
ECEASST

Visual Design and Reasoning
with the Use of Hypergraph Transformations

Ewa Grabska1, Grażyna Ślusarczyk2 and Truong Lan Le3

1 uigrabsk@cyf-kr.edu.pl
2 gslusarc@uj.edu.pl

The Faculty of Physics, Astronomy and Applied Computer Science
Jagiellonian University, Kraḱow, Poland

3 lan@ippt.gov.pl
Polish-Japanese Institute of Information Technology, Warszawa, Poland

Abstract: This paper deals with visual design and reasoning. A visual language
with its internal representation in the form of attributed hierarchical hypergraphs is
discussed. Hypergraph attributes allow for defining and analysing constraints im-
posed by design knowledge. Operations on hypergraphs which reflect modifications
of design diagrams are also presented. The approach is illustrated by examples of
designing floor-layouts.

Keywords: visual design, graph transformations, hypergraphs, knowledge-based
reasoning

1 Introduction

This paper describes a knowledge-based decision support design system where designs are con-
figurations of visual elements. Both partial and complete design solutions arerepresented in the
form of diagrams forming a specific visual language, called the layout language. The syntactic
knowledge of this language is defined by means of attributed hierarchical hypergraphs.

The proposed approach constitutes an attempt to solve the problem of transforming the visual
design knowledge into a computer internal representation for a system which is to support the
designer in the early stage of the design process [GGLŁŚ, GŚG]. The compatibility between
the proposed visual language and the internal representation that serves as a base for reasoning
about designs is discussed.

In our approach each diagram drawn by the designer is represented inthe form of an attributed
hierarchical hypergraph. Hyperedges of hypergraphs represent both diagram components and
the multi-argument relations among them. Hierarchical hyperedges correspond to groups of
diagram components. Hypergraphs nested in these hyperedges correspond to subcomponents of
the diagram parts. Hierarchical hypergraphs not only reflect the top-down way of designing but
also enable the designer to consider the project on the specified level of detail and allow one
to express relations between components on different hierarchy levels.Attributes assigned to
hyperedges encode the semantic design knowledge.

Diagram modifications made by the user are reflected in the hypergraph representation, which
is correspondingly changed using operations defined on hypergraphs. When the designer decides

1 / 14 Volume X (2008)

Visual Design and Reasoning

to divide a chosen area of the layout into smaller parts the operation called hyperedge develop-
ment [GŚG], is used. A reverse operation, called hyperedge suppression, which allows one to
redesign the chosen area, is defined in this paper.

The paper strongly recommends the designer to interact with the computer system on the level
of a visual language. The knowledge stored in the attributed hypergraphrepresentation of dia-
grams allows the system to reason about layouts and to support the designer by suggesting further
steps and prevent him/her from creating designs not compatible with the specified constraints or
criteria. The approach is illustrated by examples of designing floor-layouts.

2 Related work

This paper deals with supporting conceptual design phase by a knowledge-based system. Nowa-
days detailed design and design documentation phases are usually well supported in CAD tools
such as ArchiCAD, Architectural Desktop and AllPlan, etc. [Szu]. Although there are many
computational tools for describing, editing, analyzing, and evaluating design projects [Min],
there still exists lack of consistency between knowledge visualization of the given domain (ar-
chitecture, construction, machine building) and its internal representation ina computer program.
This is one of the reasons that the initial design phase, called conceptual design, is the least sup-
ported one.

Our approach proposes a visual representation of designs together with their internal represen-
tation. Such a method allows one to equip the design editor with intelligent assistantssupport-
ing creative design by reasoning about the project features and suggesting design modifications.
When developing a visual language the role of sketches in the conceptualdesign phase was taken
into consideration [Gol]. Therefore elements of our language contain general ideas about design
objects and are not treated as completed design components used in design visualizations in all
CAD tools.

