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Abstract: This paper introduces negative application conditions for reconfigurable
place/transition nets. These are Petri nets together with a set of rules that allow
changing the net and its marking dynamically. Negative application conditions are
a control structure that prohibits the application of a rule if certain structures are
already existent. We motivate the use of negative application conditions in a short
example. Subsequently the underlying theory is sketched and the results – con-
cerning parallelism, concurrency and confluence – are presented. Then we resume
the example and explicitly discuss the main results and their usefulness within the
example.
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1 Introduction

As the adaptation of a system to a changing environment gets more and more important, Petri
nets that can be transformed during runtime have become a significant topic in recent years. Ap-
plication areas cover, among others, computer supported cooperative work, multi-agent systems,
dynamic process mining and mobile networks. Moreover, this approach increases the expressive-
ness of Petri nets and allows a formal description of dynamic changes. In [HEM05], this concept
of reconfigurable place/transition (P/T) systems has been introduced where the main idea is the
stepwise development of P/T systems by rules where the left-hand side is replaced by the right-
hand side preserving a context. We use rules and transformations for place/transition systems in
the sense of the double pushout approach for graph transformation (see [EP04]). More precisely,
adhesive high-level replacement (HLR) systems – a suitable categorical framework for double
pushout transformations [EEPT06] – have been instantiated to P/T systems.

For the suitable application of such rules specific control structures are needed, especially
the possibility to forbid certain rule applications. These are known from graph transformation
systems as negative application conditions (NACs). These conditions restrict the application of
a rule forbidding a certain structure to be present before or after applying a rule in a certain
context. Such a constraint influences thus each rule application or transformation and therefore
changes significantly the properties of the replacement system.

By proving that P/T systems are weak adhesive HLR categories with negative application
conditions we can transfer well-known and important results to this case: Local Church-Rosser
Theorem, Completeness Theorem for Critical Pairs, Concurrency Theorem, Embedding and Ex-
tension Theorem and Local Confluence Theorem or Critical Pair Lemma.
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This paper is organized as follows: first we introduce our example and discuss the need of
additional control structures for the application of rules in Section 2. Then we review the formal
notions for reconfigurable P/T systems in Section 3. Based on these notions we define nega-
tive application conditions and present the main results concerning parallelism, concurrency and
confluence in Section 4. We discuss some of the general results with respect to the example in
Section 2. Concluding remarks concern future and related work.

2 Example: Airport

In this section, we present an example for a reconfigurable P/T system with NACs. We model an
airport control system (AirCS) that organizes the starting and landing runways of an airport. The
P/T system has to ensure that certain safety properties of an airport are fulfilled, for example that
some areas of the airport like the actual runways are secure, i.e. exclusively used by one airplane
at the time. The AirCS is able to adapt to various changes of the airport. Changes at runtime may
concern the opening or closing of a runway or its kind of use, i.e. for starting or landing. As a
basic condition we require that there has to be at least one landing runway to ensure the landing
of arriving airplanes, especially in emergency situations.

In addition, the use of the starting runways depends on the weather. Under fair weather con-
ditions, no limitations occur. But it is possible for the system to receive a storm warning from a
weather information channel. In this case, no more starting runways shall be opened and when
the storm arrives it shall be forbidden for airplanes to depart.

In the top of Fig. 1, the standard AirCS with one starting and one landing runway is depicted.
Each runway consists of two places of type Runway and Tower, with exactly one token on either
the one or the other place. A token on Runway represents an airplane on this runway, while
a token on Tower means that this runway is currently not in use. In addition, a landing runway
consists of transitions landing and arrived, and a starting runway of transitions depart and takeoff,
respectively. By firing the transition approach an airplane appears in the airspace of the AirCS.
The transition landing may fire if the runway is currently not used leading to a token representing
an airplane on the runway. In the lower part of the P/T system, the gates area is modeled. The
place Gates is a counter for the available gates. If a gate is available, the airplane may proceed
to a gate by firing the transition arrived. If the deboarding process is completed, the firing of
the transition continueFlight initiates the boarding process, and using the transitions depart and
takeoff an airplane may depart over an available starting runway. Analogously to approach, the
firing of the transition quitting models that the airplane leaves the airspace of the AirCS.

