@ ECEASST

Visual Design and Reasoning
with the Use of Hypergraph Transformations

Ewa Grabska!, Grazyna Slusarczyk and Truong Lan Le3

L uigrabsk@cyf-kr.edu.pl
2 gslusarc@uj.edu.pl
The Faculty of Physics, Astronomy and Applied Computer Science
Jagiellonian University, Krabw, Poland

3 lan@ippt.gov.pl
Polish-Japanese Institute of Information Technology, Warszawa, éPolan

Abstract: This paper deals with visual design and reasoning. A visual language
with its internal representation in the form of attributed hierarchical hypetts is
discussed. Hypergraph attributes allow for defining and analysingreamts im-
posed by design knowledge. Operations on hypergraphs whichteielifications

of design diagrams are also presented. The approach is illustrated inpleseof
designing floor-layouts.

Keywords: visual design, graph transformations, hypergraphs, knowledgedba
reasoning

1 Introduction

This paper describes a knowledge-based decision support destgmsyhere designs are con-
figurations of visual elements. Both partial and complete design solutioms@mesented in the
form of diagrams forming a specific visual language, called the layoutikgey The syntactic
knowledge of this language is defined by means of attributed hierarclyigatdraphs.

The proposed approach constitutes an attempt to solve the problem ébtnaing the visual
design knowledge into a computer internal representation for a systerh vghtic support the
designer in the early stage of the design procéﬁGL[Lé, GSG]. The compatibility between
the proposed visual language and the internal representation thes sera base for reasoning
about designs is discussed.

In our approach each diagram drawn by the designer is represerttedfarm of an attributed
hierarchical hypergraph. Hyperedges of hypergraphs représth diagram components and
the multi-argument relations among them. Hierarchical hyperedges cone$p groups of
diagram components. Hypergraphs nested in these hyperedgesponmateo subcomponents of
the diagram parts. Hierarchical hypergraphs not only reflect theldap: way of designing but
also enable the designer to consider the project on the specified levetaolf @hd allow one
to express relations between components on different hierarchy leAttibutes assigned to
hyperedges encode the semantic design knowledge.

Diagram modifications made by the user are reflected in the hypergragseepation, which
is correspondingly changed using operations defined on hypesgréfien the designer decides

1/14 Volume X (2008)

Visual Design and Reasoning Eﬁ

to divide a chosen area of the layout into smaller parts the operation caledduge develop-
ment KSSG], is used. A reverse operation, called hyperedge suppressionh alaws one to
redesign the chosen area, is defined in this paper.

The paper strongly recommends the designer to interact with the computnsysthe level
of a visual language. The knowledge stored in the attributed hypergegpésentation of dia-
grams allows the system to reason about layouts and to support the désignggesting further
steps and prevent him/her from creating designs not compatible with thiéiegheonstraints or
criteria. The approach is illustrated by examples of designing floor-layouts

2 Related work

This paper deals with supporting conceptual design phase by a knesbedgd system. Nowa-
days detailed design and design documentation phases are usually yelitedpn CAD tools
such as ArchiCAD, Architectural Desktop and AllPlan, et&z{]. Although there are many
computational tools for describing, editing, analyzing, and evaluating nlgsigjects Min],
there still exists lack of consistency between knowledge visualization ofitlea domain (ar-
chitecture, construction, machine building) and its internal representatgoocomputer program.
This is one of the reasons that the initial design phase, called concepsigihdis the least sup-
ported one.

Our approach proposes a visual representation of designs togetthénair internal represen-
tation. Such a method allows one to equip the design editor with intelligent assisbaptsrt-
ing creative design by reasoning about the project features anéstiggdesign modifications.
When developing a visual language the role of sketches in the concdpgigh phase was taken
into consideration@ol]. Therefore elements of our language contain general ideas atsighde
objects and are not treated as completed design components used in dasidjpations in all
CAD tools.