Graphs and hierarchical structures are used quite frequently in knowledge-based design tools
[SWZ]. Our approach is based on a formal model of hierarchical hypergraphs introduced in
[DHP] and extended in [́Slu]. This type of hypergraphs enables us to express multi-argument
relations between elements on different hierarchy levels, which is essential in design. Our hyper-
graphs can be treated also as an extension of hypergraphs used by [Min], which are too restrictive
in expressing relations.

3 Design Diagrams and Attributed Hierarchical Hypergraphs

In this section we present an example of a visual language, called a layoutlanguage, which en-
ables the designer to create and edit floor-layouts. A vocabulary of this language is composed of
shapes corresponding to components like rooms, walls, doors, windows,while the rules specify-
ing possible arrangements of these components constitute its syntactic knowledge. Elements of
the layout language are diagrams seen as simplified architectural drawings.

Let us consider a floor-layout presented in Figure1(a) and its design diagram shown in Fig-
ure 1(b). A design diagram is composed of polygons which are placed in an orthogonal grid.
These polygons represent components of a floor-layout, like functional areas or rooms. Mutual

Proc. GT-VMT 2008 2 / 14

ECEASST

(b)

(a)

Figure 1: a) An architectural drawing, b) a design diagram

location of polygons is determined by design criteria. Lines with small squareson them represent
the accessibility relation among components, while continuous lines shared by polygons denote
the adjacency relations between them. The accessibility relation between two areas is specified
when the existence of a wall with doors, a fragment of a wall or lack of a wall are planned in a
floor-layout design. When a wall dividing two areas is not planned, the location of a line repre-
senting the accessibility relation is determined by the specified sizes of the areas. The sides of
each polygon are ordered clock-wise starting from the top left-most one.In a design diagram
only qualitative coordinates are used i.e., only relations among graphical elements (walls) are
essential.

Each design diagram has its internal representation in the form of an attributed hierarchical
layout hypergraph. Such a hypergraph contains two types of hyperedges, which can represent
components and spatial relations on different levels of details. Hyperedges of the first type
are non-directed and correspond to layout components. Hyperedgesof the second type represent
relations among components and can be either directed or non-directed in thecase of symmetrical
relations. Considering floor-layout design only spatial relations which are by nature symmetrical
(accessibility and adjacency) are taken into account.

An example of the internal representation of the diagram presented in Figure 1(b) is shown
in Figure2. This hypergraph is composed of eleven component hyperedges, three of which are
hierarchical ones, and fourteen relational hyperedges, where halfof them represent the acces-
sibility relation and the other half the adjacency relation. The relational hyperedge connecting
node 2.2 of the hyperedge labelledLr and node 4.6 of the hyperedge labelledBe is one of the
hyperedges expressing relations between components nested in different parent hyperedges.

To represent features of layout components and relations between themattributing of nodes
and hyperedges is used. Attributes represent properties (like shape,size, position, number of
windows or doors) of elements corresponding to hyperedges and nodes.

3 / 14 Volume X (2008)

Visual Design and Reasoning

Figure 2: A hierarchical layout hypergraph corresponding a designdiagram from Figure 1(b)

The proposed hierarchical layout hypergraph constitutes a modificationof hypergraphs pre-
sented in [Min, Ślu] and is defined as follows.

Let [i] denote the interval[1, i] of natural numbers (with[0] = /0) and letΣ = ΣE ∪ΣV , where
ΣE ∩ΣV = /0, be a fixed alphabet of hyperedge and node labels, respectively.Let At be a set of
hyperedge and node attributes.

