table data. The scheduler retrieves 
metadata for the plurality of blocks from the metadata store. 
Each of the plurality of blocks contains a subset of the table 
data. The scheduler receives a request for work from a 
requestor. The scheduler provides an assignment of one or 
more of the plurality of blocks to the requestor.

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS

FIG. 1 depicts a method of running an adaptive user 
defined function according to en embodiment of the present 
disclosure.

FIG. 2 depicts an exemplary workflow of an Adaptive 
MapReduce application.

FIG. 3 depicts an exemplary workflow for adaptive file 
parallelism according to an embodiment of the present 
disclosure.

FIG. 4 depicts a protocol for parallel registration accord­
ing to embodiments of the present disclosure.

FIG. 5 depicts the protocol for the register phase of 
parallel registration according to embodiments of the present 
disclosure.

FIG. 6 depicts the protocol for the check phase of parallel 
registration according to embodiments of the present dis­
closure.

FIG. 7 depicts an optimized single-read protocol accord­
ing to embodiments of the present disclosure.

FIG. 8 depicts a scheduler according to embodiments of 
the present disclosure.

1
FIG. 9 depicts a computing node according to an embodi­

ment of the present invention.

DETAILED DESCRIPTION

According to embodiments of the present disclosure, 
mechanisms are provided to assign portions of one or more 
files stored in a distributed file system (DFS) to workers in 
a parallel database dynamically as the file is processed at 
run-time. In many enterprises, only a small percentage of 
enterprise data is stored in a relational database. Instead, 
most data is stored in a file system. There is a need to 
process, combine and correlate data in relational databases 
with the data stored in DFS. Relational databases may 
provide mechanisms including external table functions and 
federation techniques to ingest file data to the database. In a 
parallel database setting, a database optimizer may create a 
static plan and the file data may be partitioned statically 
among the database workers. There remains a need in the art 
for a mechanism to dynamically assign portions of a given 
file to database workers and hence provide the ability to 
balance work adaptively.

Distributed File Systems (DFS) include Google File Sys­
tem (GFS), Ceph, Windows Distributed File System, Fraun­
hofer Parallel File System (FhGFS), GlusterFS, Lustre, 
Ibrix, and Hadoop distributed file system (HDFS). Although 
several exemplary embodiments herein are described with 
respect to HDFS, the systems and methods of the present 
disclosure may be applied to other distributed file systems 
according to the present disclosure.

In some embodiments of the present disclosure, adaptive 
assignment mechanisms are provided that make use of a 
Distributed MetaData Store (DMDS). In some embodi­
ments, the DMDS is Apache ZooKeeper. The DMDS stores 
a global status of file partitions. Such file partitions may be 
referred to as “splits,” for example in HDFS. File partitions 
may also be referred to as blocks, for example in other DFS. 
Database Workers lock splits in the DMDS in order to 
acquire exclusive access before processing them. By keep­
ing processing units small, this mechanism allows dynami­
cally balancing the work among the database workers.

Providing a fixed assignment of input files to database 
partitions using a control file has certain disadvantage in a 
distributed database. This approach requires generating 
many files, and a plan for ingestion into the database. 
However, HDFS stores data independent of a DBMS. More­
over, static assignment may not be possible in systems that 
organize data outside of the control of the database. Another 
alternative would be to provide static assignment using 
HDFS metadata. However, this approach would not balance 
the load dynamically and account for slower nodes. For 
example, if a partition is slower than others, then it is not 
possible to reassign its work to other nodes. This slow node 
will cause long evaluation times. In addition, the require­
ment to split large input files manually into smaller files may 
impose a burden on the user.

Adaptive file parallelism according to embodiments of the 
present disclosure avoids the limitations of a fixed assign­
ment of input files to database partitions. As set forth further 
below, input splits are created automatically and a dynamic 
assignment of these splits is made to the workers at runtime. 
Situation aware mappers may be implemented in a MapRe­
duce system such as a Hadoop, using Jaql, HDFS and 
Adaptive MapReduce. In some implementations using 
Hadoop, User Defined Functions (UDF) may be defined that 
perform various of the methods set out herein. In some 
embodiments, one or more UDF are independent from a
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running Hadoop instance. Wrapper classes may be defined 
that allow any Hadoop InputFormat^^ to read data using 
user-defined parallel table functions. Alternatively, some 
embodiments may be implemented by a database process 
rather than a UDF. This process may be integrated into the 
database platform, or may be included through a library or 
plugin. Although various exemplary embodiments herein 
refer to a UDF, these are to be understood as including 
implementations using a more general database process.

With reference now to FIG. 1, a method of running an 
adaptive user defined function is provided. In a registration 
phase 101, a data structure is created 111. Input splits are 
registered 112 to this structure. In some embodiments, the 
data structure is created in a DMDS such as Apache Zoo- 
Keeper. Creation of the data structure may comprise creation 
of a new folder or the creation of a status flag without 
reference to external data. In some embodiments, registra­
tion of a split may include saving a description of the split 
in the DMDS. In some embodiments, pre-existing splits are 
registered in the registration phase. In other embodiments, 
splits are generated during the registration phase. In such 
embodiments, an InputFormat^^ may be used to get 
descriptions of input splits for registration. Descriptions may 
contain the path of an input file, an offset and the number of 
bytes to read.

In a check phase 102, the database partition waits for 
other partitions currently in the register phase.

