
ECEASST

Interaction nets: programming language design and implementation

Abubakar Hassan1, Ian Mackie2 and Shinya Sato3

1 Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, UK

2 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France

3 Himeji Dokkyo University, Faculty of Econoinformatics, 7-2-1 Kamiohno, Himeji-shi, Hyogo
670-8524, Japan

Abstract: This paper presents a compiler for interaction nets, which, just like term
rewriting systems, are user-definable rewrite systems which offer the ability to spec-
ify and program. In the same way that the λ -calculus is the foundation for functional
programming, or horn clauses are the foundation for logic programming, we give in
this paper an overview of a substantial software system that is currently under devel-
opment to support interaction based computation, and in particular the compilation
of interaction nets.

Keywords: Interaction Nets, programming languages

1 Introduction

Interaction nets [3] are a graphical—visual—programming language. Programs are expressed
as graphs, and computation is graph reduction. From another perspective, interaction nets are
also a low-level implementation language: we can define systems of interaction nets that are
instructions for the target of compilation schemes of other programming languages (typically
functional languages, based on the λ -calculus). To facilitate both these uses of interaction nets,
we need high quality, robust implementations.

In this paper we focus on using interaction nets as a programming language. Although we can
already program in interaction nets (they are after all Turing complete) they lack what program-
ming languages should offer: features such as input/output, etc. However, more important to
this paper is that they lack the structure that we expect from modern programming languages: a
module system for instance. Thus the first contribution in this paper is a programming language
for interaction nets, which lifts them from the “pure” world to allow them to be used in practice.
To give some analogies as to what we are doing, consider the following where we give for a
particular formalism (or model), some examples of languages that have been created for it:

• λ -calculus: functional programming languages, such as Haskell [8], Standard ML [7],
OCaml, etc.

• Horn clauses: logic programming languages, such as Prolog.

• Term rewriting systems: OBJ, Elan, Maude [1].

• π-calculus: PICT [9]

1 / 14 Volume X (2008)

Interaction nets

The first goal of this paper is to add interaction nets to this list by providing a corresponding
programming language that we call Pin. In the list above, the programming language on the
right is there to provide not only some syntactical sugar, but also to provide features that the
theory does not offer. For instance, if we look in detail at the analogy with the λ -calculus
and functional programming languages, functional languages allow the definition of functions
such as: twice f x = f(f x), which is a significant improvement over λ f x. f (f x) as a
programming language, as programs can be reused for instance. In addition languages provide a
module system, data-types (built-in and a mechanism for user-defined data-types), input/output,
etc.

In [6] we made a first attempt to build a programming language for interaction nets. Here
we take that language as a starting point, and in addition investigate how to compile it. This
gives the second contribution to this paper: we provide, for the first time, a compilation of
interaction nets. The motivation for this line of compilation is that interaction nets have been
implemented very efficiently, and also in parallel: by providing a compiler to interaction nets we
potentially obtain parallel implementations of programming languages (even sequential ones) for
free. However, this is not reported in the current paper: we are simply setting up the foundations
and the framework for this development.

To summarise, the paper contains three main contributions: we define a programming lan-
guage for interaction nets, we define an abstract machine for interaction nets, and we define a
compiler for interaction nets.

We have implemented this language, and we report on this at the end of the paper. In particular,
we show that the new techniques developed for implementing interaction nets improve upon
existing implementations. We also remark that the ideas used in this paper could be extended to
work with other rewriting systems through translations to interaction nets. Finally, we remark
that this is the first attempt in this area, there is now a need to develop tools and optimisation
techniques for this paradigm.

Related work. There are several implementations of interaction nets in the literature: a graphi-
cal one [4] and a textual, parallel one [11]. The goals of those works was to investigate interaction
nets: our focus is on explicitly extending interaction nets to a rich programming language.

