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Abstract: Subtyping and inheritance are two major issues in the researd devel-
opment of object-oriented languages, which have beentiadlly studied along
the lines of typed calculi where types are represented asrdbioation texts and
symbols. Two aspects that are closely related to subtypiddrdneritance — method
interdependency, and self type and recursive object typave bither been over-
looked or not received sufficient/satisfactory treatmelmtshis paper, we propose a
graph-based notation for object types and investigateuhtyging and inheritance
issues under this new framework. Specifically, we (1) idgrttie problems that
have motivated this paper; (2) propose an extension to ABadielli’'s ¢-calculus
towards fixing the problems; (3) present definitions of obfgpe graphs followed
by examples; (4) define subtyping and inheritance usingcolijge graphs; (5)
show how the problems can be easily resolved under objeet dygphs; and (6)
summarize the contributions of this paper.

Keywords: Object type, graph transformation

1 Introduction

As pointed out by Markku Sakkinen ishk03, although in recent years the emphasis of the re-
search and development in object-oriented programmingR)df@s shifted from programming
languages (themselves) to larger entities such as comfgmr@wironments, and manipulating
tools, it does not mean that the existing object-orientedlages are perfect and no improve-
ment is needed. In particuldyping is still a critical issue and a problem-prone area in the &drm
study of object-oriented languages, especially when tgtsed subjects, such as subtyping and
inheritance, are considered.

One aspect related to subtyping is object method interdkgramies: the invocation relation-
ship among methods. The failure of keeping track of this ¢atimn structure in object types
can cause elusive programming errors which will inevitattgur, undermine the program re-
liability, and burden the program verification. One aspetdted to inheritance is self type vs.
recursive object type: which one is ttree type of the self variable (in the context of inheritance).
The failure of not distinguishing these two types suffidigcin lead to some well-known fun-
damental problems. While the former aspect has been okeddom the literature, the latter
has not received sufficient attentions and/or satisfadiegtments, in either theoretical studies
(e.g., AC96, FHM94, LC96, Lig98, BL95]) or main stream practice (e.g., Java and C++) of
OOP. In the next section, we present concrete examplesisirdke this point.
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2 Motivations

We present two problems that have motivated the writing isfplaper.

2.1 Method Interdependency

We call a rectangldree if its two sides (height and width) are independemtystrained other-
wise. In conventional type systems, the type of a free rgétaand the type of a constrained
rectangle are not distinguished. We show, in this subsgctitat this type confusion opens the
door to let the different semantics of free rectangles amgtrained rectangles be mixed, which
is serious enough to be able to cause a prognatto perform to its specification and thus
weakens its reliability.

Using the first-orderg-calculus notation AC96], we can construct a free rectangkect, a
constrained rectangleRect, and their type$R, CR as follows:

[h:int i h=1
w:int w=2
def mvh :int — SeIf def /. mvh=A(i:int)(sh<sh+i)
FR= p(S8if) mww :int — Self |’ fRect = ¢(s:FR) mw = A (i:int)(sw<sw+i) |
geth : int geth=sh
| getw : int 1 | getw = s.w i
Ch:int T h=1 i
w:int w=2(s.h)
def mvh:int — Self def /o, mvh=A(i:int)(sh<sh+i)
CR= p(Sdf) mww :int — Self |’ CRect = ¢(s:CR) mw = A (i:int)(sw<=sw+i) |’
geth:int geth =s.h
| getw : int i | getw = sw i

where= s the field update operation, and the intentions of methodkdse two rectangles are
obvious. Note that iriRect, the height k) and the width ) are independent, whereasdRect,
the widthdepends on the height ¢ = 2(s.h)). Also note thaFR = CR, that is, the types of these
two rectangles are confused (in conventional type systems)

Now, suppose we would like to have a function with the follogyspecification (contract):

This function takes a rectangle and then doubles both its height and its width.
With little effort, such a function can be written as:
ds £ A(r: FR)(r.mvh(r.geth)).mvw(r.getw).