In a read phase 103 a script is executed. The result is 
parsed and returned to the database as a table. In some 
embodiments, the script comprises Jaql code. In such 
embodiments, each read statement included in the Jaql script 
provided by a user may be referred to as a read task. In other 
embodiments, alternative tools including but not limited to 
Impala and Hive are used to execute the script that reads the 
file data. These tools may exploit map reduce jobs to execute 
the script, or utilize other mechanisms, such as long running 
daemons. In some embodiments, these tools run in a special 
database process and do not require map reduce at all. 
Although various exemplary embodiments herein refer to 
Jaql, these are to be understood as including implementa­
tions using other Hadoop systems as well.

In some embodiments, Adaptive Map Reduce (MR) is 
used. In a standard MR application there are some assump­
tions. One of them is that each Mapper in a Hadoop Map 
Reduce job runs fully individually and in isolation. Adaptive 
MR departs from this assumption while integrating a com­
munication protocol that allows each mapper to communi­
cate with others through distributed meta-data storage. Situ­
ation-Aware Mappers (SAMs) are able to optimize the 
execution of the program at run time depending on the 
global state of the application. In some embodiments, the 
application status is saved at a ZooKeeper server. The 
amount of work a mapper does effects the overall perfor­
mance of an MR job. If a mapper does too little, then the MR 
job will have too many mappers and resulting overhead. If 
a mapper does too much, then there are fewer checkpoints 
and the degree of parallelism goes down. SAMs adjust the 
amount of work done by a mapper adaptively at run time.

In some embodiments of the present disclosure, the par­
allelism is driven by the database and not by Hadoop. 
Instead of having mappers in place, there is a completely 
separated Jaql instance on each logical database partition 
that is started by a parallel Java UDF. The Jaql instance on 
each logical DB partition is started with identical param­
eters.

Referring to FIG. 2, an exemplary workflow of an Adap­
tive MapReduce application is depicted. MapReduce client

3
201 creates 202 the data structures 203 in a DMDS 204 such 
as Zookeeper. MapReduce client 201 takes care of the 
generation of input splits and the physical location of these 
splits. In exemplary data structure 203, the location folder 
205 holds all splits by location while the assignment of the 
splits will get saved in the assignment folder 206. However, 
alternative data structures that associate splits with locations 
may be used in various embodiments of the present disclo­
sure. When splits are saved in DMDS 204 they do not 
contain the real data but a description of the split. In some 
embodiments, the description may include the path to the 
file, an offset, and the number of bytes that belong to the 
split.

MapReduce client 201 uses virtual splits to start mappers 
207, 208. Multiple mappers may be started spread over 
multiple hosts 209, 210—the arrangement of mappers 207, 
208 on host 209 is merely exemplary. In some embodiments, 
each mapper may connect automatically to the DMDS. For 
example, in Hadoop, an InputSplit^^ may connect to the 
DMDS upon initialization. Each virtual split selects the list 
of locally available real splits 211 from the DMDS 204. For 
example, as pictured, Splitl 212 is available locally on 
Hostl 209. The adaptive Mapper selects a random Split from 
the list and tries to lock 213 this split. A Split is locked if a 
lock flag 214 is set in the assigned folder 206. If the lock was 
successful the SAM can process the split. The selection and 
locking processes repeat until all locally available real splits 
are locked. This allows each adaptive mapper is able to 
process multiple input splits.

Referring to FIG. 3 an exemplary workflow is provided 
for processing of a UDF using adaptive file parallelism. In 
this exemplary workflow, nodes 301Α . . . Ν run Jaql 
processes 302Α . . . Ν. Initially, node 301Ν generates and 
registers input splits 303 while the other nodes wait 
304Α . . . Β. The splits are registered 305 to a DMDS 306 
such as Zookeeper. As each Jaql process 302Α . . . Ν runs, 
the next split to process is requested 307 from DMDS 306. 
After each Jaql process 302Α... Ν has completed, the JSON 
output is merged and converted to a table 308. In embodi­
ments in which alternatives to Jaql are used, the data can be 
read as text or from a binary format.

In some embodiments, registration phase 101 handles 
registration of a single task and registration of multiple tasks 
separately. This separate handling may be provided through 
two functions optimized to register a single task and to 
register multiple tasks, respectively.

In the case of a single read task, the registration step 
cannot run in parallel, because at the beginning of each task 
some partition has to create the structures that are accessed 
by all UDF instances during the read phase. So, one of the 
DB partitions must be first, and gets permission to run the 
register phase. The other instances will directly proceed with 
the check phase.

In the case of multiple read tasks, the registration phase 
can run in parallel. This allows different UDF instances to 
register the splits for different read tasks. Because of the 
higher complexity in the register phase, the usage of the 
function optimized to register multiple tasks creates over­
head if it is used to register only one task. However, the 
benefit outweighs the overhead when creating multiple 
tasks.

In an exemplary embodiment, the registration function is 
defined according to Inset 1, below. In this embodiments, the 
registration function has five parameters: JaqlScript, provid­
ing the path to the Jaql script the user wants to run; confJson, 
configuration parameters required for the reading task pro­
viding the input argument of Jaql’s read function, which it
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is also referred to as the input descriptor; frequency, pro­
viding time in milliseconds to wait in the check phase before 
checking the creation status of a task again; timeout, pro­
viding the time in milliseconds in the check phase after 
which the function will abort with an exception if the task(s) 
is/are not completely created; linesToSkip, providing a spe­
cific number of lines in the beginning of Jaql’s temporary 
output file to be skipped without evaluation. In addition to 
these parameters, a list of predicates to be evaluated and a 
list of columns to be returned may also be included in 
various embodiments.