In the following, we describe the rules for changes of the airport. The rules openStartingRun-
way and openLandingRunway in the top of Fig. 2 are used to open a new runway. The places
and transitions of the runway are inserted and connected with the already existing part of the
airport. For the rule openStartingRunway, an additional NAC is needed to prevent the opening of
a starting runway in case of a storm warning. To apply a rule to our P/T system, we first have to
find a match of the left-hand side L to the P/T system. In case of the rule openStartingRunway,
this match is unique and consists of the four places in L. If we have a NAC for the rule, we have
to check if this NAC is valid, which means that we are not allowed to find a morphism from the
NAC to our P/T system via the match. For the match of openStartingRunway, the NAC is ful-
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:FairWeather

sr:Runway Storm

arrived

landingapproach

continueFlight
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Figure 1: The standard AirCS and a transformation sequence
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filled as long as no place of type Storm exists. In addition, a gluing condition has to be fulfilled
to make sure the rule is applicable (see Def. 2 in Section 3). Then, we first delete those elements
that are no longer needed and insert those elements that shall be created. They are glued to the
already existing elements, for example when applying openStartingRunway the new transitions
are connected to the places in the match. The application of the rule openStartingRunway to the
AirCS from Fig. 1 is the P/T system AirCS1 in the upper middle of Fig. 1.

The rules closeStartingRunway and closeLandingRunway in the upper middle of Fig. 2 are
used to close a runway. closeStartingRunway is the inverse rule of openStartingRunway without
a NAC, since closing a starting runway is always allowed. For closeLandingRunway, we have to
make sure that we do not delete the last landing runway, thus another landing runway has to be
present in the match.

In the lower middle of Fig. 2, the rules changeLandingToStartingRunway and changeStart-
ingToLandingRunway for changing the kind of a runway are shown. For both rules, we have a
NAC that forbids that the runway is currently used by an airplane, represented by a token on the
runway which is not present in the left-hand side. This ensures that the type of the runway is not
changed during its use causing strange behaviour for incoming or outgoing flights. In addition,
there is a second NAC that forbids the application of changeLandingToStartingRunway in case
of a storm. In the NACs, the place types are omitted if they are obvious from the left-hand side.

The arriving of a storm warning is also modeled by a rule as shown in the bottom of Fig.
2. A new place of type Storm is created and two transitions between this place and the place
FairWeather. As soon as the storm warning has arrived, no starting runways can be opened. But
it is still possible to take off for waiting airplanes using the already existing starting runways.
The airport system itself can decide when the weather situation is that bad that no airplan shall
depart. Then the transition forbidTakeoff is fired and since there is no longer a token on the
place FairWeather, no more takeoffs are possible. As soon as the weather gets better, by firing
the transition allowTakeoff airplanes may depart. Then the rule clearWarning deletes the storm
warning and the normal airport operations may continue.

Altogether, in Fig. 1 a transformation sequence is depicted which first opens a starting runway,
then receives a storm warning and afterwards, the starting runway is closed again.

3 Reconfigurable Place/Transition Nets

In this section, we formalize reconfigurable P/T systems based on our results in [HEM05]. As
net formalism we use the algebraic notation of “Petri nets are Monoids” in [MM90], but extend
this notation by a label function for places. So, a P/T net is given by PN = (P,T, pre, post, label)
with pre- and post domain functions pre, post : T → P⊕ and a label function label : P→ L, where
L is a fixed alphabet for places and P⊕ is the free commutative monoid over the set P of places,
and a P/T system is given by (PN,M) with marking M ∈ P⊕.