It is easy to check thats will double its argument’s both sides when taking a freeargle as
argument. However, whetts takes a constrained rectangle as argument, for exadspbRect)

(due to the facCR = FR, cRect will type-check), it will fail to do so, as it is supposed toy(the
specification). In detalil,
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ds(cRect) = (cRect.mvh(cRect.geth)).mvw(cRect.getw)

h=2
= ¢(s:CR) |:W6 ] .

...no change...

Clearly, the height ofRect is doubled, but its width iripled (not doubled)! The reason for this
is the interdependency between the height and the widtiRéat: when the height o€Rect is
changed to 2, its width isnplicitly changed to 4 due to the width’s dependence on the height.

Considering that the widely-agreed notion of program bdlity refers to (e.g. $eb07) “pro-
gram performs to its specification under all circumstanees! that the fact thats does not live
up to its specification when takirgRrect as its argument, we argue that the reliabilitydsfin the
environment of conventional type systems, is substaptiai. Furthermore, such elusive com-
putation fault may be hard-to-detect whasis embedded in large software systems. To resolve
this problem effectivelyrs should be written in such a way that it only takes free redemdhat
is, ds(cRect) should be caught by the type checker. This observation fmallhie separation of
the type of free rectangles from that of constrained ones.

2.2 Self Type and Recursive Object Type

The notion of self type is coined to describe the type of thevseiable in an object, especially
when the object contains a self returning method. Then thstepn is: What is the (semantics of)
self type? Is it just the (recursive) object type or somejldse? For example, using the notation
of ¢-calculus again, an object which consists of two methods,returning the constant 1 and
one returning the hosting object itself can be coded &5[l; = 1, |, = ¢(s: X)s], wheres is
the self variable andX is the type ofs — the self type. How do we interpr&t? One “natural’
way is thatX is just the object type itself (recursively defined), thatis= p(Y)[l1 :int, 12:Y].

As this interpretation works to some extent but runs intcstautitial problems (see, e.gAT96]

for details), other explanations of the self type have beemgist. For example, the second-order
self quantifier AC96] and the MyType Bru94] are proposed. Nevertheless, no mater how self
type is interpreted, an object type has always been managee & subtype of the associated
self type. This setup, combined with inheritance and dycafigpatch of methods, leads to the
well-known “method-not-found” error as illustrated bel¢adapted fromBru94).

def

PT = ObjectType(MyType){x:int,eq: MyType — Bool }

def

CPT = ObjectType(MyType){x:int,c: color, eq: MyType — Bool }

def

pto = object(self : MyType){x=0,eq= fun(p: MyType)(p.x = self .x)}

def

pt = object(self : MyType){x=1,eq= fun(p: MyType)(p.x=sd f.x)}

def

cpt = inherited from pt with {c =red, eq= fun(p: MyType)[(p.x=sd f.X) A (p.c=sel f.c)|}

def

F £ fun(p:PT)(p.eq(pto))

Given these definitions, it is easy to check tipif: PT, pt:PT, andcpt:CPT. Note that
in the definition ofF, we actually have assumed (a3r(194 does) that the type ofty, PT,
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is a subtype of the self type associated w#h, MyType in this case, so thgp.eq(pto) type-
checks. Now, if inheritance implies subtyping (as we havenberacticing in C++ and Java),
thencpt : CPT <: PT andF (cpt) will type check. HoweverF (cpt) will crash and produce a
“method-not-found” error becauspt.eq(pty) expects its argumenty, to have a color field and
uses that color field in the body ef] of cpt, but ptyg does not have the color field.