Graphs and hierarchical structures are used quite frequently in kdgedeased design tools
[SWZ]. Our approach is based on a formal model of hierarchical hypehgrintroduced in
[DHPF] and extended iné’glu]. This type of hypergraphs enables us to express multi-argument
relations between elements on different hierarchy levels, which is edseitésign. Our hyper-
graphs can be treated also as an extension of hypergraphs ugéchbyyhich are too restrictive
in expressing relations.

3 Design Diagrams and Attributed Hierarchical Hypergraphs

In this section we present an example of a visual language, called a lapgutage, which en-
ables the designer to create and edit floor-layouts. A vocabulary of tigsdae is composed of
shapes corresponding to components like rooms, walls, doors, windiils the rules specify-
ing possible arrangements of these components constitute its syntactic kgewiddments of
the layout language are diagrams seen as simplified architectural drawings

Let us consider a floor-layout presented in Figlifg) and its design diagram shown in Fig-
ure 1(b). A design diagram is composed of polygons which are placed in angmttal grid.
These polygons represent components of a floor-layout, like funttweas or rooms. Mutual

Proc. GT-VMT 2008 2/14

@ ECEASST

EE®

File Edit Properties Align Window
e
=

) FL-Diag - untilledD. 5 5 50 5 i S S S SRR B R R g g

|| &

[~ BATHROOM m4 Ba 3

GARAGE

\\ KITCHEN

/ ENTRANCE HALL

40 T

(a) [l il D

Selection

(b)

Figure 1: a) An architectural drawing, b) a design diagram

location of polygons is determined by design criteria. Lines with small sqoardem represent
the accessibility relation among components, while continuous lines sharexyigyops denote
the adjacency relations between them. The accessibility relation betweenemsisispecified
when the existence of a wall with doors, a fragment of a wall or lack oflhaxa planned in a
floor-layout design. When a wall dividing two areas is not planned, tbation of a line repre-
senting the accessibility relation is determined by the specified sizes of tre ditea sides of
each polygon are ordered clock-wise starting from the top left-most lona.design diagram
only qualitative coordinates are used i.e., only relations among graphicaéels (walls) are
essential.

Each design diagram has its internal representation in the form of an sdttibierarchical
layout hypergraph. Such a hypergraph contains two types of hygese which can represent
components and spatial relations on different levels of details. Hypesediythe first type
are non-directed and correspond to layout components. Hyperefitessecond type represent
relations among components and can be either directed or non-directedaséaf symmetrical
relations. Considering floor-layout design only spatial relations whielbginature symmetrical
(accessibility and adjacency) are taken into account.

An example of the internal representation of the diagram presented ireHi¢l)ris shown
in Figure2. This hypergraph is composed of eleven component hyperedges aihweich are
hierarchical ones, and fourteen relational hyperedges, wherehtdiém represent the acces-
sibility relation and the other half the adjacency relation. The relational bgperconnecting
node 2.2 of the hyperedge labelled and node 4.6 of the hyperedge labellelis one of the
hyperedges expressing relations between components nested imdiff@rent hyperedges.

To represent features of layout components and relations betweerathéuting of nodes
and hyperedges is used. Attributes represent properties (like stiapeposition, number of
windows or doors) of elements corresponding to hyperedges and.node

3/14 Volume X (2008)

Visual Design and Reasoning @

File Edit Properties Align

BT S

1.1 1.1 1.1.1

]

[«]

4 D
Selection

Figure 2: A hierarchical layout hypergraph corresponding a degimmgram from Figure 1(b)

The proposed hierarchical layout hypergraph constitutes a modificattiboypergraphs pre-
sented in Min, Slu] and is defined as follows.

Let [i] denote the intervdll, i] of natural numbers (witf0] = 0) and letz = X¢ U%y, where
>eNZy =0, be a fixed alphabet of hyperedge and node labels, respectiwhjt be a set of
hyperedge and node attributes.