Definition 1 An attributed hierarchical layout hypergraph overΣ = ΣE ∪ΣV andAt is a system
G = (EG,VG,sG, tG, lbG,attG,extG,chG),where :

1. EG = EC
G ∪ER

G is a nonempty finite set of hyperedges, where elements ofEC
G represent

object components, while elements ofER
G represent relations andEC

G ∩ER
G = /0,

2. VG is a nonempty finite set of nodes,

3. sG : EG → (VG)∗ andtG : EG → (VG)∗ are two mappings assigning to hyperedges sequences
of source and target nodes respectively, in such a way that∀e ∈ EC

G sG(e) = tG(e),

4. lbG = lbEG ∪ lbVG , where:

• lbEG : EG → ΣE is a hyperedge labelling function, such thatΣE = ΣC
E ∪ΣR

E ∧ ΣC
E ∩

ΣR
E = /0∧ ∀e ∈ EC

G lbEG(e) ∈ ΣC
E ∧ ∀e ∈ ER

G lbEG(e) ∈ ΣR
E ,

• lbVG : VG → ΣV is a node labelling function,

Proc. GT-VMT 2008 4 / 14

ECEASST

5. attG = attEG ∪attVG , where:

• attEG : EG → P(At) is a hyperedge attributing function,

• attVG : VG → P(At) is a node attributing function,

6. extG : [n] →VG is a mapping specifying a sequence of hypergraph external nodes,

7. chG : EC
G → P(A) is a child nesting function, whereA = EG ∪VG is called a set of hy-

pergraph atoms, and such that one atom cannot be nested in two different hyperedges, a
hyperedge cannot be its own child, source and target nodes of a nested hyperedgee are
nested in the same hyperedge ase.

Hyperedges of the layout hypergraph are labelled by names of components or relations. A se-
quence of source and target nodes is assigned to each hyperedge and express potential connec-
tions to other hyperedges. Moreover, for each hierarchical hypergraph a sequence of external
nodes is determined. A child nesting function ensures that one atom cannotbe embedded in
two different hyperedges. It also guarantees that there are no ancestor-descendant cycles in a
hypergraph, which means that a hyperedge cannot be its own child.

4 Operations on Hierarchical Layout Hypergraphs

It is known that a design process cannot be a priori defined in an algorithmic way. During a design
process the designer often modifies a design diagram and/or changes design goals before he gets
a plausible solution. To reflect these changes in our internal representation of a visual language
we equip the proposed system with operations acting on hierarchical layout hypergraphs. They
allow to create and modify hypergraphs representing structures of objects being designed.

The hyperedge development operation, which enables to represent a model structure on a
more detailed level, was defined in [GŚG]. It takes two hierarchical hypergraphs as arguments
and nests in a hyperedge corresponding to an object element in the first hypergraph the second
hypergraph representing the components of this element and relations among them. The nodes
connected to a developed hyperedge are substituted by the corresponding external nodes of the
child hypergraph.

Now we define in a formal way an operation called ahyperedge suppression, which is a reverse
to a development operation. It is useful when the designer wants to redesign the chosen area.
Then he/she has to remove the existing area division before dividing it in a different way. A
suppression operation takes as an argument a hierarchical layout hypergraph and removes the
nested contents of one of its earlier developed component hyperedges.

Let us consider Figure2 and Figure3. Figure3 presents the result of applying a suppression
operation consisting in removing a hypergraphH nested in the hyperedgẽe labelledL corre-
sponding to the living area (Figure2).

Let SG(e) andTG(e) denote sets of all nodes specified by sequences of source and targetnodes
of a hyperedgee in a given hierarchical layout hypegraphG.

Definition 2 Let G be an attributed hierarchical layout hypergraph overΣ = ΣE ∪ΣV andAt,
andẽ∈EC

G be a component hyperedge ofG such that there exists a hierarchical layout hypergraph

5 / 14 Volume X (2008)

Visual Design and Reasoning

H overΣ andAt, andch+
G(ẽ) = EH ∪VH , wherech+

G denotes the transitive closure ofchG.
Let EXTH denote a set of external nodes ofH, V denote a finite set of nodes such thatV ∩VG = /0,
E denote a set of all relational hyperedges ofER

G \ER
H and connected with nodes ofEXTH , and

E ′ denote a finite set of relational hyperedges such thatE ′∩EG = /0.
Let a functionsubstr(string1,string2) return a substring ofstring1 without the prefixstring2.

