
ECEASST

Independence Analysis of Firing and Rule-based Net
Transformations in Reconfigurable Object Nets

E. Biermann1 and T. Modica2

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

1enrico@cs.tu-berlin.de, 2modica@cs.tu-berlin.de

Abstract: The main idea behind Reconfigurable Object Nets (RONs) is to support
the visual specification of controlled rule-based net transformations of place/transition
nets (P/T nets). RONs are high-level nets with two types of tokens: object nets
(place/transition nets) and net transformation rules (a dedicated type of graph trans-
formation rules). Firing of high-level transitions may involve firing of object net
transitions, transporting object net tokens through the high-level net, and applying
net transformation rules to object nets, e.g. to model net reconfigurations. A visual
editor and simulator for RONs has been developed as a plug-in for ECLIPSE using
the ECLIPSE Modeling Framework (EMF) and Graphical Editor Framework (GEF)
plug-ins.

The problem in this context is to analyze under which conditions net transformations
and token firing can be executed in arbitrary order. This problem has been solved
formally in a previous paper. In this contribution we present an extension of our
RON tool which implements the analysis of conflicts between parallel enabled tran-
sitions, between parallel applicable net transformation rules (Church-Rosser prop-
erty), and between transition firing and net transformation steps. The conflict anal-
ysis is applied to a RON simulating a distributed producer-consumer system.

Keywords: Petri nets, net transformation, graph transformation, visual editor, re-
configurable object nets, conflict analysis, independence analysis, Eclipse, GEF

1 Introduction

Modelling the adaption of a system to a changing environment has become a significant topic
in recent years. Application areas cover e.g. computer supported cooperative work, multi agent
systems, dynamic process mining or mobile ad-hoc networks (MANETs). Especially in the con-
text of our project Formal modeling and analysis of flexible processes in mobile ad-hoc networks
[PEH07, For06] we aim to develop a formal technique which on the one hand enables the mod-
eling of flexible processes in MANETs and on the other hand supports changes of the network
topology and the transformation of processes. This can be achieved by an appropriate integration
of graph transformation, nets and processes in high-level net classes.

The main idea behind Reconfigurable Object Nets (RONs) is the integration of transition firing
and rule-based net structure transformation of place/transition nets (P/T nets) during system sim-
ulation. This approach increases the expressiveness of Petri nets and allows a formal description

1 / 13 Volume X (2008)

mailto:enrico@cs.tu-berlin.de
mailto:modica@cs.tu-berlin.de


RON Analysis

of dynamic system changes.
RONs are high-level nets with two types of tokens: object nets (which are P/T nets) and net

transformation rules (a dedicated type of graph transformation rules). Thus, on the one hand,
RONs follow the paradigm “nets as tokens”, introduced by Valk in [Val98], and, on the other
hand, extend this paradigm to “nets and rules as tokens” in order to allow for modelling net
structure changes (reconfigurations) of object nets. The high-level net constitutes the control
frame for object net behavior and rule-based reconfiguration of object nets. Firing of high-level
transitions may involve firing of object net transitions, transporting object net tokens through
the high-level net, and applying net transformation rules to object nets. Net transformation rules
model net reconfigurations such as merging or splitting of object nets, and net refinements.

The formal basis for RONs is given in [HME05], where high-level nets with nets and rules
as tokens are defined algebraically, based on algebraic high-level nets [PER95]. The basic idea
behind net transformation is the stepwise development of P/T systems by given rules consisting
of a left-hand side LHS related to a right-hand side RHS. Think of these rules as replacement
systems where the LHS is replaced by the RHS preserving a context. Similar to the concept of
graph transformations [EEPT06], each application of a rule r = (LHS→ RHS) to a source net N1
leads to a net reconfiguration step N1

r=⇒N2, where in the source net N1 the subnet corresponding
to the LHS is replaced by the subnet corresponding to the RHS, yielding the target net N2. Rule-
based Petri net transformations have been treated in depth in e.g. [EP04, PU03].

The visual editor and simulator for RONs has been realized as a plug-in for ECLIPSE using
the ECLIPSE Modeling Framework (EMF) [EMF06] and Graphical Editor Framework (GEF)
[GEF06] plug-ins. In RONs, the algebraic operations defined for rule applications and transition
firing are modeled as special RON-transition types which have a fixed firing semantics. It turned
out that four RON-transition types for composition, decomposition, firing and rule-based recon-
figuration are sufficient to model various interesting examples (Case studies and downloads of
the RON tool are available on our RON homepage [RON07]).

Recently, work has been done to formalize independence conditions for reconfigurable P/T
systems (i.e. P/T systems together with reconfiguration rules) [EHP+07, EEH+07]. While inde-
pendence conditions for two firing steps of P/T-systems are well-known (transitions in conflict),
independence of net reconfiguration steps is closely related to local Church-Rosser properties
for graph transformations that are valid in the case of parallel and sequential independence of
rule-based transformations. In [EEPT06], conditions for two transformation steps are given in
the framework of high-level replacement systems with application to net transformations, so that
these transformation steps applied to the same P/T-system can be executed in arbitrary order,
leading to the same result. In [EHP+07] we state under which conditions a net transformation
step and a firing step are independent of each other. The subject of this paper is the implementa-
tion of the different formal notions of conflict and independence analysis in the RON tool.