5

CREATE FUNCTION ΖΚ TABLE SE
( VARCHAR(255) ,VARCHAR(2000) .INTEGER, INTEGER, 
INTEGER)
RETURNS GENERIC TABLE
EXTERNAL NAME ‘sqlmrJaqlJAR:com.ibm.sqlmrJaql.

ZK_TABLE_SE.ZK_TABLE_RUN’
LANGUAGE JAVA
SPECIFIC zktablese
PARAMETER STYLE DB2GENERAL
DETERMINISTIC
FENCED THREADSAFE
NOT NULL CALL
NO SQL
NO EXTERNAL ACTION 
NO SCRATCHPAD 
NO FINAL CALL
ALLOW PARALLEL EXECUTE ON ALL DATABASE 
PARTITIONS

RESULT TABLE DISTRIBUTED 
DBINFO;

Referring to FIG. 4, a protocol for parallel registration 
according to embodiments of the present disclosure is pro­
vided. In some embodiments, the protocol is implemented 
by adaptive Java UDFs. Flowever, one of skill in the art will 
appreciate that alternative implementations, for example in 
other languages, will not depart from the scope of the 
present disclosure. As depicted in FIG. 4, there are two 
queues. Queue 1 is for tasks that this instance is trying to 
register. Queue 2 is for tasks that this instance is waiting for 
others to register. After the program starts 401, all task 
names are added to queue 1 402. Then the subprogram 
register 403 gets executed for each of these tasks. The 
program flow depicted in FIG. 4 gets executed on each 
partition of the database in parallel.

Referring now to FIG. 5, a register subprogram according 
to embodiments of the present disclosure is depicted. This 
subprogram will try to register the first task 502, which in 
some embodiments includes creating the required folder in 
a DMDS such as ZooKeeper. It is determined whether 
registration was successful 503. If the data node or folder is 
already there, it may be inferred that one of the other 
partitions was faster. In embodiments using ZooKeeper, a 
KeeperExceptionjava called NodeExistsExceptionjava will be 
thrown 508, however, another indication may be provided 
by alternative implementations. In this case the current first 
task from queue 1 gets added to queue 2 509 and removed 
from queue 1 507 before the subprogram ends 514. This 
procedure will repeat 404 for each task in queue 1. Queue 2 
will contain all tasks which are not created by the specific 
instance of the UDF and whose creation status needs to be 
checked in check phase 405.

If the registration was successful 503 the UDF will create 
and register the input splits 504 to the DMDS. In some 
embodiments, the Java Class Loader is used to create an 
instance of the real InputFormaq,^ and call its getSplits

method. In some embodiments, the register step 403 is 
completely implemented in the UDF. This means that in 
Java-based implementations, the InputFormat^^ is invoked 
in the UDF before the Jaql script starts running Afterwards 
the UDF tries to set the creation flag 505 that shows the other 
database partitions that all splits of this task are registered 
completely.

Where the creation flag is not successfully set, a parent 
data node (e.g., a parent folder in ZooKeeper) may not exist 
512. In Java-based embodiments, a KeeperExceptionjava 
called NoNodeExistsExceptionjava may be thrown 512. This 
means that the folder that contains all the creation flags was 
not created yet. In this case the program will try to create it 
511 and retry to set the creation flag afterwards. During 
recreation, errors resulting from the existence of the target 
node are ignored. Such errors may arise because of race 
conditions between the UDF instances on different database 
partitions and may indicate that another instance was faster 
with the creation of the parent folder for the creation flags. 
After the flag is set the task gets removed from queue 1 507 
but not added to queue 2, because the current UDF instance 
must not wait for other instances to register the task. As soon 
as queue 1 is empty 404 the UDF will switch to the check 
phase 405.

Referring now to FIG. 6, a protocol for the check phase 
of parallel registration according to embodiments of the 
present disclosure is depicted. In this phase the program will 
wait until all tasks that were not created by its self are 
completely created by other partitions. The UDF checks the 
creation status 602 at a rate determined by the frequency 
parameter at initialization. If a task is marked as created 603, 
the task is removed from queue 2 604. The subprogram ends 
normally 607 if queue 2 is empty and with an exception 606 
if the timeout parameter is reached first 605. In some 
embodiments, an exception anywhere in the UDF that is not 
otherwise described herein will cause the function to termi­
nate abnormally.

Referring now to FIG. 7, an optimized single-read pro­
tocol according to embodiments of the present disclosure is 
depicted. The single-read protocol assumes that there is only 
one task to be created. This allows an optimization in the 
protocol. The two queues are no longer required, because the 
program can directly switch from the creation to the check 
phase if a data node already exists while trying to register the 
task (indicated by, e.g., a NodeExistsException^q. In this 
case the task creation needs to be checked in the check 
phase. Otherwise the UDF instance creates the task on its 
own and can just skip the check phase.

Whenever Jaql reads any data, whether from HDFS, a 
database or from local file system, the Jaql read function is 
used. Since Jaql is based on JSON data type the function 
takes a JSON record as parameter. This record contains the 
classes that should be used for the read and the location(s) 
of the input. In some embodiments, this structure is extended 
to enable adaptive file assignment. The format (InputFor- 
matjaVa) and the configurator (InitializableConfSetter^q in 
the inoptions subrecord is replaced with wrapper classes.