Traditionally, it is this kind of problem that has prompteslto claim that “inheritance is not
subtyping” [CHC9(. However, “inheritance implies subtyping” is a stronglgsitable property
in OOP. Without it, the software hierarchy build through entance will be much less useful
since in this case a subobject (object from a subclass) tdnencegarded as having the same
type with its superobject (object from the superclass),@rhot use any existing programs that
have been written for superobjects. Program reusabilitiythnis be greatly reduced. Towards
keeping this hierarchy useful and resolving the methodfmand problem at the same time, we
propose that an object type should not only be treated differ from its associated self type,
but not be regarded as a subtype of its associated self tijpe.ei

3 Enhancing Object Types

In order to address the problems outlined in the previouiasgonve extend Abadi-Cardelli’'s
¢-calculus by adding a mechanism called links that captueentiethod interdependencies in
objects, and by distinguishing (recursive) object typesnfritheir associated self types. The
terms M) and types §) of this extended calculus are as follows.

M = X|A(X:0).M|MMz|M.I|M.I<=c(x: . Z(A)M | [li = ¢(x: 7 (A)M] 4
o = K|t|lopo— o2 |uUlt)o|A|S(A)
A = 1OiL):a), LiC{l,...,In} for eachi
X, A (x:0).M, andM1M; are the standardl-terms.[l; = ¢(x:.7(A))M;]{_; represents an object

consisting ofn methods, with names and bodiesVi; for eachi. ¢ is the self-binderM.l means
the invocation of methotlin M. M.1<= ¢(x:.#(A))M is the updating operation which evaluates
to an object obtained by replacing metHdd M by M.

K,t, 01 — 0z, andp(t)o are ground types, type variables, function types, and sa@itypes
respectively. Object types are represented (bl (L;): gi]! ; where each methdghas typeo;,
andL; is the set oflinks of I; (defined below).: is the self-type binder. An alternative way to
represent self type is”(A) which denotes the self type associated with the object &yp€he
two notations are related b= 1 (t)[li(Li): 6i(t)]; = [li(Li) : G (L (A))],. Terms that can
be of a self type are restricted to self (variable) or a madii§ielf (for the sake of self variable
specialization during inheritance).

Definition 1 Given an objecil; = ¢(s:.(A))Mi]iL;. The only terms that are of typ#'(A) are
sorsli<=¢(s:.7(A))M for someM.

The set of links, which is a part of the newly proposed objgges, is defined as follows.
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Definition 2 (Links) Given an objeca = [l; = ¢(s:.’(A))Mi]L_;, (1) | is said to bedependent
onlj(i # j) if there exists a such that.l; (or a.l;(a) for some appropriate argument lis} and
(alj<=¢(s:.Z(A)M) [; (or (alj<=¢(s:.”(A))M).Ii(a)) evaluate to different values; (R)is said
to bedirectly dependent onl(i # j) if (a) |; is dependent ohy, and (b) if all sucH(i #k, j # k)
wherel; is dependent ol andly is dependent oh, are removed froma, |; is still dependent on
l;; (3)The set ofinks of |; in objecta (or equivalently, oM; with respect to objeat), denoted by
La(li) (or equivalently, byLa(M;)), contains exactly all such on whichl; is directly dependent.

4 Object Type Graphs

The notion of links introduces new structures into objegiety. Object types are thus enriched
but also become more complicated. To effectively analyzkraason about the structure of the
new object types, we present a graph-based representatiobjéct types — object type graphs
(OTG).

4.1 Definitions

Definition 3  (Directed Colored Graph) A directed colored graph Gis a 6-tuple(Gy, Ga,C, s1,tg, C)
consisting of: (1) a set afodes Gy, and a set oércs Ga; (2) acolor alphabet C; (3) asource
map s : Ga — Gy, and atarget map tg : Ga — Gy, Which return the source node and target
node of an arc, respectively; and (4¢@or map c : Gy U Ga — C, which returns the color of a
node or an arc.

Definition 4 (Ground Type Graph) A ground type graph is a single-node colored directed
graph which is colored by a ground type.