Structure. The rest of this paper is structured as follows. In the next section we recall some
background information about interaction nets. In Section 3 we define a programming language
for interaction nets. In Section 4 we define an abstract machine for interaction nets (IAM) and
give the compilation schemes in Section 5. Section 6 gives some properties of the compilation.
Section 6 gives details of the implementation. Finally, we conclude the paper in Section 7.

2 Background

An interaction net system is a set Σ of symbols, and a set R of interaction rules. Each symbol
α ∈ Σ has an associated (fixed) arity. An occurrence of a symbol α ∈ Σ is called an agent. If
the arity of α is n, then the agent has n + 1 ports: a distinguished one called the principal port

Proc. GT-VMT 2008 2 / 14

ECEASST

depicted by an arrow, and n auxiliary ports labelled x1, . . . ,xn corresponding to the arity of the
symbol. We represent an agent graphically in the following way:

����
α

?

@ �
· · ·x1 xn

y

If n = 0 then the agent has no auxiliary ports, but it will always have a principal port. We
represent agents textually as: y∼ α(x1, . . . ,xn), and we omit the brackets if the arity of an agent
is zero.

A net N built on Σ is a graph (not necessarily connected) with agents at the vertices. The
edges of the net connect agents together at the ports such that there is only one edge at every
port, although edges may connect two ports of the same agent. The ports of an agent that are not
connected to another agent are called the free ports of the net. There are two special instances of
a net: a wiring (a net with no agents) and the empty net.

A pair of agents (α,β) ∈ Σ×Σ connected together on their principal ports is called an active
pair, which is the interaction net analogue of a redex. An interaction rule ((α,β) =⇒ N) ∈ R
replaces an occurrence of the active pair (α,β) by a net N. The rule has to satisfy a very strong
condition: all the free ports are preserved during reduction, and moreover there is at most one
rule for each pair of agents. The following diagram illustrates the idea, where N is any net built
from Σ.

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

An implementation of this rewriting process has to create the right-hand side of the net, and
make all the connections (re-wirings). Although it may not be the most trivial computation step,
it is a known, constant time operation. It is for this reason that interaction nets lend themselves to
the study of cost models of computation. All aspects of a computation are captured by the rewrit-
ing rules—no external machinery such as copying a chunk of memory, or a garbage collector,
are needed. Interaction nets are amongst the few formalisms which model computation where
this is the case, and consequently they can serve as both a low level operational semantics and
an object language for compilation, in addition to being well suited as a basis for a high-level
programming language. We refer the reader to other papers on interaction nets for properties and
additional theory.

An example: encoding the integers. Many simple examples of systems of interaction nets
can be found in the literature, for instance the encoding of arithmetic expressions, etc. However,
interaction nets are well suited for alternative representations of data-structures and algorithms.
Any integer n can be represented (non-uniquely) as a difference of two natural numbers: p−q.
Using this idea, we can represent integers in the following way:

3 / 14 Volume X (2008)

Interaction nets

����
I

����
S ����

S

����
S ����

S

6 6

6 6

6

...
...p

q

Here, the agent S (of arity 1) is interpreted as successor. A linear chain of S agents of length
n is used to give a representation of a natural number n. The representation of an integer simply
takes two chains of length p and q, and connects them together as shown, using the agent I (of
arity 2). Although this representation is not unique, we can talk about canonical forms when
p = 0 or q = 0 (or both), and there are interaction rules that can compute this. The integer zero
is a net where p = q, in particular when p = q = 0: we can encode addition, subtraction and
negation, for which we need several interaction rules. We just detail the encoding of addition. If
N1 and N2 are the net representations of z1 = (p1−q1) and z2 = (p2−q2) respectively, then we
can use the following configuration to encode the addition:

����
I
6

����
I∗ ����

I∗

? ?

N1 N2

The interaction rules for the agents are:

����
I

����
I∗
6
?

�

@

@

�

=⇒

����
S

����
S

6
? =⇒

To see how this works, there will be two interactions between the agents I (of nets N1 and N2)
and I∗ which concatenate the two chains. If z1 and z2 are both in canonical form and moreover
both positive (or both negative) then the addition is completed with the two interactions. Other-
wise there will be an additional min{q1, p2} interactions between two S agents to obtain a net in
normal form.