In some embodiments, the replacement format extends 
FilelnputFormaq,^ as an implementation of the InputFor- 
matjava interface. It provides a getSplits and a getRecor- 
dReader method. Normally the getSplits method returns an 
array of InputSplits but in embodiments according to the 
present disclosure, only one fake split is returned. During 
execution, Jaql will call getRecordReader with this fake split 
as a parameter. The method will return a record that manages 
the communication with the DMDS and assigns the real 
splits.
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In some embodiments using Hadoop, a wrapper class 
instead of the real input configurator (instance of Initial- 
izableConfSetter^^) is placed in the inoptions subrecord. 
This ZooKeeperlnputConfigurator^^ creates the 
JobConf,.^ objects required by Hadoop and sets the values 
for the additional parameters. Then it takes the given “real- 
InputConfigurator” parameter value and creates an instance 
of this class using Javas Class Loader. The resulting instance 
is used to set all non-additional configurations to the Job- 
ConfJava object in order to add additional parameters to the 
input of Jaqls read function.

In some embodiments, a similar architecture to store 
configurations is used for the adaptive parallel UDFs as for 
existing input formats. This maintains compatibility with the 
alternative implementations of Adaptive MR, and Jaql.

In some embodiments, at the top level of the JSON input 
record four new key value pairs are required. “realConfigu- 
rator” takes the InitializableConfSetter,^ and “reallnput- 
Format” takes the InputFormat^^ where replaced with 
wrapper classes. “taskName” contains a unique name for the 
task defined by the user. “numberOfSplits” specifies how 
many splits are created and registered to ZooKeeper.

In an exemplary case, a user can get a word count for each 
word included in multiple input files. An adaptive file 
assignment is provided, optimized for multiple tasks. As the 
first step the user specifies a unique task name for each read 
task (e.g., taskl, task2 and task3). According to this the input 
files are called inputFilel, inputFile2 and inputFile3 assum­
ing that these placeholders contain absolute paths of the 
input files.

Because the user should not be asked to type the JSON 
input for the Jaql read function twice, this value is referred 
in the Jaql script with markers which get replaced by the 
UDF, as shown in Inset 2.

Inset 2

read ( Staskl ) -> transform strSplit ( $ , “ ” ) -> expand ;
read ( $task2 ) -> transform strSplit ( $ , “ ” ) -> expand ;
read ( $task3 ) -> transform strSplit ( $ , “ ” ) -> expand ;

Assuming that all input files are standard text files, the 
SQL query for the word count looks like shown in Inset 3. 
Although this is a relatively simple example, the systems 
and method of the present disclosure provide the ability to 
handle combined data sources with various types in a single 
query.

SELECT word , COUNT( * ) AS count 
FROM

TABLE(ZK TABLE ΕΕ( ‘test.jaql’ , ‘{
“location”: “inputFilel”,

“taskName”: “taskl”,
“numberOfSplits”: 10,
“reallnputFormat”: “com.ibm.biginsights.compress.mapred.

CompressedTextlnputFormat”,
“realConfigurator”: “com.ibm.jaql.io.hadoop.

FilelnputConfigurator”,
“inoptions”: {

“adapter”: “com.ibm.jaql.io.hadoop.
DefaultHadoopInputAdapter”,

“format”: “com.ibm.zookeeper.jaqlsqlmr. 
LinesTestlnputFormat”,

8
-continued

“configurator”: “com.ibm.zookeeper.jaqlsqlmr.
TestlnputConfigurator”,

“converter”: “com.ibm.jaql.io.hadoop. 
FromLinesConverter”

}i{
“location”: “inputFile2”,
“taskName”: “task2”,
“numberOfSplits”: 10,
“reallnputFormat”: “com.ibm.biginsights.compress.mapred.

CompressedTextlnputFormat”,
“realConfigurator”: “com.ibm.jaql.io.hadoop.

FilelnputConfigurator”,
“inoptions”: {

“adapter”: “com.ibm.jaql.io.hadoop.
DefaultHadoopInputAdapter”,

“format”: “com.ibm.zookeeper.jaqlsqlmr.
LinesTestlnputFormat”,

“configurator”: “com.ibm.zookeeper.jaqlsqlmr.
TestlnputConfigurator”,

“converter”: “com.ibm.jaql.io.hadoop. 
FromLinesConverter”

}[-]
}’ ,1000 ,120000 ,0) ) AS A (word VARCHAR(30 ) ) 

GROUP BY word ;

The final result table in the database contains all word 
with their count, as shown in Inset 4.

Inset 4

“sollicitudin” 24 
“taciti” 3 
“ultrices.” 6 
“varius” 27 
“velit” 12 
“venenatis.” 3

“vulputate” 24
291 record ( s ) selected.