In order to define rules and transformations of P/T systems we introduce P/T morphisms which
preserve firing steps by Condition (1) and labels by Condition (2) below. Additionally, they
require that the initial marking at corresponding places is increasing (Condition (3)). For strict
morphisms, in addition injectivity and the preservation of markings is required (Condition (4)).
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Rule openStartingRunway
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NAC=R←−
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:Storm:FairWeather
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forbidTakeoff

L

=⇒
:FairWeather

:Storm:FairWeather

allowTakeoff
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R

Rule clearWarning
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L
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:FairWeather
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allowTakeoff
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R

Figure 2: The rules for changing the AirCS
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Definition 1 (P/T Morphism) Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for i =
1,2, a P/T morphism f : PS1 → PS2 is given by f = ( fP, fT ) with functions fP : P1 → P2 and
fT : T1→ T2 satisfying

(1) f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT ,
(2) fP ◦ label1 = label2 ◦ fP and
(3) M1(p)≤M2( fP(p)) for all p ∈ P1.

Moreover, the P/T morphism f is called strict if (4) fP and fT are injective and M1(p) =
M2( fP(p)) for all p ∈ P1 .
The category defined by P/T systems and P/T morphisms is denoted by PTS where the compo-
sition of P/T morphisms is defined component-wise for places and transitions. The class of all
strict P/T morphisms is denoted by M .

Next we define the gluing condition which has to be satisfied in order to apply a rule at a
given match. The characterization of specific points is a sufficient condition for the existence
and uniqueness of the so-called pushout complement which is needed for the first step in a
transformation.

Definition 2 (Gluing Condition) Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for

i ∈ {L,K,1}, and let PSL
m−→ PS1 be a P/T morphism and PSK

l−→ PSL a strict morphism,
then the gluing points GP, the dangling points DP and the identification points IP of PSL are
defined by

GP = l(PK ∪TK)
DP = {p ∈ PL|∃t ∈ (T1 \mT (TL)) : mP(p) ∈ pre1(t)⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′∧mP(p) = mP(p′)}

∪{t ∈ TL|∃t ′ ∈ TL : t 6= t ′∧mT (t) = mT (t ′)}

The P/T morphisms m and l with l strict satisfy the gluing condition, if all dangling and
identification points are gluing points, i.e DP∪ IP⊆ GP, and m is strict on places to be deleted,
i.e. ∀p ∈ PL \ l(PK) : ML(p) = M1(m(p)).

Next we present rule-based transformations of P/T systems following the double-pushout
(DPO) approach of graph transformations in the sense of [Roz97, EEPT06].

Definition 3 (P/T System Rule) Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for i ∈
{L,K,R,1}, then a rule rule = (PSL

l←− PSK
r−→ PSR) consists of P/T systems PSL, PSK , and

PSR, called the left-hand side, interface, and right-hand side of rule, respectively, and two strict
P/T morphisms PSK

l−→ PSL and PSK
r−→ PSR.

The rule rule is applicable at the match PSL
m−→ PS1 if the gluing condition is satisfied for l

and m. In this case, we obtain a P/T system PS0 leading to a transformation step PS1
rule,m
=⇒ PS2

consisting of the following pushout diagrams (1) and (2). The P/T morphism n : PSR→ PS2 is
called comatch of the transformation step.

Proc. GT-VMT 2008 6 / 14



ECEASST

PSL

m
��

(1)

PSK
loo r //

c
��

(2)

PSR

n
��

PS1 PS0l∗
oo

r∗
// PS2

Now we are able to define reconfigurable P/T systems, which allow the modification of the net
structure using rules and transformations of P/T systems.

Definition 4 (Reconfigurable P/T Systems) Given a P/T system PS and a set of rules RULES,
a reconfigurable P/T system is defined by (PS,RULES).

In the example in Section 2 the reconfigurable P/T system consists of the P/T system in the
top of Fig. 1 and the set of rules depicted in Fig. 2. Note, that the application of some of these
rules is restricted by NACs and we will present the notion of reconfigurable P/T systems with
NACs in Section 4.

4 Negative Application Conditions

In this section, we first state the main technical result that P/T systems are a weak adhesive
HLR category with NACs. As a consequence we can define NACs for P/T system rules and
transformations. Afterwards we summarize the main results available for reconfigurable P/T
systems with NACs.