The hyperedge suppression operation is defined by three functions:

1. a suppression functionsup : EXTH →V defined in such a way that
∀v,w ∈ EXTH substr(lbG(v), |lbH(v)|) = substr(lbG(w), |lbH(w)|) ⇒ sup(v) = sup(w),
is a surjection which determines the correspondence between a set of newnodes and ex-
ternal nodes ofH assigning one node to all nodes with labels which differ only by a prefix
number.

2. a suppression labelling functionlbsup : V → ΣV defined in such a way that
∀v ∈V lbsup(v) = substr(lbG(w), |lbH(w)|), wherew ∈ sup−1(v),
is a mapping assigning to new nodes labels obtained by removing prefixes from labels of
the corresponding external nodes ofH.

3. a suppression embedding functionembsup : E → E ′ is a surjection which determines the
correspondence between a set of new relational hyperedges and relational hyperedges con-
nected with external nodes ofH.

The result of the hyperedge suppression operation is an attributed hierarchical layout hypergraph
G̃ = (EG̃,VG̃,sG̃, tG̃, lbG̃,attG̃,extG̃,chG̃) overΣ andAt, where:

1. EG̃ = (EG \EH \E)∪E ′,

2. VG̃ = (VG \VH)∪V ,

3. sG̃ : EG̃ → (VG̃)∗ andtG̃ : EG̃ → (VG̃)∗ are defined in such a way that:

• sG̃(ẽ) = tG̃(ẽ) ⊆ Ṽ ∗, whereṼ = SG(ẽ)∪V ,

• ∀e ∈ EG \EH \E \{ẽ} sG̃(e) = sG(e)∧ tG̃(e) = tG(e),

• ∀e ∈ E ′ sG̃(e) = f (e)∧ tG̃(e) = f (e) where f : E ′ → (VG̃)∗,

4. lbG̃ = lbEG̃
∪ lbVG̃

, where:

• ∀e ∈ EG \EH \E lbG̃(e) = lbG(e),

• ∀e2 ∈ E ′ lbG̃(e2) = lbG(e1), wheree1 ∈ emb−1
sup(e2),

• ∀v ∈VG \VH lbG̃(v) = lbG(v),

• ∀v ∈V lbG̃(v) = lbsup(v),

5. attG̃ = attEG̃
∪attVG̃

, where:

• ∀e ∈ EG \EH \E attG̃(e) = attG(e),

• ∀e2 ∈ E ′ attG̃(e2) = attG(e1), wheree1 ∈ emb−1
sup(e2),

Proc. GT-VMT 2008 6 / 14

ECEASST

• ∀v ∈VG \VH attG̃(v) = attG(v),

• ∀v ∈V attG̃(v) = h(v), whereh : V → P(At),

6. extG̃ : [ñ] →VG̃ ×ΣV .

7. ∀e ∈ EC
G \{ẽ} chG̃(e) = chG(e) ∧ ch+

G̃
(ẽ) = /0.

As the result of the hyperedge suppression operation the hypergraphH is removed from the
component hyperedgẽe of G. The external nodes ofH are substituted by the corresponding
nodes ofV which become new source nodes of the hyperedgeẽ. The correspondence among
nodes is established by a suppression functionsup on the basis of the node labels. The source
nodes of̃e have the same labels as before a development operation onẽ.

The suppression embedding function replaces the relational hyperedges connected to the ex-
ternal nodes ofH by new relational hyperedges connecting nodes ofG to source nodes of̃e. The
way of replacing each hyperedge by the corresponding set of new hyperedges is specified on the
basis of design constraints.