Definition 1 An attributed hierarchical layout hypergraph o¥er > UZy, andAt is a system
G = (Eg, VG, S, G, I bg, attg, extg, chg), where :

1. Eg = ES UER is a nonempty finite set of hyperedges, where elementofepresent
object components, while elementsEjf represent relations arg§ NEE = 0,

2. Vg is a nonempty finite set of nodes,

3. sg:Ec — (V)" andtg : Eg — (V)™ are two mappings assigning to hyperedges sequences
of source and target nodes respectively, in such a waythatES s(e) =tg(e),

4. Ibg = Ibg, Ulby,, where:

e Ibg, : Eg — Zg is a hyperedge labelling function, such ttat =SS USSR A 56N
SR =0 VeeES Ibg,(e) € € A Vee ER Ibg, (e) € 28,

e |by, : Vg — 2y is a node labelling function,

Proc. GT-VMT 2008 4/14

Eﬁ ECEASST

5. attg = attg, Uatty,, where:

e attg, : Eg — P(At) is a hyperedge attributing function,
e atty, : Vg — P(At) is a node attributing function,

6. extg : [n] — Vi is a mapping specifying a sequence of hypergraph external nodes,

7. chg : ES — P(A) is a child nesting function, wher& = Eg UV is called a set of hy-
pergraph atoms, and such that one atom cannot be nested in two difigpemedges, a
hyperedge cannot be its own child, source and target nodes of al iggteredges are
nested in the same hyperedgesas

Hyperedges of the layout hypergraph are labelled by names of comigarrerelations. A se-
guence of source and target nodes is assigned to each hyperedgepaess potential connec-
tions to other hyperedges. Moreover, for each hierarchical hyaeinga sequence of external
nodes is determined. A child nesting function ensures that one atom da@mohbedded in
two different hyperedges. It also guarantees that there are nstandescendant cycles in a
hypergraph, which means that a hyperedge cannot be its own child.

4 Operations on Hierarchical Layout Hypergraphs

Itis known that a design process cannot be a priori defined in anithigoe way. During a design
process the designer often modifies a design diagram and/or chasigrs gigals before he gets
a plausible solution. To reflect these changes in our internal représarntéa visual language
we equip the proposed system with operations acting on hierarchical laypergraphs. They
allow to create and modify hypergraphs representing structures oftslhjeing designed.

The hyperedge development operation, which enables to represent a model structure on a
more detailed level, was defined iB$G. It takes two hierarchical hypergraphs as arguments
and nests in a hyperedge corresponding to an object element in the/fiesghaph the second
hypergraph representing the components of this element and relationg #meom The nodes
connected to a developed hyperedge are substituted by the corregpexrtirnal nodes of the
child hypergraph.

Now we define in a formal way an operation callduyperedge suppression, which is a reverse
to a development operation. It is useful when the designer wants toigadée chosen area.
Then he/she has to remove the existing area division before dividing it ifiesedit way. A
suppression operation takes as an argument a hierarchical layarghyph and removes the
nested contents of one of its earlier developed component hyperedges.

Let us consider Figurg and Figure3. Figure3 presents the result of applying a suppression
operation consisting in removing a hypergragmested in the hyperedgelabelledL corre-
sponding to the living area (Figug.

Let Ss(e) andTg(e) denote sets of all nodes specified by sequences of source andtadgst
of a hyperedge in a given hierarchical layout hypegragh

Definition 2 Let G be an attributed hierarchical layout hypergraph cvet >g U2y andAt,
andé € ES be a component hyperedge@such that there exists a hierarchical layout hypergraph

5/14 Volume X (2008)

Visual Design and Reasoning Eﬁ

H overX andAt, andchg(é) = Eq UVy, wherechJGr denotes the transitive closure dfs.

Let EXTy denote a set of external nodedbfV denote a finite set of nodes such tWat Vg = 0,

E denote a set of all relational hyperedgesE@f\ ER and connected with nodes BXTy, and

E’ denote a finite set of relational hyperedges suchEhatEg = 0.