In addition to the class M in Section 3 we need two other classes of morphisms. The class Q
denotes those morphisms that connect the NAC to the source net, which is the class of injective
P/T system morphisms. Note that morphisms in this class do not need to be marking strict. The
class E is a class of minimal jointly surjective morphism pairs, where minimal means that the
markings in the codomain are as small as possible, i.e. for e1 : PS1 → PS3, e2 : PS2 → PS3
with (e1,e2) ∈ E we have that e1,e2 are jointly surjective and M3(p) = max({M1(p′) | p′ ∈
e−1

1 (p)}∪{M2(p′)‖ p′ ∈ e−1
2 (p)}). This class is mainly used for constructions and proofs.

Definition 5 (Morphism classes in PTS) Given the category PTS of P/T systems and P/T
morphisms, then the following morphism classes are defined:

M : strict PTS morphisms (injective and marking strict PTS morphisms)
Q : injective PTS morphisms (monomorphisms in the category PTS)
E : minimal jointly surjective PTS morphisms

Theorem 1 (PTS is weak adhesive HLR category with NACs) Given the weak adhesive HLR
category PTS and the morphism classes M , Q and E as defined above then we have

1. unique E -Q pair factorization,

2. unique epi-M factorization,

3. M -Q pushout-pullback decomposition property,
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4. initial pushouts over Q-morphisms,

5. Q is closed under pushouts and pullbacks along M -morphisms,

6. induced pullback-pushout property for M and Q and

7. Q is closed under composition and decomposition.

Altogether, (PTS,M ,E ,Q) is a weak adhesive HLR category with NACs .

Proof. In [EEH+07], it has been shown that (PTS,M ) is a weak adhesive HLR category.
According to [LEOP08], for a weak adhesive HLR category with NACs Items 1–7 have to be

proven additionally. Note, that in [LEOP08] an additional morphism class M ′ is used and some
more properties have to be checked. In the case of PTS, Q and M ′ coincide, which reduces the
effort for the proof. Here we only explain the properties and give proof ideas, the detailed proof
can be found in [Rei08].

1. unique E -Q pair factorization: For a morphism pair f1 : L1→ P, f2 : L2→ P, an E -Q pair
factorization is a pair e1 : L1→ K, e2 : L2→ K with (e1,e2) ∈ E and m : K→ P ∈Q such
that m◦e1 = f1 and m◦e2 = f2. Uniqueness means that two E -Q pair factorizations of f1
and f2 are isomorphic.

For the construction of this E -Q pair factorization in PTS, we first construct the coproduct
L of L1 and L2 with coproduct inclusions i1 and i2, obtain a morphism f : L→ P and
construct an epi-mono factorization (e : L→ K,m : K → P) of f in P/T nets. Defining
MK(p) = max({ML(p′) | p′ ∈ e−1(p)}) and e1 = e ◦ i1,e2 = e ◦ i2 leads to a unique E -Q
pair factorization. This property is needed mainly for the embedding and extension of
transformation pairs.

2. unique epi-M factorization: For a morphism f : L→ P, an epi-M factorization is an
epimorphism e : L→ K and a morphism m : K→ P ∈M such that m◦ e = f . Uniqueness
means that two epi-M factorizations of f are isomorphic.

For the construction, we use the epi-mono factorization of f in P/T nets, and obtain the
marking from the marking of P leading to a strict morphism m ∈M . Uniqueness follows
directly from uniqueness of the epi-mono factorization in P/T nets and strictness of M .
This property is needed for the translation of NACs over a morphism.

3. M -Q pushout-pullback decomposition property: Given the following commutative dia-
gram with l ∈M and w ∈Q, where (1 + 2) is a pushout and (2) is a pullback, then (1)
and (2) are both pushouts.

In P/T nets, this property holds for injective l and w, thus we obtain pushouts (1) and (2)
in P/T nets. It remains to show the additional pushout properties in PTS, which can be
verified. This property is needed for the embedding and extension of transformation pairs
and for the equivalence of left and right NACs.

4. initial pushouts over Q-morphisms: An initial pushout over a morphism f ∈Q represents
the boundary and context of f . The construction is similar to that in P/T nets, but also
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includes all places where f is not marking-strict. This property is needed for the extension
of transformations.