Let us come back to the example of the suppression operation removing a hypergraphH nested
in the hyperedgẽe labelledL corresponding to the living area (Figure2 and Figure3). Node
replacing specified by the functionsup determines six new nodes (a setV) corresponding to ten
external nodes of the nested hypergraph. The labels of new nodes are obtained by removing
prefixes coming from the corresponding external nodes of the removedhypergraph. For example
two nodes with labels 2.4 representing east walls of the hall and toilet, respectively, are merged
into one node with label 4 representing the north side of the areaL, while three nodes labelled
3.5.3 are merged into one node labelled 5.3 and representing the south wall ofthe living area.
The four relational hyperedges which were connected with nodes 2.2, 1.3, 2.4 and 2.4 (E =
2.2,1.3,2.4,2.4) are replaced by three new relational hyperedges ofE ′ connected with nodes
2, 3 and 4 of the hyperedge labelledL according to the suppression embedding function. As
the result of this suppression operation a hierarchical layout hypergraph shown in Figure3 is
obtained.

5 Visual reasoning

Visual languages play a similar role in design as design sketches as they enable to follow
changes made in design diagrams. Nowadays computer systems with visual languages should
be equipped with intelligent tools capable of assisting the user in a computationalprocess. Such
tools ought to be able to reason on the basis of the internal representationsof visual language
elements.

The presented system is able to reason about the diagram being designedand suggest the de-
signer modifications which are needed and warn him/her against creating solutions not compati-
ble with the specified constraints. To this end the system is equipped with a setSr of predicates
of the formr : P(H)×K → {T RUE,FALSE}, whereH denotes a family of attributed hier-
archical layout hypergraphs overΣ andAt, andK denotes design knowledge. Each predicate
tests whether the predefined criteria are satisfied for the presently generated hierarchical layout
hypergraph.

7 / 14 Volume X (2008)

Visual Design and Reasoning

Figure 3: The hierarchical layout hypergraph obtained by removing a hypergraph from the hy-
peredge representing the sleeping area

Design knowledge is divided into syntactic knowledgeKs and interpretation knowledgeKi

[CRRBG]. The predicates ofSr are divided into syntactic predicates (St) based on syntactic
knowledge and semantic ones (Sm) based on interpretation knowledge. Each predicate ofSt has
a specified subhypergraph which is searched for in a layout hypergraph created so far. After
each hypergraph development operation, which nests a hypergraph ina hyperedge, for each
component hyperedge of a nested hypergraph a predicater1 ∈ St, which tests the accessibility
of the corresponding room or area, is activated. This predicate searches for a subhypergraph
shown in Figure4(a), whereLab denotes a label of a component hyperedge. For example in a
hypergraph nested in a hyperedge representing the whole apartment (Figure2) and presented in
Figure6(b) for both component hyperedges labelledS andL one such subhypergraph is found,
while for a hyperedge labelledG representing a garage a searched subhypergraph is not found.
The designer is notified that there is no inside connection of a garage and itis accessible only
from the outside of the house.

The example syntactic predicater2 searches in a nested hypergraph for a subhypergraph shown
in Figure 4(b). The labelsDr and K denote a dining-room and a kitchen, respectively. The
predicate checks if a dining-room is located near a kitchen and is accessible from it. If these
conditions are not satisfied for the existing dining-room the designer obtains a suitable piece of
information.

Predicates belonging to a setSm enable the system to perform semantic analysis of the gen-
erated hypergraph. The semantic reasoning about a design diagram is performed on the basis of
identifiers and present values of attributes assigned to hypergraph atoms. To each component hy-

Proc. GT-VMT 2008 8 / 14

ECEASST

Dr acc KLab

(b)

acc

(a)

Figure 4: a) A subhypergraph of a predicater1, b) a subhypergraph of a predicater2

peredge the attributearea, which value specifies the area of the corresponding space, is assigned.
To relational hyperedges labelledacc the attributetype is assigned. Its value specifies the way
in which the adjacent spaces are accessible (by the door, by lack of a fragment or a whole wall
between them). To hypergraph nodes the attributesposition andwindow number are assigned.
They specify the location of the walls and the numbers of windows which the walls contain.

