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Abstract: In this paper we propose a formal extension of type graphs with notions
that are commonplace in the UML and have long proven their worth in that context:
namely, inheritance, multiplicity, containment and the like. We believe the absence
of a comprehensive and commonly agreed upon formalisation of these notions to
be an important and, unfortunately, often ignored omission. Since our eventual aim
(shared by many researchers) is to give unambiguous, formal semantics to the UML
using the theory of graphs and graph transformation, in this paper we propose a set
of definitions to repair this omission. With respect to previous work in this direction,
our aim is to arrive at more comprehensive and at the same time simpler definitions.
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1 Introduction

Software industry is showing an increasing interest in model-driven development. Indeed, we
have little doubt that the future lies in higher-level models to take the place of code, in all but the
most performance critical domains. With this trend, however, the quality of those models is of
increasing importance. By this we do not mean the quality of the product being modelled (which
obviously is the final consideration) but rather of the modelling paradigm. Good models may
not guarantee good software, but on the other hand, a bad (ambiguous, inconsistent or unclear)
model can never be expected to yield a good end product, in particular if the transformation from
model to software is largely automatic.

The quality of models is determined by many aspects, among we believe precision, consis-
tency and completeness to be paramount. The precision of a model corresponds to the lack of
ambiguity, or in other words, the degree to which the model will be understood in exactly the
same way by different persons and tools during the software development process. Consistency
formally means the existence of an (i.e., at least one) instance, or implementation, of the model,
whereas completeness means the inclusion of all relevant aspects, or (in other words) the ability
to predict the behaviour of the system under all circumstances.

The above “quality criteria” have a clear, universally agreed-upon interpretation in the world
of mathematics. To make the benefits of the mathematical interpretation available for everyday
use in the world of software modelling, however, it is imperative that there be a translation from
the latter to the former; in other words, a formal semantics of the modelling language. For
instance, it is commonly agreed that a natural interpretation of (UML-type) diagrams is in terms
of graphs — essentially, just nodes with connecting edges. Indeed, many authors use UML class
(and object) diagrams claiming that they are representations of type graphs. Unfortunately, few
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provide an actual formal underpinning of this claim, or when they do, the semantics covers only
a relatively small part of UML; for instance, [BELT04, LBE+07, KGKK02, TR05]. The most
comprehensive is [VFV06], but even there such basic notions as multiplicities are missing. We
see the absence of a more complete semantics as an important and regrettable omission, although
from a purely formal standpoint, there is little challenge in providing the necessary definitions.
The aim of this work is to bridge the gap between pure formalism and practicality.

Like the papers cited above, in this paper we distinguish the type and instance levels, or in
other words, type graphs and instance graphs. We see a type graph as an intensional defini-
tion of a set of instance graphs, namely, those instance graphs for which it is a correct type.
Type graphs are then enriched with constraints that capture UML concepts such as bi-directional
associations, multiplicities, collection types, inheritance, redefinition of associations, and com-
position relationships. In this, we have based ourselves on the (verbal) descriptions in the UML
2.0 specification [OMG05].

In searching for the aforementioned balance between simplicity and expressiveness of the
semantics, we have used the following guidelines:

• Instance graphs should be as simple and straightforward as we can make them, if necessary
at the price of increasing their sizes. In other words, where there is a choice between
enriching the formalism (resulting in more concise but more complex graphs) or using
larger (sub-)graphs to encode complexity, we have tended to choose in favour of the latter.

• Type graphs should be as close to instance graphs as we can make them; the number of
special features or decorations should be minimised.

We have achieved this by using the concept of a graph constraint, which is essentially a
template for a logical formula on top of an ordinary (type) graph.

The remainder of this paper is structured as follows: after providing the basic definitions to
set the stage in Section 2, we discuss the graph constraints in Section 3. We consider these to
be the heart of our contribution. In Section 4 we relate our constraints to the standardised UML
concepts. Finally, in the conclusion (Section 5) we come back to the above considerations and
re-evaluate our choices.

Unfortunately, it is not possible to include the full set of definitions into this paper. A complete
version can be found in [KR08].