Proc. GT-VMT 2008 4 / 14

ECEASST

����
Nil

����
App

����
Cons

@�

�
�

����
App

�
� @

�
	 @

�
�

�
	 ����

Cons

6

@�

����
App

@@��	

=⇒ =⇒

����
Nil

����
App

�
� @

�
	

����
Nil

@I

Figure 1: Example net and rules

3 Programming Language

Following [2], an interaction net system can be described as a configuration c = (Σ,∆,R), where
Σ is a set of symbols, ∆ is a multiset of active pairs, and R is a set of rules. A language for inter-
action nets needs to capture each component of the configuration, and provide ways to structure
and organise the components. Starting from a calculus for interaction nets we build a core lan-
guage. A core language can be seen both as a programming language and as a target language
where we can compile high-level constructs. Drawing an analogy with functional programming,
we can write programs in the pure λ -calculus and can also use it as a target language to map
high-level constructs. In this way, complex high-level languages can be obtained which by their
definition automatically get a formal semantics based on the core language.

Nets are written as a comma separated list of agents, corresponding to a flattening of the graph.
There are many different (equivalent) ways we could do this depending on the order we choose
to enumerate the agents. Using the net on the left-most side of Figure 1 as an example, we can
generate a representation as the following list:

x∼ App(r,a), a∼ Nil, x∼ Nil

This can be simplified by eliminating some names:

App(r,Nil)∼ Nil

In this notation the general form of an active pair is α(. . .)∼ β (. . .). We assume that all variable
names occur at most twice. If a name occurs once, then it corresponds to one of the free ports
of the net (r is free in the above). If a name occurs twice, then this represents an edge between
two ports. In this latter case, we say that a variable is bound. The limitation on at most two
occurrences corresponds to the requirement that it is not possible to have two edges connected
to the same port in the graphical setting.

We represent rules by writing l =⇒ r, where l consists of two agents connected at their princi-
pal ports. Therefore rules can be written as α(..)∼ β (..) =⇒ N, and as such we replace the ‘∼’
by ‘><’ so that we can distinguish an occurrence of a rule from an occurrence of an active pair.
The two rules on the right of Figure 1 (append) can be represented as:

App(r,y) >< Nil =⇒ r∼ y
App(r,y) >< Cons(v,u) =⇒ r∼ Cons(v,z),u∼ App(z,y)

5 / 14 Volume X (2008)

Interaction nets

〈Pin〉 ::= { 〈ruleDef 〉 | 〈netDef 〉 }

〈ruleDef 〉 ::= 〈agent〉 ‘><’ 〈agent〉 [‘=>’ 〈netDef 〉]

〈netDef 〉 ::= 〈equation〉 { ‘;’ 〈equation〉}

〈equation〉 ::= 〈term〉 ∼ 〈term〉

〈term〉 ::= 〈agent〉 | 〈var〉

〈agent〉 ::= 〈agentName〉 [〈ports〉]

〈ports〉 ::= ‘(’ 〈term〉 [‘,’ 〈term〉] ‘)’

〈agentName〉 ::= 〈Name〉

〈var〉 ::= 〈Name〉

Figure 2: Syntax of the core language

The names of the bound variables in the two nets must be disjoint, and the free variables must
coincide, which corresponds to the condition that the free variables must be preserved under
reduction. Under this assumption, these two rules can be simplified to:

App(y,y) >< Nil =⇒
App(Cons(v,z),y) >< Cons(v,App(z,y)) =⇒

In this notation we observe that the right-hand side of the rule can always be empty. In this case
we will omit the ‘=⇒’ symbol. This notation therefore allows sufficient flexibility so that we
can either write nets in a compact way (without any net on the right of the ‘=⇒’) or in a more
intuitive way where the right-hand side of the net is written out in full to the right of the arrow.

In Figure 2, we give the syntax for the core language discussed above.