Let a functionsubstr (strings, stringy) return a substring adtring; without the prefixstrings.
The hyperedge suppression operation is defined by three functions:

1. a suppression functisup : EXTy — V defined in such a way that
Yv,w € EXTy substr (Ibg(v), |Ibn (v)|) = substr (Ibg(w), |Iby (w)|) = sup(v) = sup(w),
is a surjection which determines the correspondence between a set abdew and ex-
ternal nodes oH assigning one node to all nodes with labels which differ only by a prefix
number.

2. asuppression labelling functidby,, : V — %y defined in such a way that
WV € V lbgp(V) = substr (Ibg(w), |Iby (W)|), wherew € sup~1(v),
is @ mapping assigning to new nodes labels obtained by removing prefixesatoels of
the corresponding external nodes-bf

3. a suppression embedding functiembs,, : E — E’ is a surjection which determines the
correspondence between a set of new relational hyperedgedatimhad hyperedges con-
nected with external nodes bif.

The result of the hyperedge suppression operation is an attributecchiesd layout hypergraph
G= (Eé,Vé,sé,té,Ibé,atté,exté,ché) overX andAt, where:

1. Eg=(Ec\En \E)UF/,

2. Vé = (VG \VH) uVv,

3. s5: Eg — (Vg)" andts : Eg — (Vg)* are defined in such a way that:

o s5(8) =1t5(8) CV*, whereV = S3(8) UV,
o Vec Eg\E4 \E\ {€} sz(e) = sc(e) Atz(e) =tc(e),
e Vec E'sz(e) = f(e) Atg(e) = f(e) wheref : E' — (Vg)*,

4. lbg = IbEG Ulbvé, where:

e Vec Eg\ Ex \ E Ibg(e) = Ibg(e),
o Vey € E' Ibg(e2) = Ib(er), wheree; € embgi(ey),
o We Ve \ W Ibg(v) = Ilbs(v),
e WeVIbg(v) = Ibgp(V),

5. attg = atte, Uatty,, where:

e Vee Eg \ En \E atté(e) = aItG(e),
o Vep € E' attg(e) = attg(er), wheree; € embg(ey),

Proc. GT-VMT 2008 6/14

Eﬁ ECEASST

e WeVe\ Wy atté«(v) = attg(v),

e VeV attg(v) = h(v), whereh:V — P(At),

6. exté: [fﬂ HV@XZv.
7. Ve ES\ {€} chz(e) = chg(e) A chi (&) =0.

As the result of the hyperedge suppression operation the hypergrégphemoved from the
component hyperedgeof G. The external nodes dfi are substituted by the corresponding
nodes oV which become new source nodes of the hypereglg€he correspondence among
nodes is established by a suppression functignon the basis of the node labels. The source
nodes of have the same labels as before a development operatién on

The suppression embedding function replaces the relational hypsredgeected to the ex-
ternal nodes oH by new relational hyperedges connecting nodes td source nodes & The
way of replacing each hyperedge by the corresponding set of nparégges is specified on the
basis of design constraints.

Let us come back to the example of the suppression operation removingrtggiH nested
in the hyperedgé labelledL corresponding to the living area (Figufeand Figure3). Node
replacing specified by the functi@ip determines six new nodes (a $8tcorresponding to ten
external nodes of the nested hypergraph. The labels of new noelebtined by removing
prefixes coming from the corresponding external nodes of the reniyyigraph. For example
two nodes with labels 2.4 representing east walls of the hall and toilet, teghgcare merged
into one node with label 4 representing the north side of the laredile three nodes labelled
3.5.3 are merged into one node labelled 5.3 and representing the south tellving area.
The four relational hyperedges which were connected with nodes 224 and 2.4K =
2.2,1.3,2.4,2.4) are replaced by three new relational hyperedge&’afonnected with nodes
2, 3 and 4 of the hyperedge labelledaccording to the suppression embedding function. As
the result of this suppression operation a hierarchical layout hygangshown in Figure is
obtained.