2 Basic concepts

Names and namespaces. UML is a visual language; its “sentences” are diagrams. However, a
major part of any diagram is still text, and so we need conventions for visualising text inside dia-
grams. For this purpose, we define a set of identifiers ID, consisting of a name from a predefined
universe Name, and a namespace from a set NS, defined as follows.

• An identifier is a pair 〈ns,name〉 of a namespace ns and a name name;

• There is a root or top namespace > ∈ NS;

• For every ns ∈ NS and name ∈ Name, the identifier 〈ns,name〉 is again a namespace.
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To visualise an identifier we use a well-known notation, which is less cumbersome than the
angular brackets: the name space and name are separated by a dot, and the top namespace is
omitted altogether. Thus, 〈ns,name〉 is actually written ns.name.

For instance, the identifier a.name.space consists of the name space in the namespace a.name,
which itself is an identifier with namespace a and name name. The identifier a, finally, consists
of the name a in the top name space.

Signatures and algebras. For our definition of model we use the notion of attributed type
graph, as defined in [EPT04]. The ingredients of this definition that are important here are:

• A collection of data sorts Sort, which are in fact identifiers (hence Sort ⊆ ID)

• A collection of carrier sets Data, partitioned into subsets for each of the sorts in Sort.

Graphs. One of the core concepts of this paper is that of graphs. We start by repeating the
usual definition of a directed, multi-sorted graph.

Definition 1 (graph) A graph is a tuple G = 〈Node,Edge,src, tgt〉 where Node is a set of nodes,
Edge a set of (directed) edges, and src, tgt : Edge→Node are source and target functions, respec-
tively.

Note that although this definition does not yet specify node or edge labels, the nodes and
edges do have identities. In some circumstances it will be the case that Node,Edge ⊆ ID and
the identities are actually meaningful to the reader; it then makes sense to include them in a
visualisation of the graph. In particular, this is the case for type graphs — see below.

We will use two kinds of graph: instance graphs and type graphs. Both extend the notion
of graph with some further structure. To start with instance graphs: these have an additional
labelling function that associates an identifier with every node and edge. Furthermore, edges have
indices, which are chosen from the set of natural numbers in such a way that the combination of
source node, index and label together completely determine the edge.

Definition 2 (labelled graph) A labelled graph is a tuple IG = 〈Node,Edge,src, tgt, ix, lab〉
where 〈Node,Edge,src, tgt〉 is a graph and

• ix : Edge→Nat is an indexing function assigning a natural number to every edge;

• lab : (Node∪Edge)→ ID is a labelling of nodes and edges;

• For e1,e2 ∈ Edge, if src(e1) = src(e2), ix(e1) = ix(e2) and lab(e1) = lab(e2), then e1 = e2.

For a given node n ∈ Node and label a ∈ ID, the set of outgoing edges is defined by

out(n,a) = {e ∈ Edge | src(e) = n, lab(e) = a} .

The indices assigned by the function ix are used for two purposes:

• To distinguish edges. Graphs may have distinct edges going out of the same node and
bearing the same label, and even going to the same node (sometimes called parallel edges).
These are useful to represent some UML concepts; in particular, ordered associations and
bags. The indices serve to distinguish such edges, i.e., give them their own identity.
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Figure 1: Example graphical representation of a labelled graph

• To order edges. One of the more powerful UML concepts is that of an ordered association;
this does not only define a one-to-many relation between objects of one type to objects of
another, but also establishes a local ordering over the set of (target) objects related to a
single (source) object.

In contrast to edges, the encoding of node identities is not fixed by the above definition. It
should, however, be understood that there is indeed some distinguishing mechanism, apart from
the labelling function, that tells nodes apart. On the implementation level, for instance, this
mechanism is typically based on memory addresses, or, for nodes in Node∩Data, by the data
value. On the modelling level, the position within a diagram in principle suffices as the distin-
guishing mechanism. On the other hand, for ease of reference it is very common to use symbolic
names for nodes. Thus, we arrive at a graphical representation of labelled graphs based on the
following conventions:

• Nodes are drawn as boxes with inscribed labels. The labels are preceded by a colon (‘:’).
In front of a colon, there may either be a symbolic name, which is in fact itself an element
of Name, but which plays no role in the formal meaning of the graph and in fact has no
counterpart in Definition 2; or, in the case of nodes that are actually data values, the string
representation of the data value may be displayed. (We will see below that the label is
typically the type, which for data values v ∈ Data is given implicitly by type(v).)