Referring now to FIG. 8, a scheduler according to 
embodiments of the present disclosure is depicted. FIG. 8 
shows a central and separate scheduler for assignment of 
HDFS blocks to readers. Coordinator 801 passes the name 
of the table to be read 802, and the split elimination 
predicates to scheduler 803 (prepareForScan). Scheduler
803 consults a Hadoop catalogue (for example, HCatalog)
804 for inputFormat and split information; first it checks an 
optional cache for table metadata, then goes to meta-store, if 
needed. In some embodiments, HCatalog is a DMDS as 
described above. Scheduler 803 runs partition elimination, 
runs getSplits, applies split elimination (if needed), and 
inserts the list of splits 805 in its in-memory work assign­
ment data structure. Scheduler 803 generates a unique id for 
the scan, and returns 806 the scanID and the list of HDFS 
nodes that contain table data to the database coordinator 801, 
which sends 807 subsections to those nodes 808Α . . . Ν. 
Nodes 808Α . . . Ν, which in some embodiments may 
include Impala-based readers, make requests 809 for work 
from the scheduler 803. Readers can also use Jaql scripts 
without map reduce functions, or the I/O layer of any 
Hadoop system such as Hive or Impala, or any special 
program that reads data from HDFS. The scheduler 803 
returns split assignments (η at a time). At the first call, the 
scheduler also returns the table metadata.

In some embodiments using a central scheduler, scatter 
partitioning is assumed for Hadoop tables. The scheduler
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makes a best effort to provide data locality. It can also make 
remote data block assignments. The scheduler will make 
sure that each data block is assigned to a single HDFS 
reader, and that all blocks are assigned. In some embodi­
ments, the scheduler uses a db2 node.cfg file to find the 
locations of DB2 workers (hence impala readers in such 
embodiments). In other embodiments, the database sends its 
cluster state to the scheduler when the scheduler starts, and 
this information is refreshed as needed during execution. If 
the coordinator (e.g., a DB2 coordinator) detects a node 
failure when trying to send a subsection, the database engine 
(e.g., DB2) ignores it and sends the section to the other 
nodes in the list sent by the scheduler. The scheduler will 
make sure to assign all the splits of the table to readers. If 
a node fails after the readers start reading, the query aborts.

Various scheduling algorithms may be employed by a 
scheduler in accordance with the present disclosure.

In some embodiments, a static scheduling algorithm is 
employed. The scheduler distributes the total number splits 
to the available nodes, as evenly as possible. It tries to 
maximize local data assignments. It uses a round robin 
algorithm and an in-memory matrix to make sure all splits 
are assigned to the DB2 nodes. In one embodiment, the 
scheduler picks a DB2 node and it first tries to assign a local 
split, if not possible it assigns a remote split. For remote split 
assignment, it first looks for splits that are not local to any 
other DB2 node, if not possible, it then picks a split from the 
DB2 with the largest list of local splits to be assigned. Once 
a split is assigned, it picks another DB2 node and repeats the 
algorithm until all the splits are assigned.

In other embodiments, a dynamic scheduling algorithm is 
employed. In one such embodiment, DB2 readers on each 
call request Ν splits, where Ν is a tunable parameter 
(specified in the scheduler configuration file). Once a DB2 
reader has read all the assigned splits it requests another Ν. 
They keep requesting for more work until all the splits have 
been assigned. On each call the splits are assigned using the 
same algorithm of static assignment, but instead of one split 
per iteration, “N” splits are assigned to the DB2 node 
making the request.

In a shared storage, F1DFS data nodes may co-exist with 
DB2 nodes. DB2 nodes that are also F1DFS data nodes with 
the data to be scanned may be referred to as hot-nodes. In 
some embodiments, the selection of compute nodes for each 
scan depends on the number of splits that compose a table 
and the number of hot-nodes. If the list of DB2 nodes is a 
subset of the list of table locations, the scheduler uses all the 
DB2 nodes for the scan. If the list of F1DFS data nodes that 
contains table’s data is a subset of the list of DB2 nodes, the 
scheduler uses only hot-nodes. If the list of DB2 nodes 
partly overlaps with the list of F1DFS data nodes that contain 
table’s data, all DB2 nodes that have an overlap, i.e., 
hot-nodes, will be used, as well as some of the other DB2 
nodes without any accompanying F1DFS data node. In the 
latter, the number nodes depends on the total number of 
splits that need to be read.

In shared storage, such as F1DFS running on GSS, the 
F1DFS data nodes are located in a different set of physical 
machines, i.e., hot nodes do not exist. In some such embodi­
ments, there are not any preferred nodes, the scheduling 
algorithms consider all DB2 nodes as hot-nodes.

In an embodiment of the present disclosure, a database 
system is provided that uses shared-nothing ΜΡΡ database 
technology, and processes SQF queries over F1DFS data, 
whether it is shared-nothing or shared storage. To read 
F1DFS data, the database system uses a scan operator. In 
F1DFS, files are divided into blocks. To support the scan
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operator, F1DFS blocks must be assigned to database work­
ers. The scheduler 803 described above is used to assign 
F1DFS blocks within the database system.

The scheduler 803 comprises a set of scheduling algo­
rithms and a data structure to store the state of each scan. In 
some embodiments, the data structure is an in-memory data 
structure, which is a matrix of all F1DFS blocks to be read 
and their location, and all available database nodes. In other 
embodiments, this data structure can be stored in a DMDS, 
such as ZooKeeper.

The scheduler needs to decide which database workers 
will participate in each scan. For this purpose, it needs to 
know the list of active database workers, as well as F1DFS 
data nodes. For the former, the scheduler retrieves the 
information from the database server. The scheduler 
retrieves the list of F1DFS data nodes from the F1DFS name 
node 810.