5 Visual reasoning

Visual languages play a similar role in design as design sketches as thele ¢émollow
changes made in design diagrams. Nowadays computer systems with vigueldes should
be equipped with intelligent tools capable of assisting the user in a computgiiocaks. Such
tools ought to be able to reason on the basis of the internal representatiassal language
elements.

The presented system is able to reason about the diagram being desigihsaygest the de-
signer modifications which are needed and warn him/her against crealtirigis® not compati-
ble with the specified constraints. To this end the system is equipped wittBaagpredicates
of the formr : P(J7) x # — {TRUE,FALSE}, where# denotes a family of attributed hier-
archical layout hypergraphs ovErandAt, and.#” denotes design knowledge. Each predicate
tests whether the predefined criteria are satisfied for the presentlyaggshdierarchical layout
hypergraph.

7114 Volume X (2008)

Visual Design and Reasoning Eﬁ

£ FL-Hyp: Room 1
File Edit Properties Align
BREEREE

22.2

[{]

4] Il 3]
Selection

Figure 3. The hierarchical layout hypergraph obtained by removingpargraph from the hy-
peredge representing the sleeping area

Design knowledge is divided into syntactic knowledg§eand interpretation knowleddeé;
[CRRB{Q. The predicates of are divided into syntactic predicateS) based on syntactic
knowledge and semantic onesr{) based on interpretation knowledge. Each predicat& bas
a specified subhypergraph which is searched for in a layout hygmrgireated so far. After
each hypergraph development operation, which nests a hypergraplmyperedge, for each
component hyperedge of a nested hypergraph a preditaes, which tests the accessibility
of the corresponding room or area, is activated. This predicatetssafor a subhypergraph
shown in Figured(a), whereLab denotes a label of a component hyperedge. For example in a
hypergraph nested in a hyperedge representing the whole apartrigeme@® and presented in
Figure6(b) for both component hyperedges labelf&dndL one such subhypergraph is found,
while for a hyperedge labelle@ representing a garage a searched subhypergraph is not found.
The designer is notified that there is no inside connection of a garage snalcitessible only
from the outside of the house.

The example syntactic predicat2searches in a nested hypergraph for a subhypergraph shown
in Figure4(b). The labelsDr andK denote a dining-room and a kitchen, respectively. The
predicate checks if a dining-room is located near a kitchen and is adeesim it. If these
conditions are not satisfied for the existing dining-room the designer claasuitable piece of
information.

Predicates belonging to a s&h enable the system to perform semantic analysis of the gen-
erated hypergraph. The semantic reasoning about a design diagrarfoisrzd on the basis of
identifiers and present values of attributes assigned to hypergraph dteesch component hy-

Proc. GT-VMT 2008 8/14

Eﬁ ECEASST

Lab @co @co

(@) (b)

Figure 4: a) A subhypergraph of a predicatge b) a subhypergraph of a predicag

peredge the attributarea, which value specifies the area of the corresponding space, is assigne
To relational hyperedges labelledc the attributetype is assigned. Its value specifies the way
in which the adjacent spaces are accessible (by the door, by lackagradnt or a whole wall
between them). To hypergraph nodes the attribptesition andwindow_number are assigned.
They specify the location of the walls and the numbers of windows which the @antain.

The example semantic predicat®, which is activated for each room located in a design
diagram, sums up values of thendow_number attribute of all nodes assigned to a corresponding
component hyperedge representing this room. Comparison of the obtingoker with the
specified architectural norms allows the system to reason about the ligbfritmgroom and the
loss of heat, and warn the designer about the possible problems.