Language extensions. The core language allows the representation of the three main compo-
nents of an interaction net system: agents, rules and nets. The language is very attractive for
theoretical investigations: it is minimal yet computationally complete. The price for this sim-
plicity is programming comfort. Here, we give an overview of some practical extensions that
enhance the usability of interaction nets. Details and examples of these extensions can be found
at http://www.informatics.sussex.ac.uk/users/ah291/ 1.

Modular construction of nets. We allow nets to be named so that they can be built in a mod-
ular way. Named nets contain as their parameters a list of the net’s free ports. Using this mech-
anism, we can build a new net by instantiating a named net with some argument nets. As an

1 we refer to this url as the project’s web page in this paper.

Proc. GT-VMT 2008 6 / 14

http://www.informatics.sussex.ac.uk/users/ah291/

ECEASST

example, we can represent the example net in Figure 1 as:

Append x,r,a : App(r,a)∼ x
Applist r : Append Nil,r,Nil

Agent Variables. Some rules have the same structure and only differ in the agent names used.
Agent variables act as a place holder for agents in the rules. An instance of a rule with a set
of agent variables A will create a new rule with elements of A replaced by the actual agents.
In the example below, Templ has agent variables A1,A2. The instance of this rule creates
App(x,x) >< Nil where the agent variables have been replaced with App, Nil appropriately.

Templ A1,A2 : A1(x,x) >< A2
Templ (App,Nil)

Further extensions. We have designed a module system and a set of built-in agents and rules
that perform input/output and arithmetic operations—these are reported on the project’s web
page.

4 The Abstract Machine

Here we describe the interaction net abstract machine (IAM) by giving the instructions operating
on a machine state. We first set up some notation used in the description of the machine.

Definition 1 (Memory model) Let Adr ⊆ N be a set of memory locations. Agents of an in-
teraction net system are agent = name× arity×W , where arity ∈ N, name is an identifier, and
W models connectivity between agent ports: W = {((l, p),(l′, p′)) | l, l′ ∈ Adr, p, p′ ∈ N}. An
element ((l1, p1),(l2, p2)) in the set W is ordered if either l1 < l2 or l1 = l2, p1 < p2. If an agent
stored at location lk has it’s auxiliary port pi connected to the port p j of some agent at location
lm, then ((lk, pi),(lm, p j)) ∈W .

We next define two functions to operate on the machine state:

Definition 2 • La : Adr×N→ Adr returns the location l ∈ Adr pointed to by a given port
of some agent: La(lk, pi) = lm such that ((lk, pi),(lm, p j)) ∈W .

• Lp : Adr×N → N returns a port number that is connected to a port of some agent node:
Lp(lk, pi) = p j such that ((lk, pi),(lm, p j)) ∈W .

We define the function ϒ : name× name → Inst that given a pair of names for an active pair
(α,β) of a rule (α,β) =⇒ N, returns a sequence of IAM instructions that will build and rewire
the net N. The mappings in ϒ are constructed during the compilation of a rule.

Machine configuration components. The IAM machine consists of rules that transform con-
figurations. A configuration is given by a 5-tuple 〈C,ς ,F,A,H〉 where C is a sequence of instruc-
tions, ς is a stack of frames. Each frame has an array of local variables and an operand stack. F

7 / 14 Volume X (2008)

Interaction nets

is a set of pointers to the variable agents of the net, A is a stack of active pair agents, and H is the
heap.

An IAM program C is a sequence of instructions that we summarise in Figure 3. We write ‘−’
for the empty sequence and i,v, p,ar ∈ N.

The component ς is a stack of frames. Each frame f = (L,S) where L is a partial function
with a finite domain of definition, mapping memory locations to their contents. If L is defined,
then L[i 7→ l] means that L(i) = l. S is an operand stack produced by the grammar: S := − | v : S
where v is any value representing a constant or a memory location, and − is the empty stack.