As noted above, in shared nothing local storage architec­
ture, the F1DFS data nodes co-exist with the database work­
ers. In the context of scan, database workers that are 
collocated with F1DFS data nodes that contain the table data 
are called hot-nodes. In the presence of hot-nodes the 
scheduling algorithms exploit data locality, i.e., they are the 
preferred ones to read the data. The selection depends on the 
number of F1DFS blocks the table has and the number of 
hot-nodes.

If the list of database workers is a subset of the list of table 
locations (list of data nodes that contain table’s data), the 
scheduler uses all the database workers for the scan. If the 
list of F1DFS data nodes that contains table’s data is a subset 
of the list of database workers, the scheduler uses only 
hot-nodes. If the list of database workers partly overlaps 
with the list of F1DFS data nodes that contain table’s data, all 
database workers that are in the overlap, i.e., hot-nodes, will 
be used, as well as some of the other database workers, 
which do not have a collocated F1DFS data node. In the latter 
the number such workers depends on the total number of 
F1DFS blocks that need to be read. In this case the latter set 
of database workers will be reading remotely.

In shared storage, such as F1DFS running on GSS, the 
F1DFS data nodes are located in a different set of physical 
machines, i.e., hot nodes do not exist. In such a scenario 
there is no preferred nodes, the scheduling algorithms con­
sider all database workers as hot-nodes, and they all read 
remote F1DFS blocks.

For each scan, a ScanState represents the scheduling 
decisions taken for a specific scan during its execution. The 
scheduling decision is done using two scheduling algo­
rithms: static and dynamic.

For static assignment the database workers make a single 
call to the scheduler, and get back both their block assign­
ments as well as the table metadata. The scheduler distrib­
utes the total number blocks to the available database 
workers, as evenly as possible, while maximizing local data 
assignments. For this purpose, it uses a round robin algo­
rithm and an in-memory matrix to make sure all blocks are 
assigned to the database workers. The scheduler picks a 
database worker and it first tries to assign a local F1DFS 
block. If this is not possible, then it assigns a remote F1DFS 
block. For remote block assignment, it first looks for blocks 
that are not local to any other database workers. If there are 
none, it then picks an F1DFS block from the database worker 
with the largest list of local F1DFS blocks that need to be 
assigned. Once a block is assigned, it picks another database 
worker and repeats the algorithm until all the blocks are 
assigned.
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For dynamic assignment, the database workers on each 
call request Ν F1DFS blocks, where Ν is a tunable parameter 
(specified in the scheduler configuration file). Once a data­
base worker has read all its assigned blocks it requests 
another set of Ν F1DFS blocks. They keep requesting for 
more work until all the F1DFS blocks have been assigned. 
The scheduler returns an empty list when there are no blocks 
to assign. On each call the F1DFS blocks are assigned using 
the same algorithm of static assignment, but instead of one 
block per iteration, Ν blocks are assigned to the database 
worker making the request.

Referring now to FIG. 9, a schematic of an example of a 
computing node is shown. Computing node 10 is only one 
example of a suitable computing node and is not intended to 
suggest any limitation as to the scope of use or functionality 
of embodiments of the invention described herein. Regard­
less, computing node 10 is capable of being implemented 
and/or performing any of the functionality set forth herein­
above.

In computing node 10 there is a computer system/server 
12, which is operational with numerous other general pur­
pose or special purpose computing system environments or 
configurations. Examples of well-known computing sys­
tems, environments, and/or configurations that may be suit­
able for use with computer sy stem/server 12 include, but are 
not limited to, personal computer systems, server computer 
systems, thin clients, thick clients, handheld or laptop 
devices, multiprocessor systems, microprocessor-based sys­
tems, set top boxes, programmable consumer electronics, 
network PCs, minicomputer systems, mainframe computer 
systems, and distributed cloud computing environments that 
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the 
general context of computer system-executable instructions, 
such as program modules, being executed by a computer 
system. Generally, program modules may include routines, 
programs, objects, components, logic, data structures, and so 
on that perform particular tasks or implement particular 
abstract data types. Computer system/server 12 may be 
practiced in distributed cloud computing environments 
where tasks are performed by remote processing devices that 
are linked through a communications network. In a distrib­
uted cloud computing environment, program modules may 
be located in both local and remote computer system storage 
media including memory storage devices.

As shown in FIG. 9, computer system/server 12 in com­
puting node 10 is shown in the form of a general-purpose 
computing device. The components of computer system/ 
server 12 may include, but are not limited to, one or more 
processors or processing units 16, a system memory 28, and 
a bus 18 that couples various system components including 
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of 
bus structures, including a memory bus or memory control­
ler, a peripheral bus, an accelerated graphics port, and a 
processor or local bus using any of a variety of bus archi­
tectures. By way of example, and not limitation, such 
architectures include Industry Standard Architecture (ISA) 
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA 
(EISA) bus, Video Electronics Standards Association 
(VESA) local bus, and Peripheral Component Interconnect 
(PCI) bus.

Computer system/server 12 typically includes a variety of 
computer system readable media. Such media may be any 
available media that is accessible by computer system/server 
12, and it includes both volatile and non-volatile media, 
removable and non-removable media.