• Edges are drawn as arrows with superimposed labels. The labels may be preceded by a
number representing the edge index, separated from the label by a colon; in particular, this
is necessary if there is more than one outgoing edge with that label and the numbering is
needed to determine an ordering.

• As an important special case, edges pointing to nodes that are explicitly identified, either
by data values or by symbolic names, may be represented by inscribed equations of the
form “label = id” or “label:Type = id” instead of arrows.

Labelled graphs are used to represent concrete systems; in other words, they are on the level of
individual programs or object diagrams. An example showing all of the graphical representation
features is given in Figure 1. Here, y and z are symbolic names having no formal meaning within

No \volume defined! 4 / 15



ECEASST

the graph, whereas 10 and “yes” are data values of type Int and String, respectively, and 88, 45
etc. are edge indices.

Graph morphisms. With respect to our aim of providing a sound and comprehensive formal-
isation of UML concepts, one aspect is not yet completely covered, namely the fact that node
identities and edge indices are not uniquely determined by the diagrams. In this sense, the formal
interpretation of the diagrams remains ambiguous.

The reason why we are nevertheless content with this solution is that this ambiguity is not
harmful, because the choice in no way matters to the actual meaning. Put differently, it is al-
lowed to abstract away from the precise identities, provided the nodes and edges remain distin-
guishable. The standard way to formalise this type of argument is by interpreting the structures
under consideration — here, our graphs — up to or modulo some equivalence. In this particu-
lar case, the standard way to define an appropriate equivalence is through the notion of graph
isomorphism.

Definition 3 (graph (iso)morphism) Given two graphs G,H, a morphism from G to H is a pair
of mappings f = ( fNode : NodeG→NodeH , fEdge : EdgeG→EdgeH) such that

• Node and edge labels are preserved: labH ◦ ( fNode∪ fEdge) = labG;

• Sources and targets are preserved: srcH ◦ fEdge = fNode ◦srcG and tgtH ◦ fEdge = fNode ◦ tgtG

f is an isomorphism if fNode and fEdge are bijective, i.e., provide a one-to-one mapping between
NodeG and NodeH , resp. EdgeG and EdgeH . We write G ∼= H (G is isomorphic to H) to denote
that there is an isomorphism from G to H.

It is especially important to realise that (iso)morphisms are not required to either respect node
identities or edge indices, symbolic names, or diagram layout.

For one particular purpose we will later on strengthen the requirements on morphisms, in such
a way that the ordering on edge indices is sometimes required to be preserved; namely, when we
use the index to reflect an ordering over the edges themselves.

Type graphs. For purposes of documentation, structuring and correctness, it is common to
impose a discipline over labelled graphs, comparable to the grammar of programming languages,
or more to the point here, comparable to a class diagram. In particular, we use a type graph to
impose local constraints on the allowed labels and connections between edges and nodes, and
associated constraints to impose other, more sophisticated or less local, properties.

Definition 4 (type graph) A type graph is a tuple TG = 〈NType,EType,src, tgt, inh〉 where

1. NType ⊆ ID is a set of node types and EType ⊆ ID a set of edge types;

2. 〈NType,EType,src, tgt〉 is a graph, with NType as node set and EType as edge set, such that
src(e) = ns(e) for any e ∈ EType;

3. inh ⊆ NType×NType is a reflexive partial ordering relation expressing that some node
types inherit from others. (Reflexivity here means that T inh T holds for all node types
T ∈ NType.)
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Figure 2: Example type graph

We typically use capital letters (T,E) to range over node and edge types.

The condition on the source function of edges (clause 2 in the definition) states that the source
type of an edge is at the same time its name space. Since edge types are identifiers and identifiers
are pairs of names and namespaces, it follows that edge types are uniquely determined by their
source type and name. This setup allows us to use edge types with the same name, but only for
distinct source types — which is consistent with the situation in most, if not all, object-oriented
paradigms.