The component F is a mapping from identifiers to a pair of natural numbers defined by: F(x) =
(l, p). Intuitively, it is used to hold the interface of the net.

The heap H : Adr → agent returns an agent node given some location l ∈ Adr. The special
token next is used to hold the next free location l ∈ dom(H). Intuitively, H is a memory area
filled with agent nodes. Whenever a new node is put into the heap, the unused area marked by
next is updated.

Figure 4 gives the IAM instructions as a set of transition rules. Each transition rule takes the
form:

ϒ ` 〈C,ς ,F,A,H〉 ⇒ ϒ `
〈
C′,ς ′,F ′,A′,H ′〉

which indicate how the components of the machine are transformed. We abbreviate (L,S) : ς to
(L,S) in a configuration with only one frame in ς .

Initial and final states. The machine initialises the components C and ϒ giving the initial
configuration: ϒ ` 〈C,−, [],−, []〉. The machine stops successfully when the instruction halt
is executed with the configuration ϒ ` 〈−,−,F,−,H〉 or prematurely if a pre-condition of an
instruction is not satisfied. In this case, the final configuration is the one obtained after the last
instruction that has been executed successfully.

The evaluation mechanism. The evaluation of the net is started by executing the eval in-
struction. This instruction is appended at the end of the code sequence for the start active pair or
initial expression. Thus, before the evaluation of the net, there is at least one active pair in the
machine’s active pair stack A. The pair in the stack A is examined and the code sequence of the
rule for the pair is appended to the code component C of the machine (see semantics of eval in
Figure 4).

The code for a rule will load one of the active agents into the stack S using the instruction
loadActive, then start to build and rewire the right hand side net of the rule to the auxiliary
agents connected to the interacting agent in the stack. The instruction pop pops the active agent
from the component A. Evaluation is terminated when A is empty and execution jumps to the
instruction sequence after eval.

We remark that this version of the machine treats only acyclic nets.

Proc. GT-VMT 2008 8 / 14

ECEASST

Instruction Description
enter push a new frame into the stack ς

return remove the top frame from ς

dup duplicate the top element on the stack S
pop remove the top element on the active pair stack A
load i push the element at index i of L onto the stack S.
store i remove the top element of S and store it in L at index i.
ldc v push the value v onto the stack S.
fstore x store the top 2 elements at the top of S onto index x in F .
fload x push the elements at index x of F onto the stack S.
mkAgent ar α allocate (unused) memory for an agent node of arity ar

and name α in the heap H.
mkVar x allocate memory for a variable node of arity 2 and

name x in the heap
getConnection p i push the agent a and the port number of a that connects at

the auxiliary port p of the agent stored in local variable i
loadActive α push the active agent α from active pair stack
connectPorts pop two agents and two port numbers and connects the ports of

the agents. If both ports are 0 (active pair) push an agent to A
eval evaluate the active pair on top of the active stack.
halt stop execution.

Figure 3: Summary of IAM instructions

5 Compilation

The compilation of Pin into IAM instructions is governed by the schemes: Cpin compiles a
program, Ca compiles an agent, Ct compiles a term, Cn compiles a net and Cr compiles a rule.
The compilation of a program generates the following code:

CpinJ(Σ,〈u1 ∼ v1, . . .un ∼ vn〉,R)K =
CnJu1 ∼ v1, . . . ,un ∼ vnK;eval;halt;CrJr1K; . . .CrJrnK;

where r1, ...,rn = R are instances of rules. Σ is a set of symbols and each ui ∼ vi is an active pair.
The compilation scheme CnJu ∼ v, . . . ,un ∼ vnK compiles a sequence of active pairs. We use the
scheme CrJriK to compile a rule ri ∈R:

CrJriK = Inst = CrJα(t1, . . . , tn) >< β (u1, . . . ,un)=>u1 ∼ s1, . . . ,un ∼ snK,
ϒ[(α,β) 7→ Inst,(β ,α) 7→ Inst].

Compilation of a rule creates a mapping from active agent names to the instruction sequence Inst
generated in the rule table ϒ.