Definition 5 (Function Type Graph) A function type graph (s,G1,G2)(gy,GacCstgo) IS @ di-
rected colored graph consisting exactly aftarting node s € Gy, and two type graph&; and
Gy, such that, (1x(s) =—; (2) there are two arcs associated with the starting repdieft arc
| € Ga andright arcr € Ga, such that(l) = in, c(r) = out; | connectsG; to sby sr(l) = sg,,
tg(l) = s, andr connectssto G, by sr(r) = s, tg(r) = sg,, Wheresg, andsg, are the starting
nodes ofG; and Gy, respectively; (3)G1 and G, are disjoint; (4) if there is an a@ € Ga with
c(a) = rec, thensr(a) = sg;, tg(a) = s, ¢(sg,) =—, 1 =1,2.

Definition 6  (Object Type Graph) An object type graph (s,A,R,L, S)(g, G cstgc) IS @ directed
colored graph consisting exactly ofi@rting node s € Gy, a set ofmethod arcs A C Gp, a set of
rec-colored arcR C Gp, a set ofink arcsL C Gp, and a set of type grapi® such that (1¥(s) =
sf. (2)Vae A sr(a) = s tg(a) = s for some type grapk € S andc(a) = mfor some method
labelm; c(a) # c(b) fora,b € A,a#Db. (3)Vr € R, c(r) =rec, tg(r) = s, sr(r) = s¢ for some
F € S andc(se) =sdf. (4)Vl €L, sr(l) = s¢, tg(l) = sg for someF, G € S andc(l) = bym for
some method labeh.

Remarks: Directed colored graph is the foundation of graph grammeoh[EPS73Ehr78
R0z97. Object type graphs are adapted from directed coloredhgra@round type graphs are
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trivial. Function type graphs are straightforward. Thewgdé¢o be defined because an object
type graph may include them as subgraphs. An object typéngsaormed by a starting node
and a sef of type graphs with each € Sbeing connected teby a method arc that goes from
sto F. The starting nods is colored byself and is used to denote the self type. The method
interdependencies are specified by arck.irif L(m) is the set of links of methodh, then for
eachl € L(m) there is an arc (colored Hyyl) that goes froml to m. Recursive object types are
specially indicated by rec-colored arcsRn

For the sake of brevity, we drop the subscripts (8 Gi1,G2)y GaCstge) and
(S AR L,S) gy cacstgc) Whenever possible throughout the paper.

4.2 Examples of OTG

We now provide some examples to illustrate the definitiotretduced in the last section. Through-
out this section, if the type of an objezis represented by a graph we will say the type ok is
A, and vice versa.

Examplel In Figurel, A, B, andC are the type graphs for the three ground tyjpesreal, and
bool respectively. They are just a node colored by the apprapgetund typesD is the type
graph for function typént — int. E is the type graph fofint — B) — int, whereB is the object
type in Figure2(a) which will be explained in the next example.

@) (=)

A in

out
() @)
B C D

Figure 1: Examples of Ground Type Graphs and Function Tyagi&:.

Example 2 In Figure2(a) graphA denotes the object tyge:int,y:int], where methods and

y are independent of each other. Graphenotes the typg:int,y({x}):int] wherey depends
onx. Note that the direction of the link arc Biis fromx toy (not fromy to x), and that the link
is colored bybyx, signifying that changes made to methowill affect methody. For instance,
an object of typeA may be[x = 1, y = 2| (which is actually a record), and an object of type
may belx=1, y = ¢(s:.7(B))(s.x+2)].

Note also that although the presence of the linB iar the absence of the link iy serves as
an extra condition (compared to conventional type systéonskelecting objects to be typed Aas
or B respectively, there are still infinitely many objects thag af typeA or typeB. For example,
objects|x = m,y = n| with m;n € N are all of typeA; objects[x = n,y = ¢(s: B)(a(s.x) + b)]
with n,a,b € N are all of typeB. In this sense, OTG is (still) an abstract specification gécih
behaviors.
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(a) (b)
Figure 2: Example of Object Type Graphs