Also note that inh is a partial order, but not necessarily a forest: this implies that a node type
can extend more than one other node type (in common terminology, our type graphs support
multiple inheritance). At the same time, the partial order nature of inh implies that there can be
no inheritance cycles.

For “node type” in the definition above, one may for most purposes read “class;” the only
difference is that the node types typically include data sorts. We say that TG builds on a signature
if Sort ⊆ NType.

A visual representation of a type graph can be given by drawing every node type as a box
with the type identifier inscribed, every edge type as a “normal” arrow with the edge name as
label, and every extension (i.e., from ext, not inh!) as an unlabelled arrow with triangular arrow
head. Figure 2 shows an example type graph. This is very close to the traditional class diagram
view, except that the data sorts are not treated as special cases (i.e., data type attributes are not
distinguished from associations).

Typing and instance graphs. The meaning of a type graph is defined by the set of its (correctly
typed) instances.1 The idea is that the instances of a type graph TG are labelled graphs with labels
chosen from the types of TG, and consistent with the graph structure of TG modulo inheritance.
To formalise it, we use the following auxiliary notation for arbitrary nodes n and node types T ,
resp. edges e and edge types E:

n:T :⇔ lab(n) inh T

e:E :⇔ lab(e) = E .

In words, n:T expresses that the label of the node n (in the instance graph under consideration) is
a node type that inherits from T . Note that it follows that, for a given n, there can easily be more
than one node type T such that n:T , ranging from T = lab(n) to all generalisations of T . On the
other hand, in case of edges, e:E expresses that lab(e) is exactly the edge type E.
1 Strictly speaking, the meaning is defined by the category of instances and valid morphisms: as mentioned above,
in one case we need to impose additional requirements on the morphisms rather than the graphs.
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Definition 5 (instance graph) Let TG be a type graph. A labelled graph IG is typed by TG, or
an instance graph of TG, if for every node n ∈ Node and every edge e ∈ Edge:

• lab(n) ∈ NType and lab(e) ∈ EType;

• src(e):src(lab(e)) and tgt(e):tgt(lab(e)).

The set of instance graphs of TG is denoted Inst[TG] (but see Footnote 1).

For instance, the labelled graph in Figure 1 is not an instance graph of the type graph in
Figure 2, since it contains several edge labels that are not present in the type graph.

3 Constraints

The concepts introduced in the previous section are, in the sense of existing graph theory,
straightforward; in fact, the only non-standard concepts are the structure we have chosen for
identifiers, and the fact that we are using indexed edges in labelled (instance) graphs. In this sec-
tion, we introduce a way to enrich type graphs, and so constrain the set of valid instance graphs,
in ways that formalise the concepts found in UML.

First of all, we give a general definition of a constraint set over a graph; then, we define a
series of special types of constraints tuned towards UML concepts.

Definition 6 (graph constraint) Let TG be a type graph. A constraint set over TG is a tuple
〈Con,sat〉 where Con is a set of graph constraints, and sat ⊆ Inst[TG]×Con is a satisfaction
relation over the instances of TG. We denote IG sat c to denote that an instance graph IG satisfies
a constraint c.

This definition only specifies that a graph constraint is something for which there exists an
interpretation, expressed in terms of the graphs that satisfy the constraint. The interpretation is
embodied in the satisfaction relation, sat. The real question is how sat is defined. By combining
type graphs with a constraint set, we arrive at the concept of a model, which is our equivalent to
a UML class diagram.

Definition 7 (model) A model is a pair Mod = 〈TG,Con〉 where TG is a type graph, and Con
is a constraint set over TG, consisting of constraints of the types listed below.

The main contribution of this work, apart from the selection of the appropriate type and in-
stance graph definitions, lies in the definition of a number of useful graph constraint “templates”
and the corresponding satisfaction relations. The constraints can be subdivided into a number of
categories, listed in Table 3. In this workshop paper, we can only discuss a few of the templates
in detail; the report version [KR08] contains the complete list, in the same style as the ones
reported here.