The example semantic predicater3, which is activated for each room located in a design
diagram, sums up values of thewindow number attribute of all nodes assigned to a corresponding
component hyperedge representing this room. Comparison of the obtainednumber with the
specified architectural norms allows the system to reason about the lightningof the room and the
loss of heat, and warn the designer about the possible problems.

Another example of semantic reasoning concerns deducing shape of rooms on the basis of
identifiers of nodes assigned to hyperedges representing diagram components. First, a syntac-
tic predicate, which searches for composition hyperedges connected withsix or eight nodes, is
activated. For the found hyperedges of the first type, a semantic predicater4 tests if the cor-
responding areas have the shape of a letterL, while for the hyperedges of the second type, a
semantic predicater5 tests if the corresponding areas have the shape of a letterT . Predicater4
searches for two pairs of nodes, each of them representing two non-collinear and parallel walls,
and such that walls represented by these pairs are not perpendicular (hyperedgesS andL in Fig-
ure6(b)). Predicater5 searches for three nodes representing three parallel walls with the same
orientation and such that at most two of them are collinear, one node representing a wall which
is parallel to the mentioned three walls but has the opposite orientation. Two remaining pairs of
nodes should represent parallel and non-collinear walls with opposite orientations.

6 Implementation

In this section a structure of the systemHGSDR (Hypergraph Generator Supporting Design
and Reasoning) is presented. The system allows the designer to edit diagrams and automatically
applies operations on hierarchical layout hypergraphs being internalrepresentations of diagrams.
It also gives the possibility to define constraints and reason about designdiagrams.

The system is written in Java and contains four modules (Figure5): a graphical interface for
editing objects and constraints, a constraint module for reasoning about diagrams, a hierarchical
layout hypergraph generator and a control module for hypergraph visualization. The graphical
interface enables the designer to construct diagrams of visual elements directly accessible in the
editor or taken from a library of objects defined by the user or an external library of domain-
oriented objects. A set of visual primitives, which are directly accessible contains points, line
segments, polygons and eliptic arcs. Texts can be used to describe primitives. The graphical
interface allows the designer to interactively create and edit both objects, their attributes and
constraints concerning these attributes.

9 / 14 Volume X (2008)

Visual Design and Reasoning

D

E

S

I

G

N

E

R

Diagram Editor

Constraint

Editor

Graphical

object Editor

DESIGNER

Hypergraph

Generator

Hypergraph

visualizaton

control

Constraint Module

Constraint

verificator

Constraint

solver

Figure 5: A system architecture

The constraint module contains syntactic and semantic reasoning rules. It activates the rules,
solves constraint equations defined on hypergraph attributes and sends messages to the designer.
It prompts the designer which diagram transformations are needed. Whenthe designer changes
values of attributes, which are connected by specified constraints (like distance or location), the
system can force the appropriate constraints to be satisfied by changing sizes of some objets and
drawing a new diagram again.

The hierarchical layout hypergraph generator automatically creates hypergraphs, where hy-
peredges correspond to diagram components and relations between them.The control module
for hierarchical hypergraph visualization verifies and updates an existing hierarchy and enables
to group components of the same hierarchy level and show relations between these groups and
other components being on different levels of the hypergraph hierarchy.

7 Case Study

Let us consider an example of creating a design diagram presented in Figure 1(b), which corre-
sponds to the layout of a one storey house with a garage shown in Figure1(a). The first diagram
drawn by the designer represents the area of the whole apartment. The initial hypergraph repre-
senting this diagram, that is automatically generated (Figure6(a)), is composed of one hyperedge
connected with four external nodes representing sides of the area andplaced in the diagram ac-
cording to the geographical location of the sides they correspond to.