Another example of semantic reasoning concerns deducing shapena$ mothe basis of
identifiers of nodes assigned to hyperedges representing diagranoiceng. First, a syntac-
tic predicate, which searches for composition hyperedges connectedixvith eight nodes, is
activated. For the found hyperedges of the first type, a semantic ptedictests if the cor-
responding areas have the shape of a letfexhile for the hyperedges of the second type, a
semantic predicateb tests if the corresponding areas have the shape of aTetteredicate 4
searches for two pairs of nodes, each of them representing twoatiomear and parallel walls,
and such that walls represented by these pairs are not perpendigydaréddges andL in Fig-
ure6(b)). Predicata5 searches for three nodes representing three parallel walls with the same
orientation and such that at most two of them are collinear, one nodesesyirey a wall which
is parallel to the mentioned three walls but has the opposite orientation. Twiniegpairs of
nodes should represent parallel and non-collinear walls with oppogieations.

6 Implementation

In this section a structure of the systdfGSDR (Hypergraph Generator Supporting Design
and Reasoning) is presented. The system allows the designer to editndsagind automatically
applies operations on hierarchical layout hypergraphs being intemasentations of diagrams.
It also gives the possibility to define constraints and reason about d#isigrams.

The system is written in Java and contains four modules (Figura graphical interface for
editing objects and constraints, a constraint module for reasoning ailaguachs, a hierarchical
layout hypergraph generator and a control module for hypergreguialization. The graphical
interface enables the designer to construct diagrams of visual elemetiydaccessible in the
editor or taken from a library of objects defined by the user or an extebnary of domain-
oriented objects. A set of visual primitives, which are directly accessilnains points, line
segments, polygons and eliptic arcs. Texts can be used to describe psmifike graphical
interface allows the designer to interactively create and edit both objeetis attributes and
constraints concerning these attributes.

9/14 Volume X (2008)

Visual Design and Reasoning Eﬁ

Diagram Editor Constraint Module
D Graphical (. '
E object Editor 5] Constraint
S verificator
I Hypergraph [¢ \ y
G >} Generator 7Yy
n >}
E A 4
R 5| Constraint : Constraint
Editor : solver
Hypergraph
visualizaton
control
DESIGNER ARNE

Figure 5: A system architecture

The constraint module contains syntactic and semantic reasoning rulesvates the rules,
solves constraint equations defined on hypergraph attributes anslreeisdages to the designer.
It prompts the designer which diagram transformations are needed. thvaelesigner changes
values of attributes, which are connected by specified constraints (litemdésor location), the
system can force the appropriate constraints to be satisfied by chaimgiagtsome objets and
drawing a new diagram again.

The hierarchical layout hypergraph generator automatically creafrdnaphs, where hy-
peredges correspond to diagram components and relations betweenTtihemontrol module
for hierarchical hypergraph visualization verifies and updates atirexisierarchy and enables
to group components of the same hierarchy level and show relations Ipetiness groups and
other components being on different levels of the hypergraph higrarch

7 Case Study

Let us consider an example of creating a design diagram presented e Eigy which corre-
sponds to the layout of a one storey house with a garage shown in BigQrd he first diagram
drawn by the designer represents the area of the whole apartment. THenypgagraph repre-
senting this diagram, that is automatically generated (Fi§{&g, is composed of one hyperedge
connected with four external nodes representing sides of the arqdaedl in the diagram ac-
cording to the geographical location of the sides they correspond to.

In the next step, the designer divides the whole apartment area into #msergpresenting
a living area, sleeping area and a garage, respectively (Fii{aj® As a consequence, the
hyperedge development operation on the layout hypergraph is invakiedhatically. As the
result of this operation the layout hypergraph representing the theas and adjacency rela-
tions between them is nested in the hyperedge representing the whole agparfime obtained

Proc. GT-VMT 2008 10/14

Eﬁ ECEASST

EEX
< FL-Hyp: Room 1
File Edit Properties Align
kaOd « &=

B FL-Hyp: Room 1
File Edit Properties Align
1k EECEEE

11 11

s

4] [}
Selection

[«

] i [¥]
(a) Selection

Figure 6: a) A component hyperedge representing the whole area ap#rament, b)a hierar-
chical layout hypergraph obtained as a result of a hyperedge ¢eveld operation

hierarchical layout hypergraph is shown in Figé(b).