3.1 Association constraints: Bidirectionality

Associations in UML class diagrams have the property that they can (in principle) be traversed in
either direction. Moreover, in general the ends of an association can have their own names. This
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Table 3: A classification of constraints

Category Constraints
Node type Abstractness
Association Bidirectionality, Multiplicities, Indexing, Uniqueness
Containment Acyclicity, Unsharedness
Specialisation Subsetting, Redefinition, Union
General OCL

is in contrast to the graphs of this paper, where edges are unidirectional. To model bidirectional
associations, we therefore need two edges, one for either direction, which oppose each other.

Definition 8 (bidirectionality constraint) Let TG be a type graph. A bidirectionality constraint
over TG is a pair oppose(D,E) where D,E ∈ EType are edges in TG, such that src(D) = tgt(E)
and tgt(D) = src(E). Satisfaction is defined for all G ∈ Inst[TG] by

G sat oppose(D,E) :⇔ ∀n1:src(D),n2:tgt(D). |{d ∈ out(n1,D) | tgt(d) = n2}|=
|{e ∈ out(n2,E) | tgt(e) = n1}| .

Figure 4 gives an example of a bidirectionality constraint. The type graph (left hand side) has
an associated constraint oppose(B.c,C.b), visualised as a two-headed arrow. The centre graph
does not satisfy this constraint, as there is a C.b-typed edge without an opposing B.c-typed one.
In the right hand side graph this is repaired, so that this graph is a valid instance of the (enriched)
type graph.

3.2 Association constraints: Indexing

To capture the notion of an ordered collection from class diagrams, we need to formalise what it
means for a set of graph nodes to be ordered. To capture this correctly is actually quite involved,
even though it is conceptually straightforward. Here we make use of the edge indices that are
part of the instance graphs (see Definition 5): if an edge type is declared as indexed, the edge
indices have to be picked from a consecutive range from 1 upwards; and moreover (in fact, more
importantly), morphisms are required to respect the edge indices.

Definition 9 (indexing constraint) Let TG be a type graph. An indexing constraint over TG
is a predicate indexed(E), with E ∈ EType. Satisfaction is defined for all G ∈ Inst[TG] and all

Figure 4: Example type graph modelling bidirectional edges.
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Figure 5: Example type graph with an indexing constraint

morphisms f between instance graphs G,H ∈ Inst[TG] by

G sat indexed(E) :⇔ ∀n:src(E),∀e ∈ out(n,E). 1 ≤ ix(e)≤ |out(n,E)|
f sat indexed(E) :⇔ ∀e : E ⇒ ix( fEdge(e)) = ix(e) .

Figure 5 gives an example of an indexing constraint. The type graph (left hand side) has an
associated constraint indexed(C.b), visualised by the annotation {indexed} near the arrow head.
The centre graph does not satisfy this constraint, as it has two outgoing C.b-typed edges with
indices {54,129}, which do not form a consecutive range. This is repaired in the right hand
side graph. More importantly, where ordinarily the right hand side graph would be considered
symmetric (having two interchangeable B-typed nodes), this is no longer true in the presence of
the indexing constraint: the symmetry (formally, an isomorphism from the graph to itself) maps
(n,C.b,1) to (n,C.b,2) (where n is the C-typed node in the graph) and hence does not satisfy the
constraint, since it does not preserve edge indices.

3.3 Containment constraints: Acyclicity and unsharedness

Another notion from UML class diagrams that has proved to be quite useful in practice is that
of aggregation or containment. Whereas ordinary edges may impose an arbitrary structure on
the nodes they connect, containment is intended to reflect a hierarchy of things. Therefore,
when edges in a type graph are declared to be acyclic, the intention is that the edges in the
corresponding instance graphs do not form a cycle.

This type of constraint is in fact quite powerful if the edge types in the hierarchy do form a
cycle in the type graph. In that case, there could in principle be instance graphs with arbitrarily
large cycles, all of which are ruled out by a single acyclicity constraint. From this it can be seen
that the acyclicity constraint is a non-local property, and hence outside the class of first-order
logic.

Definition 10 (acyclicity constraint) Let TG be a type graph. An acyclicity constraint over TG
is a tuple acyclic(E1, . . . ,En) where E1, . . . ,En ∈ EType is a collection of edge types. Satisfaction
is defined for all G ∈ Inst[TG] by

G sat acyclic(E1, . . . ,En) :⇔ {e:Ei | 1 ≤ i ≤ n} is cycle free.