In the next step, the designer divides the whole apartment area into three parts representing
a living area, sleeping area and a garage, respectively (Figure7(a)). As a consequence, the
hyperedge development operation on the layout hypergraph is invokedautomatically. As the
result of this operation the layout hypergraph representing the three areas and adjacency rela-
tions between them is nested in the hyperedge representing the whole apartment. The obtained

Proc. GT-VMT 2008 10 / 14

ECEASST

(b)

(a)

Figure 6: a) A component hyperedge representing the whole area of theapartment, b)a hierar-
chical layout hypergraph obtained as a result of a hyperedge development operation

hierarchical layout hypergraph is shown in Figure6(b).
The four external nodes of the hyperedge shown in Figure6(a) are replaced by seven external

nodes of the nested layout hypergraph in respect to their geographical orientations. The labels of
the external nodes of the layout hypergraph nested in the hyperedge representing the apartment
are concatenated with labels denoting the number of the parent hyperedgenode they replaced.
The node number 1 of the apartment is replaced by nodes representing north sides of the living
area (L) and the sleeping area (S). Both new nodes are labelled 1.1, where the first part of this
label denotes that they correspond to first sides of areasL andS, while the second part of the
label is inherited from the node which they replaced. The node number 2 is replaced by node 2
of the sleeping area and node number 2 of the garage, where both of themrepresent east sides
of the diagram and are labelled 2.2. The node number 3 is replaced by nodenumber 3 of the
garage (labelled 3.3) and node number 5 of the living area (labelled 5.3). The node number 4 of
the apartment is replaced by the node number 6 of the living area (labelled 6.4).

Then, the sleeping area is divided by the designer into a bedroom and a bathroom, which are
adjacent to each other (Figure7(b)). This modification of the design diagram results in nesting
the layout hypergraph representing these rooms and adjacency between them in the hyperedge
labelledS representing the sleeping area. As the result of applying the hyperedgedevelopment
operation the hierarchical layout hypergraph presented in Figure3 is obtained.

Six external nodes of the hyperedge labelledS are replaced by seven corresponding external
nodes of the nested hypergraph. The labels of these seven nodes areconcatenated with labels de-
noting numbers of the parent hyperedge nodes they replaced. For example, the node labelled 1.1
of the sleeping area is replaced by nodes representing north walls of the bedroom (Be) and bath-
room (Ba) (nodes 1.1.1 and 1.1.1, respectively).The relational hyperedges which were connected

11 / 14 Volume X (2008)

Visual Design and Reasoning

(a)(a)

(b)

(a)

Figure 7: a)Three areas of the apartment, b) the apartment with the dividedsleeping area

with nodes 3, 4, 5 and 6 of the hyperedge labelledS are replaced by new relational hyperedges
connected with nodes 3.3, 2.4, 3.5, and 4.6 of the nested hypergraph, respectively.

Then, the designer divides the living area into five rooms representing a living room, kitchen,
hall, entrance and a toilet, respectively (Figure1(b)). As the result of the next hyperedge develop-
ment operation, which nests the layout hypergraph representing these five rooms and adjacency
relations between them in the hyperedge representing the living area the hierarchical layout hy-
pergraph shown in Figure2 is obtained. Six external nodes of the hyperedge labelledL are
replaced by the corresponding external nodes of the nested layout hypergraph. For example,
the node labelled 4 is replaced by two nodes 2.4 representing east walls of the hall and of the
toilet (W), respectively, while the node 5.3 by three nodes labelled 3.5.3 which correspond to
south walls of the kitchen (K), entrance (E) and toilet, respectively. Three relational hyperedges
which were connected with nodes 2, 3 and 4 of the hyperedge labelledL are replaced by four
new relational hyperedges. For example, the hyperedge which was connected with node 4 of the
living area is replaced by two relational hyperedges, one connected withnode 2.4 of the hall and
another one with node 2.4 of the hyperedge labelledW (Figure2).