5. Q is closed under pushouts and pullbacks along M -morphisms: In a pushout or pullback
square along M , if the other given morphism is in Q then the opposite morphism is also
a Q-morphism.

This property follows directly from the corresponding properties in P/T nets and is used
for the translation of NACs as well as for the embedding and extension of transformations.

6. induced pullback-pushout property for M and Q: Given the following pushout (PO) and
the pullback (PB) then the induced morphism x : PS3→ PS4 is a Q-morphism.

This property can be shown using the fact that f ′ and g′ are jointly surjective, which can
be shown for the pushout construction. It is needed for the translation of NACs over a
morphism.

7. Q is closed under composition and decomposition: This is a standard result for monomor-
phisms from category theory. This property is needed for the translation of NACs and for
the completeness of critical pairs.

A B E

(1) (2)

C D F

k

l s

u

r

v

w

PS0 PS1

(PB)

PS2 PS4

f

g

h′

h

PS0 PS1

(PO)

PS2 PS3

f

g

f ′

g′

Now, we can state negative application conditions for P/T system transformation in the fol-
lowing sense:

Definition 6 ((Left) Negative Application Condition) A (left) negative application condition of
a rule rule = (PSL

l← PSK
r→ PSR) in the weak adhesive HLR category with NACs (C,M ,E ,Q)

is of the form NAC(n), where n : PSL→ PSN is a P/T morphism.
A morphism m : PSL → PS1 satisfies NAC(n), written m |= NAC(n), if there does not exist a
morphism q : PSN → PS1 ∈Q with q◦n = m.

Definition 7 (Rule with NACs) A rule in a weak adhesive HLR category with NACs (C,M ,E ,
Q) with a set of negative application conditions NACS is called rule with NACs.

Remark 1 Analogously to left NACs we can define right NACs on the right-hand side of a rule
which have to be satisfied by the comatch of the transformation. In this paper, we only consider
rules with an empty set of right NACs. This is without loss of generality since each right NAC
can be translated into an equivalent left NAC as shown in [EEPT06, LEOP08].

Definition 8 (Applicability of a Rule with NACs) Given a rule rule = (PSL
l← PSK

r→ PSR)
with a set of negative application conditions NACS and a match m : PSL → PS1 such that rule
without NACs is applicable at m, then the rule rule with NACs is applicable if and only if m
satisfies all NACs of the set NACS.
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For these new rules and their restricted application we obtain the same results as known for net
transformations in general. These results have been shown for NACs at the level of weak adhe-
sive HLR categories in [LEOP08, LEO06, Lam07]. Their instantiation to P/T systems requires
Theorem 1 above.

Results (For Reconfigurable P/T Systems with NACs)

1. Local Church-Rosser and Parallelism: The local Church-Rosser property for transfor-
mations with NACs states that for two rules with two matches, the application of the rules
at the matches to the same P/T system in any order (sequentially independence) yields
the same result if and only if the transformations are parallel independent. For parallel
independence of two transformations with NACs it has to be checked in particular if one
transformation does not delete anything the other transformation needs, and, in addition,
that one transformation does not produce any structure that is forbidden by the other one.
For such independent transformations a parallel transformation with NACs can be built
obtaining the same result in one transformation step.

In our airport example it makes e.g. no difference if a starting or a landing runway is
opened first. After opening a starting runway it is still possible to open a landing runway,
since nothing is deleted and there is no NAC on the rule openLandingRunway. After
opening a landing runway a starting one can be opened: Nothing is deleted and the NAC
of the rule openStartingRunway that forbids the existence of a place of type Storm remains
satisfied. Moreover now both runways can be constructed in parallel. This construction
leads to the same result consisting of an airport with one more starting and one more
landing runway.

2. Conflicts and Critical Pairs: If two transformations are not parallel independent as
described in Item 1 then they are in conflict. This means in particular that one of the
transformations deletes some structure which is needed by the other one, or it produces a
structure which is forbidden by the other one. A critical pair describes such a conflict be-
tween two transformations in a minimal context. Critical pairs are proven to be complete
[LEO06], i.e. each conflict occurring in the system between two transformations is repre-
sented by a critical pair expressing the same conflict in a minimal context. The morphism
class E is required to express this minimal context.