Example 3 In Figure2(b), A is the type graph for(t)[x:int,mvx({x}):int — t] which is the
type of a simplified 1-d movable poift = 1,mvx = ¢(s:B)A (i:int)(sx<sx+1)]. The facts
thatmvx depends or and returns a modified self object are indicated bybxecolored arc and
the out-colored arc respectively. Note the direction of th#-colored arc goes to the starting
node of the type graph directly, indicating that this is 4 §gle (as opposed to recursive objet
type). GraphB represents the type of the object 1, b= p, c({a,b}) = ¢(s: .#(B))s| where

p is some predefined object of tyBe Here, note that the fact thiatis of recursive object type is
depicted by &l f-colored node and eec-colored arc going from this node to the starting node
of the graph; and that the fact thats of self type is depicted by its method arc going directly
to the starting node of the graph. The difference betweemrsa@ object type and self type is
clearly represented in object type graphs.

5 Subtyping under OTG

Given the definition of OTG, we now investigate the issue titygping under OTG. Throughout
the paper, we writéd\; <: B; iff 0 <: T whereo andr are types and\, andB; are their type
graphs. We first present the necessary definitions and tlidprsome subtyping examples.

5.1 Definitions

Definition 7 (Type Graph Premorphism) Let ® be the set of ground types. Given two type
graphsG = (G, Ga,C,s1,tg,c) and G’ = (Gy,G),C’,s’,td,¢'), atype graph premorphism
f:G— G’ is a pair of mapg fn:Gn — Gy, fa:Ga — Gj), such that (1§a € Ga, fn(sr(a)) =
s’(fa(a)), fn(tg(@)) =td'(fa(a)), andc(a) =c'(fa(@)); (2) Vv e Gy, if ¢(v) € ®, thenc/ (fn(V)) €
®; otherwisec(v) = c/(fn(V)).

Definition 8 (Base, Subbase) Given an object type graph = (s,A,R,L,S). Thebase of G,
denoted byBa(G), is the graph(s,A,t(A),L), wheret(A) = {tg(a) |ac A}. A subbaseof Gis a
subgraph(s, A',t(A'),L’) of Ba(G), whereA’ C A, L' CL,t(A') = {tg(a) | ac A'}, and for each
| € L' there existy,ap € A’ such thasr (1) =tg(ap) andtg(l) =tg(az).
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Definition 9 (Closure, Closed) Theclosure of a subbas® = (s,A’,t(A’),L’) of an object type
graphG = (s,A,R L,S), denoted byCl (D), is the unionD UE; U E,, where (1)E; = {l € L |
Jag,a € A with tg(ag) = (1), tg(az) =tg(l)}, and (2)E2 = {I,h,at(l) |[l,he L, ac A a¢
A tg(l) = sr(h) =tg(a), and3ay,a, € A’ such thatg(a;) = sr(l), tg(az) =tg(h)}. A subbase
D is said to beclosed if D =CI (D).

Definition 10 (Covariant, Invariant) Given an object type grapts,A,R,L,S). Lett(A) =
{tg(a) | a€ A}. For eachv € t(A), if vis not incident with any links, or it is the target node
of some links but not the source node of any links, thénsaid to becovariant; otherwisey is
said to benvariant.

Definition 11 (Object Subtyping) Given two object type graphé = (sg,Ag,0,Ls,Ss) and
F =(s,Ar, 0L, S). F <: Gif and only if the following conditions are satisfied: (1) Tke
exists a premorphisni from Ba(G) to Ba(F) such thatf (Ba(G)) = CI(f(Ba(G))). That is,
f(Ba(G)) is closed. (2) For each nodein f(Ba(G)), let u be its preimage ifBa(G) under f,
F, € & be the type graph witla as its starting node, ar@, € S be the type graph with as its
starting node. (i) I is invariant, ther, is isomorphic taG,. (i) If vis covariant, their, <: Gg.

Remarks: Type graph premorphism is adapted from graph morphism whiaffundamental
concept in algebraic graph grammaiEP[S73 Ehr78 Roz97. It preserves the directions and
colors of arcs and the colors of nodes up to ground types. &ke bf an object type graph
singles the method interdependency information out of titgesobject type graph so that the
structure of the method interdependencies can be betidiedtuThe closure of a subbase cap-
tures the complete behavior of the subbase by includingdditian to all methods and links in
the subbase, a sEb of methods (and associated links) outside of the subbageifotiowing
way: for any method in Ep, (1) | depends on some methods inside the subbase, and (2) there
exist some methods inside the subbase that depehd on

5.2 Examples

We now present some simple subtyping examples.