Figure 5 collects together the compilation schemes Cn and Cr, that generate code for the
input source text. The schemes use a set N of identifiers to hold all free variables of the net.
Compiling a variable that already exists in N means that the variable is bound. The auxiliary
function ar(α) returns the arity of the agent α ∈ Σ.

9 / 14 Volume X (2008)

Interaction nets

ϒ ` 〈enter : C,ς ,F,A,H〉 ⇒ ϒ ` 〈C,([],−) : ς ,F,A,H〉
ϒ ` 〈return : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,ς ,F,A,H〉
ϒ ` 〈dup : C,(L,v : S),F,A,H〉 ⇒ ϒ ` 〈C,(L,v : v : S),F,A,H〉
ϒ ` 〈pop : C,(L,S),F, l : A,H〉 ⇒ ϒ ` 〈C,(L,S),F,A,H〉
ϒ ` 〈load i : C,(L[i 7→ v],S),F,A,H〉 ⇒ ϒ ` 〈C,(L[i 7→ v],v : S),F,A,H〉
ϒ ` 〈store i : C,(L,v : S),F,A,H〉 ⇒ ϒ ` 〈C,(L[i 7→ v],S),F,A,H〉
ϒ ` 〈ldc v : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L,v : S),F,A,H〉
ϒ ` 〈fstore x : C,(L, p : l : S),F,A,H〉 ⇒ ϒ ` 〈C,(L, p : l : S),F [x 7→ (l, p)],A,H〉
ϒ ` 〈fload x : C,(L,S),F [x 7→ (l, p)],A,H[la 7→ (n,a,{((la, pl),(l, p))}∪w)]〉 ⇒

ϒ ` 〈C,(L, p : l : S),F,A,H[la 7→ (n,a,w)]〉
ϒ ` 〈mkAgent ar α : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L, l : S),F,A,H[l 7→ (α,a, /0)]〉

where l = next
ϒ ` 〈mkVar x : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L,1 : l : S),F,A,H[l 7→ (x,2, /0)]〉

where l = next
ϒ ` 〈getConnection p i : C,(L[i 7→ l],S),F,A,H〉 ⇒

ϒ `
〈
C,(L[i 7→ l],Lp(l, p) : La(l, p) : S),F,A,H

〉
ϒ ` 〈loadActive α : C,(L,S),F, l : A,H[l 7→ (n,a,w)]〉 ⇒

i f (n = α)
ϒ ` 〈C,(L, l : S),F,La(l,0) : A,H[l 7→ (n,a,w)]〉

else
ϒ ` 〈C,(L,La(l,0) : S),F, l : A,H[l 7→ (n,a,w)]〉

ϒ ` 〈connectports : C,(L, p1 : l1 : p2 : l2 : S),F,A,H[l1 7→ (n1,a1,w1),
l2 7→ (n2,a2,w2)]〉 ⇒
i f (p1 + p2 = 0)

ϒ ` 〈C,(L,S),F, l2 : A,
H[l1 7→ (n1,a1,w1∪{((l1,0),(l2,0))}),
l2 7→ (n2,a2,w2∪{((l1,0),(l2,0))})]〉

else
ϒ ` 〈C,(L,S),F,A,

H[l1 7→ (n1,a1,w1∪{((l1, p1),(l2, p2))}),
l2 7→ (n2,a2,w2∪{((l1, p1),(l2, p2))})]〉

ϒ[(α,β) 7→ c] ` 〈eval : C,(L,S),F, l1 : A,H[l1 7→ (α,a1,w1∪{((l1,0),(l2,0))}),
l2 7→ (β ,a2,w2∪{((l1,0),(l2,0))})]〉 ⇒

ϒ[(α,β) 7→ c] ` 〈c : eval : C,(L,S),F, l1 : A,H[l1 7→ (α,a1,w1), l2 7→ (β ,a2,w2)]〉
ϒ ` 〈eval : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L,S),F,A,H〉
ϒ ` 〈halt : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈−,−,F,−,H〉