In our example a transformation adding a warning (i.e. applying the rule incomingWarning)
is in conflict with a transformation which opens a starting runway (i.e. applying rule
openStartingRunway). This conflict is caused by the NAC of the rule openStartingRunway
as it cannot be applied if a place of type Storm is present. This conflict occurs regardless of
the number of runways already present in the airport and is expressed in a minimal context
by the critical pair shown in Figure 3.

3. Concurrency: As explained in Item 1 sequentially independent transformations can be
put into one parallel transformation step having the same effect. But if sequential depen-
dencies occur between direct transformations in a transformation sequence the Parallelism
Theorem cannot be applied. In this case a so-called concurrent rule with NACs can be con-
structed establishing the same effect in one transformation step with NACs as the whole
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db:DepBoarding

g:Gates

Stormdf:DepField

w:FairWeather

forbidTakeoff

allowTakeoff incomingWarning⇐=

db:DepBoarding

g:Gates
df:DepField

w:FairWeather

openStartingRunway=⇒

db:DepBoarding
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g:Gates

df:DepField

w:FairWeather

:Runway
depart

takeoff

Figure 3: The critical pair for the rules incomingWarning and openStartingRunway

db:g:

:Storm

df: w:

db:g: :Storm

df: w:

allowTakeoff

forbidTakeoff ←−

db:DepBoarding

g:Gates
df:DepField

w:FairWeather

=⇒

db:DepBoarding

g:Gates

Stormdf:DepField

w:FairWeather

forbidTakeoff

allowTakeoff

Figure 4: The concurrent rule with NACs

transformation sequence. The Concurrency Theorem states that a concurrent rule with
NACs equivalent to a sequence of rules with NACs is applicable with the same result if
and only if the rule sequence with NACs is applicable. The construction of the concurrent
rule is analogous to the case without NACs. Additionally, all NACs occurring in the rule
sequence need to be translated into equivalent NACs for the concurrent rule. The con-
struction of such a concurrent rule with NACs is explained in [LEOP08]. A concurrent
rule summarizes in one rule which parts of the net should be present, preserved, deleted
and produced when applying the corresponding rule sequence to this net. Moreover we
have a summarized set of NACs on the concurrent rule expressing which net parts are
forbidden when applying the corresponding rule sequence with NACs to the net.

Consider for our example the transformation sequence in Fig. 1. First, a starting runway is
opened followed by an incoming warning after which the starting runway is closed again.
This transformation sequence can be summarized to one transformation step via a new
concurrent rule with concurrent NACs as depicted in Fig. 4. Note that this concurrent
rule now holds two single NACs, one originating from the first rule openStartingRunway
and the other one originating from the second rule incomingWarning in the sequence. Note,
moreover, that this rule adds no new behavior to our system, but merely adds the possibility
of performing these three transformations in one step with the same result.

4. Embedding and Extension: Consider a transformation t : N0
∗⇒ Nn and a morphism

k0 : N0→ N′0, then the transformation t can be embedded into the larger context N′0 if and
only if the extension morphism k0 : N0→ N′0 satisfies two consistency conditions. First, it
has to be boundary consistent. This means intuitively that the extension morphism cannot
embed places which are deleted by the transformation t into places connected with new
transitions in the bigger P/T system N′0. Otherwise, dangling edges will occur during
the embedding. Moreover, the extension morphism k0 should satisfy NAC-consistency
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[LEO06]. Intuitively, the transformation t can be summarized into one step tc : N0⇒ Nn

using the new concurrent rule with concurrent NACs. Now the extension morphism k0
may not map to a larger P/T system N′0 with added structures which are forbidden by
this concurrent NAC. Note that boundary consistency and NAC-consistency are not only
sufficient, but also necessary conditions for the construction of extended transformations
with NACs. So, whenever it is possible to repeat a transformation t into a bigger context
N′0 the extension morphism was boundary and NAC-consistent.