11
System memory 28 can include computer system readable 

media in the form of volatile memory, such as random 
access memory (RAM) 30 and/or cache memory 32. Com­
puter system/server 12 may further include other removable/ 
non-removable, volatile/non-volatile computer system stor­
age media. By way of example only, storage system 34 can 
be provided for reading from and writing to a non-remov­
able, non-volatile magnetic media (not shown and typically 
called a “hard drive”). Although not shown, a magnetic disk 
drive for reading from and writing to a removable, non­
volatile magnetic disk (e.g., a “floppy disk”), and an optical 
disk drive for reading from or writing to a removable, 
non-volatile optical disk such as a CD-ROM, DVD-ROM or 
other optical media can be provided. In such instances, each 
can be connected to bus 18 by one or more data media 
interfaces. As will be further depicted and described below, 
memory 28 may include at least one program product having 
a set (e.g., at least one) of program modules that are 
configured to carry out the functions of embodiments of the 
invention.

Program/utility 40, having a set (at least one) of program 
modules 42, may be stored in memory 28 by way of 
example, and not limitation, as well as an operating system, 
one or more application programs, other program modules, 
and program data. Each of the operating system, one or more 
application programs, other program modules, and program 
data or some combination thereof, may include an imple­
mentation of a networking environment. Program modules 
42 generally carry out the functions and/or methodologies of 
embodiments of the invention as described herein.

Computer system/server 12 may also communicate with 
one or more external devices 14 such as a keyboard, a 
pointing device, a display 24, etc.; one or more devices that 
enable a user to interact with computer system/server 12; 
and/or any devices (e.g., network card, modem, etc.) that 
enable computer system/server 12 to communicate with one 
or more other computing devices. Such communication can 
occur via Input/Output (I/O) interfaces 22. Still yet, com­
puter system/server 12 can communicate with one or more 
networks such as a local area network (LAN), a general wide 
area network (WAN), and/or a public network (e.g., the 
Internet) via network adapter 20. As depicted, network 
adapter 20 communicates with the other components of 
computer system/server 12 via bus 18. It should be under­
stood that although not shown, other hardware and/or soft­
ware components could be used in conjunction with com­
puter system/server 12. Examples, include, but are not 
limited to: microcode, device drivers, redundant processing 
units, external disk drive arrays, RAID systems, tape drives, 
and data archival storage systems, etc.

The present invention may be a system, a method, and/or 
a computer program product. The computer program prod­
uct may include a computer readable storage medium (or 
media) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention.

The computer readable storage medium can be a tangible 
device that can retain and store instructions for use by an 
instruction execution device. The computer readable storage 
medium may be, for example, but is not limited to, an 
electronic storage device, a magnetic storage device, an 
optical storage device, an electromagnetic storage device, a 
semiconductor storage device, or any suitable combination 
of the foregoing. A non-exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following: a portable computer diskette, a hard disk, a 
random access memory (RAM), a read-only memory
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(ROM), an erasable programmable read-only memory 
(EPROM or Flash memory), a static random access memory 
(SRAM), a portable compact disc read-only memory (CD- 
ROM), a digital versatile disk (DVD), a memory stick, a 
floppy disk, a mechanically encoded device such as punch- 
cards or raised structures in a groove having instructions 
recorded thereon, and any suitable combination of the fore­
going. A computer readable storage medium, as used herein, 
is not to be construed as being transitory signals per se, such 
as radio waves or other freely propagating electromagnetic 
waves, electromagnetic waves propagating through a wave­
guide or other transmission media (e.g., light pulses passing 
through a fiber-optic cable), or electrical signals transmitted 
through a wire.

Computer readable program instructions described herein 
can be downloaded to respective computing/processing 
devices from a computer readable storage medium or to an 
external computer or external storage device via a network, 
for example, the Internet, a local area network, a wide area 
network and/or a wireless network. The network may com­
prise copper transmission cables, optical transmission fibers, 
wireless transmission, routers, firewalls, switches, gateway 
computers and/or edge servers. A network adapter card or 
network interface in each computing/processing device 
receives computer readable program instructions from the 
network and forwards the computer readable program 
instructions for storage in a computer readable storage 
medium within the respective computing/processing device.

Computer readable program instructions for carrying out 
operations of the present invention may be assembler 
instructions, instruction-set-architecture (ISA) instructions, 
machine instructions, machine dependent instructions, 
microcode, firmware instructions, state-setting data, or 
either source code or object code written in any combination 
of one or more programming languages, including an object 
oriented programming language such as Smalltalk, C++ or 
the like, and conventional procedural programming lan­
guages, such as the “C” programming language or similar 
programming languages. The computer readable program 
instructions may execute entirely on the user’s computer, 
partly on the user’s computer, as a stand-alone software 
package, partly on the user’s computer and partly on a 
remote computer or entirely on the remote computer or 
server. In the latter scenario, the remote computer may be 
connected to the user’s computer through any type of 
network, including a local area network (LAN) or a wide 
area network (WAN), or the connection may be made to an 
external computer (for example, through the Internet using 
an Internet Service Provider). In some embodiments, elec­
tronic circuitry including, for example, programmable logic 
circuitry, field-programmable gate arrays (FPGA), or pro­
grammable logic arrays (PLA) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry, in order to perform aspects of the 
present invention.

Aspects of the present invention are described herein with 
reference to flowchart illustrations and/or block diagrams of 
methods, apparatus (systems), and computer program prod­
ucts according to embodiments of the invention. It will be 
understood that each block of the flowchart illustrations 
and/or block diagrams, and combinations of blocks in the 
flowchart illustrations and/or block diagrams, can be imple­
mented by computer readable program instructions.