Example4 Given the two type graphs in FiguBga) clearly we can find a premorphisfrifrom
base ofA to base 0B such thatf (Ba(A)) is closed; note also that nodén B is covariant. Thus,
B <: A. As an example, we can regard the object 1, y = ¢(s:.(B))(s.x+ 1)] of typeB as
having typéeA.

Example 5 For the two type graphs in Figu@b), we can also find a premorphism from the
base ofA to the base oB, and nodes in B is also covariant. But, nodein B is invariant which
requires the corresponding nodén A have the same color — pos (standing for positive integer)
in order to haveB <: A. ButU' is colored byint, henceB «: A.

As an example to justify thdd £: A, letb=[x=1, y=¢(s:.(B))(log(s.x) + 1)], it is easy
to checkb: B. If B <: A, thenb: A, and in this case we can update #igeld inb to a negative
integer, say, -1, resulting an object like= [x = —1, y = ¢(s:.#(B))(log(sx) + 1)]. In this
object, the invocation of methodwill crash sincdog is not defined over negative integers.
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x / y x / y
e )
v
A

B

(a) (b)
Figure 3: Examples of Object Subtyping

(@) (b)
Figure 4: Examples of Object Subtyping

Example 6 Considering the graph& andB in Figure4(a) it is easy to check (similar to the
case of exampld) thatB <: A. As an example for this subtyping, an objéct=1, y = ¢(s:
< (B))(sx+1), z= 1jwhich is of typeB, can clearly be regarded as having tyoe

Example 7 Let us revisit the two object types in Figuéa) We haveB £: A, since we cannot
find a premorphisni from Ba(A) to Ba(B) such thatf (Ba(A)) is closed. Similarly, there exists
no such a premorphisgfrom Ba(B) to Ba(A) such thay(Ba(B)) is closed, s@\ «: B.

One may wonder what kind of type (graph) can be of a subtye @fB respectively. Any
subtype oA must not have a link between methodandy,; and any subtype d must have a
link going fromx toy. This is the structural requirement in Definitidd. As a result, object
[x =1, y = 1] cannot be regarded as having the same type with the olgjectl, y = ¢(s:
7 (B))(sx+1)], and vice versa. One may contend that this subtyping is tslniceve so that
some “good” subtyping instances are not allowed by it; weiardat this is the trade-off in the
sense that the strictness of this subtyping can block angéptg@otential programming errors,
as shown in the next example.

Example 8 As the last example, we show how the “free or constrainecangdés problem”
described in section 2.1. The (new) types of the free ret@dRgct and the constrained rectangle

cRect are depicted as andC in Figure4(b). Note that the independence between the height and

the width in the free rectangf®ect and their dependency in the constrained rectacigéet are
faithfully shown by the absence and presence lftacolored link between methodisandw in
F andC, respectively. It is easy to check tlak: F. So if we modify the functiomls of section
2.1 by replacing its parameter typ& by the new typd- in Figure4(b), then the caltis(cRect)
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A / K
8
f PO 2 N / K T
i
g

P B k PO, PO,
p j P D H

(a) Graph gluing definition (b) Direct derivation definition

Figure 5: Definitions of Graph Gluing and Direct Derivation

will be rejected under OTG by the compiler since it does npetgheck.

6 Inheritance under OTG

We now turn to the issue of inheritance. Some basic notiogsaph grammar are needed before
we can define inheritance formally.

6.1 Definitions

Definition 12 (Type Graph Production) A type graph production p is a pair of type graph
premorphismd : K — A; andg : K — Ay, whereA; is called thdeft side, A, theright side, and
K theinterface. This is denoted ap = (Ag Ikse Ag).