In our example, we can embed the transformation described in the last item into the P/T
system AirCS1 from Fig. 1 which is not the initial one, but already contains two starting
and one landing runway. On the contrary, this transformation cannot be embedded into the
airport AirCS2 from Fig. 1 which already contains a storm warning. This is because the
extension morphism k0 adds a place of type Storm which is forbidden by the concurrent
NACs as depicted in Fig. 4.

5. Confluence: Critical pairs as described in Item 2 are not only complete, their confluence
behavior has an impact on the confluence behavior of the whole system. Intuitively this
means that if a conflict can be resolved in a certain way in its minimal context, the same
conflict is resolvable as well if it occurs in a larger context. A solution of a conflict in a
minimal context (or critical pair) P1←K→ P2 is a pair of transformation sequences t1 and
t2 such that t1 transforms P1 into a certain net X and t2 transforms it into the same net X .
Thus the same system state can be reached again if a conflict occurred. The solution of the
critical pair needs to be strict. Intuitively speaking, this means that t1 and t2 preserve ev-
erything which is preserved in common by the critical pair itself. Moreover, whenever it is
possible to embed the critical pair into some larger context the extension morphism should
be NAC-consistent with respect to the critical pair solution (NAC-confluence [Lam07] ).
This means in particular that all NACs occurring in the solution of the critical pair are still
satisfied by the embedding into the larger context. Under these conditions, this conflict can
be resolved in the same way also in a larger context. Otherwise, the solution of the critical
pair is no solution for the larger context, and no prediction for confluence can be infered.
In particular, if all critical pairs of the reconfiguration system are strictly NAC-confluent
then the system is locally confluent.

Consider in our example the critical pair depicted in Fig. 3. The solution of the critical
pair is depicted in Fig. 5 for the right-hand side of the critical pair. Whenever a starting
runway has been opened, a warning can come in and the starting runway can be closed
again. The result is a P/T system containing no runway, but a storm warning. This is
already our solution because this P/T system is identical to the the first P/T system in the
critical pair. This solution is moreover strictly confluent because the places g, df, fw and
db are preserved by both the critical pair and our solution. Moreover, the solution is NAC-
confluent because the satisfaction of the concurrent NACs as depicted in Fig. 4 is implied
already by the satisfaction of the first NAC of the critical pair. This means in effect that
if the critical pair can be embedded and thus the NACs of the critical pair are satisfied
by this embedding then they will also be satisfied when embedding the solution into the
same bigger context. Therefore it is possible to resolve the conflict between an incoming
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Figure 5: The solution for the critical pair

warning and opening a starting runway by having an incoming warning and closing the
runway in each bigger airport as well.

5 Conclusion

We conclude with a short discussion of related and future work:
Related Work Reconfigurable nets have been defined based on net transformations that aim
directly at changing the net in arbitrary ways. This approach can be restricted to transformations
that preserve specific properties as safety or liveness (see [PU03]). Dynamic nets [BS01] are
based on the join calculus and allow the dynamic adaption of the network configuration and are
considered to be a special case of zero-safe nets [BMM04]. In a series of papers [LO04, LO06a,
LO06b] rewriting of Petri nets in terms of graph grammars is used for the reconfiguration of nets
as well. There marked-controlled reconfigurable nets (MCRN) are extended by some control
technique that allows changes of the net for specific markings. The enabling of a rule is not only
dependent on the net topology, but also dependent on the marking of specific control places.
MCReNet [LO06a] is the corresponding tool for the modeling and verification of MCRNs.
Future Work One ongoing research tasks is the extension of this paper’s results to algebraic
high-level nets, a Petri net variant with additional data types in terms of algebraic specifications.
Therefore, the same conditions have to be proved considering additionally the specification and
algebra morphisms. Another one are algebraic higher order (AHO) nets that can be used as a
controlling mechanism for reconfigurable Petri nets. There P/T systems as well as rules are the
tokens of the underlying AHO net. This specification technique has been targeted at modeling
workflows of mobile ad-hoc networks. Up to now we have not made use of the new feature of
NACs in AHO nets. To do so we have to integrate the NACs into the algebra underlying the
AHO net.
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