Figure 6 shows an example of an acyclicity constraint. The type graph (left hand side) has an
associated constraint acyclic(C.b,B.c) visualised by diamond-shaped decorations at the sources
of the edge types. (This visualisation always specifies a single acyclicity constraint, consisting
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Figure 6: Example type graph showing an acyclicity constraint.

of all diamond-decorated edge types. The case where a node or edge type can in principle
be part of distinct acyclic-hierarchies cannot be visualised without adding further distinguishing
information to the diamonds, for instance in the form of identifiers.) The centre graph of Figure 6
shows a small instance of such a cycle; hence this graph violates the constraint. In the right hand
side graph this is repaired, so that this is a valid instance of the (enriched) type graph.

The acyclicity constraint guarantees the absence of cycles (as its name suggests), but it does
not guarantee the absence of sharing; in other words, on its own it is not certain that the structure
imposed by acyclic edges is a forest. To complement this, we also introduce a constraint that
specifies the absence of sharing; as will see, the UML composite is a combination of acyclicity
and unsharedness. For an example unsharedness constraint, we refer to the technical report.

Definition 11 (unsharedness constraint) Let TG be a type graph. An unsharedness constraint
over TG is a tuple unshared(E1, . . . ,En), where E1, . . . ,En ∈ EType. Satisfaction is defined for all
G ∈ Inst[TG] by:

G sat unshared(E1, . . . ,En) :⇔ ∀d:Ei,e:E j. tgt(d) = tgt(e)⇒ d = e .

3.4 Specialisation constraints: Redefinition

We have included node type inheritance as a basic notion in type graphs, reflecting the common
concept from UML and other object-oriented settings. For edges, on the other hand, although
there is likewise a notion of specialisation, but no single commonly accepted way to capture
this. Instead, UML knows several ways to define specialisation-like relationships between edges,
which we here formalise through edge type constraints.

These can be categorised as subset, redefinition and union constraints. The only type we
discuss in this paper is redefinition; for the others see the technical report. Redefinition imposes
a kind of “subtype” relation over edges, such that the supertype is overridden by the subtype.
More precisely, if an edge type D redefines another type E, then a node of D’s source type may
no longer have an outgoing E-type edge — instead, this should be a D-type edge.

Definition 12 (redefinition constraint) Let TG be a type graph. A redefinition constraint over
TG is a pair redefine(D,E), where D,E ∈ EType are edges in TG, such that src(D) inh src(E)
and tgt(D) inh tgt(E). Satisfaction is defined for all G ∈ Inst[TG] by:

G sat redefine(D,E) :⇔ @e:E. src(e):src(D) .

Figure 7 shows an example of a redefinition constraint. The type graph (left hand side) has
an associated constraint redefine(F.b,A.d), visualised by the annotation {redefines} at the arrow
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Figure 7: Example type graph with a redefinition constraint

head. The centre graph does not satisfy the constraint, since there is an A.d-type edge going out
of an F-type node. In the right hand side this is repaired, by changing the offending edge into an
F.b-type; as a result, this instance graph satisfies the redefinition constraint.

4 UML Semantics

In this section, we will apply the general framework introduced above to UML class and object
diagrams, thus providing a formal, graph-based semantics for these diagrams.

Class and object diagrams. The formal meaning of a UML class diagram is that it is a model.
An overview of the mapping of UML class diagram concepts to the concepts in our framework
can be found in Table 9. The model’s type graph can be easily recognized: each class in the
diagram is a node and each directed association is an edge. Non-directed associations translate
to pairs of edges with a bi-directionality constraint, where the edge labels correspond to the
names of the association ends.

Most of the constraint types in our graph-based framework can also be easily recognized in a
class diagram, for instance a bidirectionality constraint is shown in a class diagram in the same
manner as we have shown in Figure 4.