Definition 13 (Type Graph Gluing) Given two type graph premorphisnfs: K — A andg:

K — B. Thegluing of A andB alongK is the pushout of K BN AandK 2 B in the category
formed by type graphs together with type graph premorphistiggire5(a)).

Definition 14 (Direct Derivation) Given type graph®, D, H, a type graph productiop =
(S<L K2 T), and a premorphisrk: S— P (called a context map). We say thdtis directly

derived from P via p by k, denoted by 25 H if P is the result of gluingsandD alongK and
H is the result of gluind> andT alongK (Figure5(b)).

Definition 15 (Unfolding Production and Operation) A graph productioru = (S<L K -2 G)
is called an unfolding production if (IX is a graph consisting of two nodes andv,, and
c(v1) =c(vp) = se f; (2) Sis a graph consisting of two nodesg andu, and an ard such that
c(u1) =c(up) = sl f,c(t) =rec,sr(t) = up, andtg(t) = ug; (3) f(vi) = u;,i = 1,2; gis a partial
morphism withg(vz) = sg Wwheresg is the starting node o&. Given an unfolding production
u= (S<L K- G), an object graplf, and a premorphism: S— F, we sayF unfolds toP if

F ) p
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Definition 16 (Addition Production and Operation) A graph productiora = (S<L K- G)is
called an addition production, if () consists of only one node andc(v) = sdl f; (2) Sconsists
of only one nodey, andc(u) = sel f; (3) f(v) = uandg(v) = sg wheresg is the starting node of

G. Given an addition productioa = (S<L K -2, G), an object grapffr, and a premorphism

j 1 S— F, we say thaP is the result of adding into F if F 22 p.

Definition 17 (Link Production and Operation) A graph production = (S<L K -2 G)is
called a link production, if (1% is a graph consisting of two nodesg v, and an ar@ connecting
these two nodex(v;) (i = 1,2) is either a ground type or-a or asdl f, andc(a) = bym, where
m is the color of one of the methods @&; (2) K is a graph consisting of two nodes and u,
with c(u;) is either a ground type or-a or asel f, i = 1,2; (3) Sis isomorphic tK, that is, f is
an isomorphism fronK to S, g is an injection withg(u;) = v, i = 1,2; Given a link production
| = (S<L K-, G), an object grapl, and a premorphisik: S— F, we say thaP is the result

of embedding into F if F 2 p,

Definition 18 (Inheritance Construction of Object Type Graphs) Given object type graphs
andG. F is said to be inherited fror® if G can be transformed inté through a finite sequence
of unfolding operations, addition operations, and linkragiens.

Definition 19 (Inheritance) Given object type graphS and T, an object of typel can be
constructed by inheritance from an object of typié T is inherited fromS,

The central idea here is that inheritance of objects shoelduided and guarded by object
types. We devise, through some basic graph transformaticdmigques, an “inheritance” no-
tion on object types, and then use this notion to judge whetheobject can be built through
inheritance from another object.

6.2 Examples

We now give some examples to demonstrate the graph opedsfonitions in the last section.

Example9 A graph gluing example is shown in Figubéa) wheref andg map the only node
in A to thesdl f-colored node ifB andC respectively, an® is the result of gluingd andC along
A. Intuitively, this gluing operation entails the conneatiof B andC by identifying their starting
nodes.

Example 10 Figure6(b) shows an unfolding operatiokF. &l P, whereu = (S<L K -2, G),
f(i)=u, i =1,2,9g(v2) =S, i(u1) =S, i(u) =r. As we can sed? can be understood as
constructed by deleting thec-colored arc front, and then glue the result with a copy of the
original F by identifying the starting node of the former with the saurmde of theec-arc of
the latter.