The four external nodes of the hyperedge shown in Fig(egare replaced by seven external
nodes of the nested layout hypergraph in respect to their geograph@sations. The labels of
the external nodes of the layout hypergraph nested in the hyperepigesenting the apartment
are concatenated with labels denoting the number of the parent hyperedgehey replaced.
The node number 1 of the apartment is replaced by nodes representingides of the living
area () and the sleeping are&)(Both new nodes are labelled 1.1, where the first part of this
label denotes that they correspond to first sides of dremsd S, while the second part of the
label is inherited from the node which they replaced. The node numbegeplaced by node 2
of the sleeping area and node number 2 of the garage, where both ofdpezsent east sides
of the diagram and are labelled 2.2. The node number 3 is replaced bynood®er 3 of the
garage (labelled 3.3) and node number 5 of the living area (labelled 518)ndde number 4 of
the apartment is replaced by the node number 6 of the living area (labelled 6.4

Then, the sleeping area is divided by the designer into a bedroom artdradoa, which are
adjacent to each other (Figuréb)). This modification of the design diagram results in nesting
the layout hypergraph representing these rooms and adjacency bdtveee in the hyperedge
labelledS representing the sleeping area. As the result of applying the hypededgopment
operation the hierarchical layout hypergraph presented in Figjisrebtained.

Six external nodes of the hyperedge labelBegre replaced by seven corresponding external
nodes of the nested hypergraph. The labels of these seven nodeseatenated with labels de-
noting numbers of the parent hyperedge nodes they replaced. Foplexahe node labelled 1.1
of the sleeping area is replaced by nodes representing north walls cédin@olon Be) and bath-
room Ba) (hodes 1.1.1 and 1.1.1, respectively).The relational hyperedgeh whkie connected

11/14 Volume X (2008)

Visual Design and Reasoning Eﬁ

File Edit Properties Align Window e
PR = File Edit Properties Align Winow
[} FL-Diag - untitiedo - i ; ; ; 3 ala g

e
[ADiag-wmitiean 352

20

@
o

Selection

(@)

4

Selection

(b)
Figure 7: a)Three areas of the apartment, b) the apartment with the dslekguing area

with nodes 3, 4, 5 and 6 of the hyperedge labefiate replaced by new relational hyperedges
connected with nodes 3.3, 2.4, 3.5, and 4.6 of the nested hypergrapéctigely.

Then, the designer divides the living area into five rooms representinmg fioom, kitchen,
hall, entrance and a toilet, respectively (Figlife)). As the result of the next hyperedge develop-
ment operation, which nests the layout hypergraph representing thesedims and adjacency
relations between them in the hyperedge representing the living area thechieal layout hy-
pergraph shown in Figurg is obtained. Six external nodes of the hyperedge labéllede
replaced by the corresponding external nodes of the nested laypetgngph. For example,
the node labelled 4 is replaced by two nodes 2.4 representing east walks lwdlttand of the
toilet (W), respectively, while the node 5.3 by three nodes labelled 3.5.3 whickspund to
south walls of the kitcherK(), entrancet) and toilet, respectively. Three relational hyperedges
which were connected with nodes 2, 3 and 4 of the hyperedge laliebee replaced by four
new relational hyperedges. For example, the hyperedge which wasaed with node 4 of the
living area is replaced by two relational hyperedges, one connected@dtn2.4 of the hall and
another one with node 2.4 of the hyperedge laballegFigure?2).

If the designer is not satisfied with the layout of the living area and detidelsange it, then
she/he removes the division of this area and goes back to the diagram shBigure7(b). As
a consequence, the hyperedge suppression operation on the lggetgraph is invoked auto-
matically. As the result of this operation the hierarchical layout hypekgsapwn in Figure3 is
obtained. The nodes which were divided by the development operaganerged again. Node
replacing is specified in such a way that the merged nodes are givemtledaaels which they
had before the development operation was used.