If the designer is not satisfied with the layout of the living area and decidesto change it, then
she/he removes the division of this area and goes back to the diagram shown in Figure7(b). As
a consequence, the hyperedge suppression operation on the layout hypergraph is invoked auto-
matically. As the result of this operation the hierarchical layout hypergraph shown in Figure3 is
obtained. The nodes which were divided by the development operation are merged again. Node
replacing is specified in such a way that the merged nodes are given the same labels which they
had before the development operation was used.

In the next step the living area is divided into four spaces corresponding to a living-room,

Proc. GT-VMT 2008 12 / 14

ECEASST

1

E

K

W

Lr
1

2

1

2

3

2

3

3

4

3

4

4

4

(b)

(a)

W Lr

K

Figure 8: a) A redesigned diagram, b)a hierarchical layout hypergraph corresponding to it

kitchen, entrance and a toilet. The design diagram obtained as a result of anew division ofL and
the corresponding hierarchical layout hypergraph are presented inFigure8(a) and Figure8(b).

8 Conclusions

This paper is the next step in developing a visual language to support innovative design. In our
approach the designer’s modifications of diagrams are reflected by operations performed on their
hypergraph representations. The way of reasoning about design diagrams on the syntactic and
semantic level, based on knowledge stored in attributed hierarchical layouthypergraphs, that
enables the system to suggest the designer modifications of created solutions, is also described.

The presented system is tested on designing floor-layouts. Other applications will concern
visual languages for designing gardens in different styles and designing three-dimensional forms
of buildings. The present implementation is written in such a way that each new application
requires only some changes in the editor module.

Bibliography

[CRRBG] R. D. Coyne, M. A. Rosenman, A. D. Radford, M. Balachandran, J. S. Gero.
Knowledge-based Design System. Addison-Wesley, Sydney, 1990.

[DHP] F. Drewes, B. Hoffmann, D. Plump. Hierarchical Graph Transformation. In J. Tu-
ryn (ed.),Proc. of FOSSACS 2000, LNCS 1784, pp. 98–113, Springer, 2000.

[Gol] G. Goldschmidt. The Dialetic of Sketching.Creativity Research Journal, 4, 1991.

13 / 14 Volume X (2008)

Visual Design and Reasoning

[GGLŁŚ] E. Grabska, K. Grzesiak-Kopeć, J. Lembas, A. Łachwa, G.́Slusarczyk. Hyper-
graphs in Diagrammatic Design. In K. Wojciechowski et al. (eds.),Proc. of the
International Conference ICCVG 2004. Computer Vision and Graphics, pp. 111–
117, Springer, 2006.

[GŚG] E. Grabska, G.́Slusarczyk, M. Glogaza.Design Description Hypergraph Lan-
guage. In M. Kurzyński et al. (eds.), Computer Recognition Systems 2, Advances
in Soft Computing 45, pp. 763–770, Springer, 2007.

[GLŁŚG] E. Grabska, J. Lembas, A. Łachwa, G.Ślusarczyk, K. Grzesiak-Kopeć. Hier-
archical Layout Hypergraph Operations and Diagrammatic Reasoning.Machine
Graphic & Vision, in print, 2007.

[Min] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on
Hypergraph Transformation.Science of Computer Programming 44, pp. 157–180,
2002.

[Pal] W. Palacz. Algebraic Hierarchical Graph Transformation.Journal of Computer
and System Sciences 68, pp. 497–520, 2004.

[SWZ] A. Scḧurr, A. Winter, A. Zündorf. Graph grammar engineering with PROGRES.
In W. Scḧafer, P. Botella (eds.),Proc. of the 5th European Software Engineering
Conference (ESEC95), LNCS 989, pp. 219–234, Springer-Verlag, Berlin, 1995.

[Szu] J. Szuba.Graphs and Graph Transformations in Design in Engineering. PhD the-
sis, PAS, Warszawa, 2005.

[Ślu] G. Ślusarczyk. Hierarchical Hypergraph Transformations in Engineering Design,
Journal of Applied Computer Science, 11(2), pp. 67–82, 2003.

Proc. GT-VMT 2008 14 / 14