Example 11 We finally show how the “colored point problem” addressededati®n 2.2 can be
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Figure 6: Examples of Graph Gluing and Unfolding Operation

Figure 7:CP is Inherited fromP.

resolved under OTG inheritance and subtyping. The type oftppt and pty and the type of
color pointcpt are depicted a3 andCP in Figure7 respectively. We can see tl@R is inherited
from P (through one addition operation and one link operation)ictvimeans thatpt can be
constructed by inheritance fropt (or ptg). Moreover, it is easy to check th@P <: P under
OTG subtyping, which indicates that inheritance and subtyare congruent in this case. (Note
that this contrast with the “inheritance is not subtypinlggan in the literature which is mainly
motivated by this colored point example.) Finally, the bragF (cpt) is prevented since the
functionF, as defined in section 2.2 and in the literature, does notdygeek under OTG typing.
Note in its definitionF = fun(p: PT)(p.eq(pto)), with PT = ObjectType(MyType){x:int,eq:
MyType — Bool }, p.eq requires an argument of the self type associated With. (PT), but
pto has typePT, andPT is neither the same as nor the subtype/dPT ) under OTG.

7 Resolution of the Problems

As examples of OTG subtyping and inheritance, we have detrated in the last section that
the two problems outlined in section 2 can be successfuiglved under OTG subtyping and
inheritance mechanisms. Here, we just summarize some p@ijuts.
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e OTG subtyping takes into consideration the method intesddpncies in objects. An ob-
ject in which there is no dependence between two methodsesaam bhe regarded as having
the same type with or a subtype of that of an object in whichetiean interdependency
between these two methods, and vice versa. The problemssgdrin section 2.1 can be
naturally resolved in OTG since there is an interdependéetyween height and width in
constrained rectangles, and there is no such interdependeriree rectangles. Conse-
qguently, these two kinds of rectangles have different types

e OTG inheritance replies on basic graph derivations. Thddurental idea in this respect
is that inheritance on objects should be regulated using iyformation of the relevant
objects. An “inheritance” relation over object types istfdsfined using graph derivations
and then used to determine whether an object can be comstrbgt inheritance from
another one.

¢ “Inheritance is not subtyping” has been advocated in tieeditire for quite a while. De-
spite that, the mainstream OOP still adheres to the prathiae“inheritance indicates
subtyping”. One of the reasons for this is that without thiagtice, the software hierar-
chy built by inheritance would be almost useless. Thus thastce is highly desirable.
The“colored point problem” described in section 2.2 is oh¢he motivating examples
that has prompted “inheritance is not subtyping”, becaukeraise we will face some
“method-not-found” error. Under OTG, we give this problemeav solution in the sense
that “inheritance indicates subtyping” is retained andtme-not-found” error is avoided.

8 Related Work

Representing object types as directed colored graphs &sgéguently addressing the subtyping
and inheritance issues by graph transformations is oumatigdea. It uniquely connects the
type theory of object-oriented languages to algebraichlgteamsformation theory. The founda-
tions of type theory can be found iB&r92 AC96, Pie03, and the recent results and directions
in type theory research are reflected in, for exampleREBO07 Che07 DHCO7]. The origin

of algebraic graph grammar and graph transformation camaoed back toEPS73 Ehr79,
and [Roz97 EEPTOG present a comprehensive coverage of this research areauffent trends
and developments in graph transformation, see for exartipeproceedings of GT-VMT and
ICGT [EGO7, CEMT06].

Incidentally, it is interesting to note that the phrase &ygraph” has been used inconsistently
in the literature. For example, it is used to denote the digjue rational trees in Prolog type
analysis and database query algelbi&C93 Sch0], to facilitate the investigation of quan-
tification in Type Logical GrammargS04g, and to give types for (some other) graphs in graph
transformation studyGL07, EEPTO0§. Obviously, none of these relates to the object type graphs
introduced in this paper in a clear manner.

9 Final Remarks

Subtyping and inheritance are two major issues in OOP. Alihdboth issues have been stud-
ied extensively, problems still persist. Two particulaolpems, method interdependencies and
“inheritance is not subtyping”, are identified and subsetjyeaddressed by a graph-computing
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(OTG) approach in this paper. It is demonstrated that batblpms can be resolved effectively
under OTG subtyping and inheritance mechanisms.
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