Figure 4: IAM instructions

Proc. GT-VMT 2008 10 / 14

ECEASST

CtJxK =

i f (x ∈N)
fload x;
N \{x}

else
fstore x;
mkVar x;
N ∪{x}

CtJα(t1, . . . , tn)K=

mkAgent ar(α) α;
for 1 ≤ i ≤ n

Cp JtiK i;
ldc 0;

CrJα(t1, . . . , tn)
>< β (v1, . . . ,vk)

=>u1 ∼ s1, . . . ,
um ∼ smK =

enter;
CrtJα(t1, . . . , tn)K;
CrtJβ (v1, . . . ,vk)K;
for 1 ≤ i ≤ m

CeJui ∼ siK;
pop;
return;

CrtJα(t1, . . . , tn)K=

loadActive α;
store 0;
for 1 ≤ i ≤ n

CrrJtiK i 0;

CeJt ∼ sK =

 CtJtK;
CtJsK;
connectPorts;

CrrJtK j i =

 getConnection j i;
CtJtK;
connectPorts;

CnJu ∼ v, . . . ,un∼vnK =

enter;
CeJu∼vK;
...
CeJun∼vnK;

CpJtK j =

dup;
ldc j;
CtJtK;
connectPorts;

Figure 5: Compilation schemes

We end this section with a concrete example of compilation, and give the code generated for
the simple system given below:

Eps >< Eps
Eps∼ Eps

This system contains just one agent and one rule, and the net to be compiled is an instance of
that rule. The output of the compiler is given below.
enter
mkAgent 0 Eps
ldc 0
mkAgent 0 Eps
ldc 0
connectPorts
eval
halt

enter
loadActive Eps
store 0
loadActive Eps
store 0
pop
return

The abstract machine loads the program into memory then sequentially executes the byte
codes for the active pairs. The instruction eval calls the execution of the code block for the
corresponding rule. Below we give a snap shot of the execution trace.

11 / 14 Volume X (2008)

Interaction nets

• represents the active pair stack A of the machine.

•
top

represents the stack S.

•
n0

... represents the local variable array L.

The state after execution of each instruction is shown. Components that do not contain any value
are omitted. Note that this net contains no interface, thus the interface list F does not appear in
the execution trace.

mkAgent 0 E ps

Eps

ldc 0

Eps

0

mkAgent 0 E ps

Eps

Eps

0

ldc 0

Eps

Eps

0

0

connectPorts

Eps Eps

loadActive E ps

Eps Eps

store 0

Eps Eps

n0
...

loadActive E ps

Eps Eps

n0
...

store 0

Eps Eps

n0
...

pop

Eps Eps

n0
...

return

Eps Eps

Observe that after the execution of connectPorts, a pointer to the newly created active
pair is pushed into the stack A. Since the rule for this active pair contains an empty right hand
side net, there is no re-wiring that is performed. After evaluation, the active pair stack becomes
empty. After the last instruction return of the rule, remaining active pair agents in the heap
are unreachable from any of the machine’s components, and can be garbage collected or reused.
We do not address the issues of heap garbage collection or agent reuse in this paper.

6 The implementation

Here we give a brief overview of the pragmatics of the language. We have implemented the
compiler, and here we show example programs, the use of the system, and also some benchmark

Proc. GT-VMT 2008 12 / 14

ECEASST

results comparing with other implementations of interaction nets.
The prototype implementation of the compiler and abstract machine can be downloaded from

the project’s web page. The compiler reads a source program and outputs an executable with the
extension ‘.pin’. The pin file can then be executed by the abstract machine. Various examples
and instructions on how to compile and execute a program are provided on the webpage.