Table 8: Summary of all constraints — including those that are omitted from this
workshop version; see the full report [KR08]. (Notation: ~E = E1 · · ·En)

abstract(T ) @n ∈ NodeG. lab(n) = T
oppose(D,E) ∀n1:src(D),n2:tgt(D).

|{d ∈ out(n1,D) | tgt(d) = n2}|= |{e ∈ out(n2,E) | tgt(e) = n1}|
mult(E,µ) ∀n:src(E). |out(n,E)| ∈ µ

indexed(E) ∀n:src(E),∀e ∈ out(n,E). 1 ≤ ix(e)≤ |out(n,E)|
∀e : E ⇒ ix( fEdge(e)) = ix(e)

unique(E) ∀n:src(E).∀e1,e2 ∈ out(n,E). tgt(e1) = tgt(e2)⇒ e1 = e2

acyclic(~E) {e:Ei | 1 ≤ i ≤ n} is cycle free
unshared(~E) ∀d:Ei,e:E j. tgt(d) = tgt(e)⇒ d = e
subset(D,E) ∀d:D. ∃e:E. src(e) = src(d)∧ tgt(e) = tgt(d)

redefine(D,E) @e:E. src(e):src(D)
union(D,~E) ∀1 ≤ i ≤ n : subset(Ei,D)∧

∀d:D. ∃1 ≤ i ≤ n,e : Ei. src(e) = src(d)∧ tgt(e′) = tgt(e)
ocl(φ) G |= [[φ ]]
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Table 9: Mapping of UML class diagram concepts to graphs

Category UML class diagram Graph model
General class type node

primitive type attribute type edge E with tgt(E) ∈ Sort
non-primitive type attribute type edge E with tgt(E) /∈ Sort

Association directed association type edge
non-directed/bi-directional pair of type edges with oppose
multiplicity mult-constraint
set (default for mult > 1) unique but not indexed
bag neither indexed nor unique
sequence indexed but not unique
ordered set both indexed and unique
aggregation acyclic
composition both acyclic and unshared
OCL constraint ocl

Specialisation inheritance inh-relation on type nodes
subset subset constraint
redefines redefine constraint
union union constraint
UML object diagram Labelled graph

General object node
object type node label
link edge
link type edge label
instance name symbolic id

UML class diagrams can be accompanied by OCL constraints. In our semantics, these are also
translated to graph constraints, of the type ocl(φ)(omitted in this workshop paper) , by relying on
the existing OCL semantics (which essentially provides a translation to first order logic). In other
words, a class diagram together with its OCL constraints is translated to a model, in the sense
of Definition 7. This illustrates the fact that OCL constraints cannot be seen as separate from
the class diagram. It will be no surprise that we define an object diagram to be a labeled graph.
When a labeled graph satisfies a certain model, for instance a class diagram or a class diagram
combined with constraints, it is a valid instance of that model. An overview of the mapping of
UML object diagram concepts to the concepts in our framework can be found in Table 9.

Evaluation. The semantics presented here should, as any semantics, uphold the commonly
known characteristics of UML diagrams, even those that have (unfortunately) not been made
explicit in the UML specification. As an example, we show two such characteristics; again,
we refer the reader to [KR08] for a more comprehensive discussion. Let 〈TG,C〉 be the model
representing the class diagram under consideration.

• A commonly known characteristic of UML class diagrams is that if the one end of a bi-
directional association is marked {bag} then the other end should be marked {bag} or
{sequence}. Likewise, if one end is an (ordered) set, the other end must be a set as well.
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In our semantics, this situation arises when the bi-directionality constraint is combined
with the uniqueness constraint. This UML characteristics then translates to the following
“law” of graph constraints:

oppose(D,E)⇒ (unique(D)⇔ unique(E))

• According to the UML specification, the acyclicity constraint should always be combined
with bi-directionality: “Only binary associations can be aggregations” ([OMG05], page
37). At the same time, only one end of this association can be marked as aggregate. This
is in accordance with common sense, which says that a part cannot contain its container.
In our framework this forbidden situation would occur when the acyclicity constraint is
defined for both edges of a bi-directional association, i.e.:

oppose(D,E)∧acyclic(D)∧acyclic(E) .

In our semantics, there are no instances that would satisfy such a model; in other words,
this combination of constraints is inconsistent (i.e., a contradiction).

These cases give confidence that the presented semantics really conforms to the intuition be-
hind UML. On the other hand, our semantics does not support all UML aspects; in particular, the
following are not included:

• Names of associations. Only the role names associated with the association ends are taken
into account, because we consider these to be more important.