These computer readable program instructions may be 
provided to a processor of a general purpose computer, 
special purpose computer, or other programmable data pro­
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cessing apparatus to produce a machine, such that the 
instructions, which execute via the processor of the com­
puter or other programmable data processing apparatus, 
create means for implementing the functions/acts specified 
in the flowchart and/or block diagram block or blocks. These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer, a programmable data processing apparatus, and/ 
or other devices to function in a particular manner, such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function/act 
specified in the flowchart and/or block diagram block or 
blocks.

The computer readable program instructions may also be 
loaded onto a computer, other programmable data process­
ing apparatus, or other device to cause a series of operational 
steps to be performed on the computer, other programmable 
apparatus or other device to produce a computer imple­
mented process, such that the instructions which execute on 
the computer, other programmable apparatus, or other 
device implement the functions/acts specified in the flow­
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate 
the architecture, functionality, and operation of possible 
implementations of systems, methods, and computer pro­
gram products according to various embodiments of the 
present invention. In this regard, each block in the flowchart 
or block diagrams may represent a module, segment, or 
portion of instructions, which comprises one or more 
executable instructions for implementing the specified logi­
cal function(s). In some alternative implementations, the 
functions noted in the block may occur out of the order noted 
in the figures. For example, two blocks shown in succession 
may, in fact, be executed substantially concurrently, or the 
blocks may sometimes be executed in the reverse order, 
depending upon the functionality involved. It will also be 
noted that each block of the block diagrams and/or flowchart 
illustration, and combinations of blocks in the block dia­
grams and/or flowchart illustration, can be implemented by 
special purpose hardware-based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the 
present invention have been presented for purposes of 
illustration, but are not intended to be exhaustive or limited 
to the embodiments disclosed. Many modifications and 
variations will be apparent to those of ordinary skill in the 
art without departing from the scope and spirit of the 
described embodiments. The terminology used herein was 
chosen to best explain the principles of the embodiments, the 
practical application or technical improvement over tech­
nologies found in the marketplace, or to enable others of 
ordinary skill in the art to understand the embodiments 
disclosed herein.

What is claimed is:
1. A method comprising: 
receiving a database query for table data; 
retrieving metadata for a plurality of blocks in a distrib­

uted file system from a distributed metadata store, each 
of the plurality of blocks containing a subset of the 
table data;

receiving at a scheduler a plurality of requests for work 
from a plurality of requestors, each of the plurality of 
requestors comprising a database worker; and 

providing by the scheduler an assignment of one or more 
of the plurality of blocks to the plurality of requestors,
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such that each of the plurality of blocks is assigned, and 
wherein a first of the plurality of requestors having no 
local blocks of the plurality of blocks is assigned a 
remote block of the plurality of blocks associated with 
a second requestor of the plurality of requestors having 
a largest list of local blocks to be assigned.

2. The method of claim 1, wherein the metadata store is 
ZooKeeper.

3. The method of claim 1, wherein the file system is 
HDFS and the blocks are splits.

4. The method of claim 1, wherein the file system com­
prises a plurality of splits, and each of the plurality of splits 
comprises a plurality of the blocks of the distributed file 
system.

5. The method of claim 1, wherein the table data com­
prises a plurality of files and each of the plurality of files 
comprises at least one of the plurality of blocks, the method 
further comprising:

determining from a file system the blocks included in each 
of the plurality of files.

6. The method of claim 1, wherein the assignment is of a 
predetermined number of the plurality of blocks.

7. The method of claim 1, wherein the assignment is of 
only those of the plurality of blocks necessary for the 
database process to complete a first query.

8. The method of claim 1, wherein the assignment is of 
blocks local to at least one requestor.

9. A computer program product for assigning data in a 
distributed file system to database workers, the computer 
program product comprising a computer readable storage 
medium having program instructions embodied therewith, 
the program instructions executable by a processor to cause 
the processor to perform a method comprising:

receiving a database query for table data;
retrieving metadata for a plurality of blocks in a distrib­

uted file system from a distributed metadata store, each 
of the plurality of blocks containing a subset of the 
table data;

15
receiving at a scheduler a plurality of requests for work 

from a plurality of requestors, each of the plurality of 
requestors comprising a database worker;

providing by the scheduler an assignment of one or more 
of the plurality of blocks to the plurality of requestors, 
such that each of the plurality of blocks is assigned, and 
wherein a first of the plurality of requestors having no 
local blocks of the plurality of blocks is assigned a 
remote block of the plurality of blocks associated with 
a second requestor of the plurality of requestors having 
a largest list of local blocks to be assigned.

10. The computer program product of claim 9, wherein 
the table data comprises a plurality of files and each of the 
plurality of files comprises at least one of the plurality of 
blocks, the method further comprising:

determining from a file system the blocks included in each 
of the plurality of files.

11. The computer program product of claim 9, wherein the 
assignment is of a predetermined number of the plurality of 
blocks.

12. The computer program product of claim 9, wherein 
the assignment is of only those of the plurality of blocks 
necessary for the database process to complete a first query.

13. The computer program product of claim 9, wherein 
the assignment is of blocks local to at least one requestor.

14. The computer program product of claim 9, wherein 
the metadata store is ZooKeeper.

15. The computer program product of claim 9, wherein 
the file system is HDFS and the blocks are splits.

16. The computer program product of claim 9, wherein 
the file system comprises a plurality of splits, and each of the 
plurality of splits comprises a plurality of the blocks of the 
distributed file system.
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