The table below shows some benchmark results that we have obtained. We compare the execu-
tion time in seconds of our implementation (Pin) with Amine [10] - an interaction net interpreter,
and SML [7] - a fully developed implementation. The last column gives the number of interac-
tions performed by both Pin and Amine. The first two input programs are applications of church
numerals where n = λ f .λx. f nx and I = λx.x. The encodings of these terms into interaction nets
are given in [5]. The next programs compute the Ackermann function defined by:

A(m,n) =

 n+1 if m = 0
A(m−1,1) if n = 0 and m > 0
A(m−1,A(m,n−1)) if m > 0 and n > 0

The following rules are the interaction net encoding of the Ackermann function:

Pred(Z) >< Z, Dup(Z,Z) >< Z,
Pred(x) >< S(x), Dup(S(a),S(b)) >< S(Dup(a,b)),
A(r,S(r)) >< Z, A1(Pred(A(S(Z),r)),r) >< Z,
A(A1(S(x),r),r) >< S(x), A1(Dup(Pred(A(r1,r)),A(y,r1)),r) >< S(y),

and A(3,8) means computation of A(S(S(S(S(S(S(S(S(Z)))))))),r)∼ S(S(S(Z))).

Input Pin Amine SML Interactions
322II 0.002 0.006 2.09 383
245II 0.016 0.088 1355 20211
A(3,8) 3 16 0.04 8360028
A(3,10) 51 265 0.95 134103148

We can see from the table that the ratio of the average number of interactions/sec of Pin to Amine
is approximately 3 : 1. Interaction nets are by definition very good in sharing computation thus
more efficient than SML in the first two programs. However, interaction nets do not perform
well in computations that benefit from sharing data - interacting agents are consumed. Our short
term goal is to extend interaction nets with data sharing mechanisms.

7 Conclusions

In this paper we have given an overview of a programming language design and compilation
for interaction nets. Experience with the compiler indicates that the system can be used for
small programming activities, and we are investigating building a programming environment
around this language, specifically containing tools for visualising interaction nets and editing
and debugging tools.

Current research in this area is focused on richer programming constructs and higher level
languages of interaction that do not burden the programmer with some of the linearity and pattern

13 / 14 Volume X (2008)

Interaction nets

matching constrains. The compiler presented in this paper is a first attempt to compile interaction
nets, and issues such as compiler optimisations are very much the subject of current research.

There are well-known translations of other rewriting formalisms into interaction nets: the
compiler presented in this paper can consequently be used for these systems. Current work is
investigating the usefulness of this approach.

Bibliography

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. A
Maude Tutorial. SRI International, 2000.

[2] M. Fernández and I. Mackie. A calculus for interaction nets. In G. Nadathur, editor,
Proceedings of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), volume 1702 of Lecture Notes in Computer Science, pages 170–
187. Springer-Verlag, September 1999.

[3] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of
Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

[4] S. Lippi. in2 : A graphical interpreter for interaction nets. In S. Tison, editor, Rewrit-
ing Techniques and Applications (RTA’02), volume 2378 of Lecture Notes in Computer
Science, pages 380–386. Springer, 2002.

[5] I. Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Proceedings
of the 3rd International Conference on Functional Programming (ICFP’98), pages 117–
128. ACM Press, 1998.

[6] I. Mackie. Towards a programming language for interaction nets. Electronic Notes in
Theoretical Computer Science, 127(5):133–151, May 2005.

[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Re-
vised). MIT Press, 1997.

[8] S. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press, 2003.

[9] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus.
Technical Report 476, Indiana, 1997.

[10] J. S. Pinto. Sequential and concurrent abstract machines for interaction nets. In J. Tiuryn,
editor, Proceedings of Foundations of Software Science and Computation Structures (FOS-
SACS), volume 1784 of Lecture Notes in Computer Science, pages 267–282. Springer-
Verlag, 2000.

[11] J. S. Pinto. Parallel evaluation of interaction nets with mpine. In A. Middeldorp, editor,
RTA, volume 2051 of Lecture Notes in Computer Science, pages 353–356. Springer, 2001.

Proc. GT-VMT 2008 14 / 14

	Introduction
	Background
	Programming Language
	The Abstract Machine
	Compilation
	The implementation
	Conclusions