In the next step the living area is divided into four spaces correspgridi@ living-room,

Proc. GT-VMT 2008 12/14

@ ECEASST

File Edit Properties Align Window
;kmmﬁlu—ﬂ‘ File Edit Properties Align

[Fubiag-wmtitiedo, 55575035 50 s sk N R SR [

(b)

Figure 8: a) A redesigned diagram, b)a hierarchical layout hypeigearresponding to it

kitchen, entrance and a toilet. The design diagram obtained as a resakwfdivision ofL and
the corresponding hierarchical layout hypergraph are presentédune8(a) and Figure3(b).

8 Conclusions

This paper is the next step in developing a visual language to suppoviitivedesign. In our
approach the designer’s maodifications of diagrams are reflected bgtmperperformed on their
hypergraph representations. The way of reasoning about desigratia on the syntactic and
semantic level, based on knowledge stored in attributed hierarchical laypetgraphs, that
enables the system to suggest the designer modifications of created splisteino described.

The presented system is tested on designing floor-layouts. Other appiécatilb concern
visual languages for designing gardens in different styles and degitimee-dimensional forms
of buildings. The present implementation is written in such a way that each pelcation
requires only some changes in the editor module.

Bibliography

[CRRBG] R. D. Coyne, M. A. Rosenman, A. D. Radford, M. Balachand J. S. Gero.
Knowledge-based Design System. Addison-Wesley, Sydney, 1990.

[DHP] F. Drewes, B. Hoffmann, D. Plump. Hierarchical Graph Transiation. In J. Tu-
ryn (ed.),Proc. of FOSSACS 2000, LNCS 1784, pp. 98-113, Springer, 2000.

[Gol] G. Goldschmidt. The Dialetic of Sketchin@reativity Research Journal, 4, 1991.

13/14 Volume X (2008)

Visual Design and Reasoning Eﬁ

[GGLLS]

[GSG]

[GLLSG]

[Min]

[Pal]

[SWZ]

[Szu]

[Slu]

E. Grabska, K. Grzesiak-KopeJ. Lembas, A. Lachwa, CSIusarczyk. Hyper-
graphs in Diagrammatic Design. In K. Wojciechowski et al. (edRdc. of the
International Conference ICCVG 2004. Computer Vision and Graphics, pp. 111—
117, Springer, 2006.

E. Grabska, GSIusarczyk, M. GlogazaDesign Description Hypergraph Lan-
guage. In M. Kurzyhski et al. (eds.), Computer Recognition Systems 2, Advances
in Soft Computing 45, pp. 763-770, Springer, 2007.

E. Grabska, J. Lembas, A. tachwa, Qusarczyk, K. Grzesiak-Kope Hier-
archical Layout Hypergraph Operations and Diagrammatic Reasa¥iachine
Graphic & Vision, in print, 2007.

M. Minas. Concepts and Realization of a Diagram Editor Generat@eBaon
Hypergraph Transformatio&cience of Computer Programming 44, pp. 157-180,
2002.

W. Palacz. Algebraic Hierarchical Graph Transformatidgournal of Computer
and System Sciences 68, pp. 497-520, 2004.

A. Schirr, A. Winter, A. Zindorf. Graph grammar engineering with PROGRES.
In W. Scléfer, P. Botella (eds.Rroc. of the 5th European Software Engineering
Conference (ESEC95), LNCS 989, pp. 219-234, Springer-Verlag, Berlin, 1995.

J. SzubaGraphs and Graph Transformations in Design in Engineering. PhD the-
sis, PAS, Warszawa, 2005.

G. Slusarczyk. Hierarchical Hypergraph Transformations in Engingddiesign,
Journal of Applied Computer Science, 11(2), pp. 67-82, 2003.

Proc. GT-VMT 2008 14714