• N-ary associations, i.e. associations between more than two classes. These tend to occur
very rarely in class diagrams; moreover, the UML specification itself treats them more like
classes than like associations.

• Derived attributes or association ends. As the name suggests, these are derived values and
need not be explicitly part of the formal representation.

• Navigability of associations. We feel that the directionality of the edges in the association
pair provides enough information.

• Operations. These cannot be expressed by a static structure.

5 Conclusions

In this paper we present an elegant and simple semantics of UML class and object diagrams
based on graph structures that are as close as possible to familiar notions in graph theory. The
main insight used is that a UML class diagram cannot be treated as a simple type graph. It is
a much richer structure, which is embodied in our framework by the use of (graph) constraints.
The use of constraints also makes it possible to change the given semantics to include or exclude
certain semantic elements. For instance, by disallowing the abstract class constraint type one can
easily define class diagrams without abstract classes. Furthermore, our definitions do not only
provide a semantics for both diagram types, but for the relationship between them as well.
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As stated in the introduction, simplicity was one of our main guidelines. The only addition we
made to the familiar notion of labelled graph is the edge indexing function, in order to capture
ordered associations. We investigated (and rejected) several alternatives. The use of special
“collection node types” makes the definition of instance graph much more complex. Another
possibility is to use hypergraphs, but that in itself makes the model much more complex. A third
option is to use special edges between the target nodes of an ordered association to represent the
ordering, as we have done before in [KKR06]. The problem with this solution is that the ordering
needs to be local not only to all edges of the given type, but also to the source node.

In the introduction we stated that the quality of models is determined by precision, consis-
tency, and completeness. Our semantics provide a precise meaning to class and object diagrams.
Furthermore, the consistency of a model, i.e. the existence of instances, can be checked using the
given definitions. For instance, we can prove that a model with a bi-directional association that
is an aggregate in both directions is inconsistent. Research into this “logic of UML models” has
so far been scarce (see e.g. [MB07]). The completeness of a model cannot be guaranteed by our
semantics. However, the semantics themselves are more complete than any other graph-based
semantics that we have found in the literature. For instance, [BELT04, KGKK02, LBE+07] only
visualise a type graph with inheritance as a UML class diagram, thus implying a graph-based
meaning for class diagrams without actually defining an UML semantics. [VFV06] includes at-
tributes, associations, and inheritance, but not containment, multiplicity, abstract classes, or edge
specialisation.

As a next step, we intend to investigate the integration of our framework with the existing
theory of graph transformation. An important issue is to reconciliate our encoding of indexed
edges with the requirements of algebraic graph transformations.

A final point we would like to make goes back to the introduction, and concerns the (scientific)
merit of the type of effort we have undertaken in this paper. We believe to have achieved a simple,
intuitive and workable graph-based semantics. The fact that UML was conceived over a decade
ago and still no graph-based semantics with this degree of completeness had been presented (in
contrast to other theoretical bases, e.g., [LB98, Gei98, Öve99, Kna99, EK99, DJPV02, Ham05]),
indicates that our undertaking was not trivial. Moreover, there is a great need for such semantics,
if ever model-driven engineering is to become a dependable method. We know that many of the
ideas brought together in this work have been presented earlier; however, the strength of this
contribution lies in the particular combination of these ideas. All in all, we believe that the result
should be judged not only on novelty, but on completeness, adaptability, and usability as well. If
there is no well-defined forum where this type of effort can receive recognition, there will be no
incentive, and the gap between theory and practice may remain with us forever.
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Muller (eds.), UML. LNCS 1618, pp. 107–119. Springer, 1998.

[LBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Attributed graph trans-
formation with node type inheritance. Theoretical Computer Science 376(3):139–163, May
2007.

[MB07] A. Maraee, M. Balaban. Efficient Reasoning About Finite Satisfiability of UML Class
Diagrams with Constrained Generalization Sets. In Akehurst et al. (eds.), ECMDA-FA.
LNCS 4530, pp. 17–31. Springer, 2007.

[OMG05] OMG. Unified Modeling Language: Superstructure. Technical report formal/05-07-04,
OMG, 2005.
http://www.omg.org/cgi-bin/doc?formal/05-07-04
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