The paper is structured as follows: A running example (a distributed producer-consumer sys-
tem) is introduced in Section 2. Section 3 introduces the RON tool, and Section 4 describes the
extension of our tool with conflict and independence analysis based on the theoretical results
from [EHP+07, EEH+07]. These new features of the tool are used to analyze the producer-
consumer system. Section 5 concludes the paper with an outlook on future work.

Proc. GT-VMT 2008 2 / 13



ECEASST

2 Example: A Producer-Consumer System

In our example, RONs are applied to model a distributed system of producers and consumers
where several producers and consumers may interact with each other. In the initial state of the
sample RON in Fig. 1 potential producers and consumers are distributed on different Net places
as independent object nets without interaction. Producer nets may fire, e.g. they can produce

Figure 1: Distributed Producers/Consumers modelled as RON

items and place them on the buffer place. Firing in object nets is triggered by firing a RON high-
level (HL) transition of type FIRE, which takes one object net with marking M from the Net place
in its pre-domain and puts the same object net, now marked by one of the possible successor
markings of M, into all of its post-domain places. Producer nets can also be refined by firing
the RON HL-transition AdaptProduction of type APPLYRULE. A transition of this type takes an
object net from each of the pre-domain Net places, a rule from the pre-domain Rule place, applies
this rule to the disjoint union of all the taken object nets and puts the resulting net to all post-
domain Net places. Note that a transition is preserved by a rule only if its pre- and postdomains
are preserved as well.

Rule refineProd, depicted in Fig. 2, refines the transition produce by two transitions prepare
production and a new transition produce. Transition produce is deleted by rule refineProd and
generated again with a different predomain place. Rule refineProd can be applied only once
to the same object net since the NAC forbids its application if there is already a place called
production prepared in the net. Rule addResources (also Fig. 2) replaces the produce transition by
two alternative production procedures, each using a different resource.

For producer-consumer interaction, a producer net can be merged with a consumer net by

3 / 13 Volume X (2008)



RON Analysis

Figure 2: Rules for adapting a producer net

firing the RON HL-transition ProdMeetsCons of type APPLYRULE. Rule merge-PC, depicted in
Fig. 3, glues a producer object net and a consumer object net by inserting a connect transition
between both buffers. A so-called negative application condition (NAC) forbids the application
of the rule if there already exists a connect transition. Note that the transition ProdMeetsCons
controls which producer interacts with which consumer.

HL-transitions of type FIRE trigger the firing of object net transitions. Note that for firing
object net transitions, no net transformation rule is applied. The firing semantics of object nets is
the usual P/T net behavior. By firing the FIRE HL-transition Deal, in the glued net the consumer
now can consume items produced by the producer as long as there are tokens on the place Prod-
Buffer. Moreover, the producer may also produce more items and put them to the buffer. After
the deal has been finished, the nets are separated again by firing the APPLYRULE HL-transition
Disconnect. This applies rule separate-PC in Fig. 3 to the glued net which deletes the connect
transition from the net.

Figure 3: Rules for gluing and for separating a producer and a consumer net

Note that the resulting net, which is put on place Prod/Cons, is still one single object net which
consists of two unconnected components. In order to split these components into two object nets,
a HL-transition of type SPLIT has to be fired. Firing RON HL-transition FinishMeeting results in
two separate object nets on place Prod and Cons. In the last step, we put the now separated
producer and consumer nets back to their initial places. To prevent them to return to “wrong”
initial places we again use APPLYRULE HL-transitions. These HL-transitions apply the rules
checkProd and checkCons, respectively, which do not change the object nets they are applied to
but simply check them for the occurrence of a producer or consumer place, respectively. Apart
from HL-transitions of type FIRE, APPLYRULE and SPLIT, RONs provide a fourth HL-transition
type, called STANDARD (not used in the producer-consumer example). STANDARD HL-transitions
simply remove a net token from each pre-domain place and add the disjoint union of all removed

Proc. GT-VMT 2008 4 / 13



ECEASST

object nets to each of the post-domain Net places.

3 The RON Environment: Editor and Simulator

The RON environment [BEHM07] is divided into four main components, i.e. the RON tree view
based on an EMF model for RONs, and the visual editors for object nets, for transformation rules
and for high-level nets with the four HL-transition types FIRE, APPLYRULE, SPLIT and STANDARD.
The visual net editors also support the simulation of an edited object net or high-level net. Fig. 4
shows a screenshot of the RON environment showing all views and editors.

RON Tree View. View 1 in Fig. 4 shows the main editor component, a tree view for the
complete RON model from which the graphical views can be opened by double-click.

Figure 4: The RON Environment for Editing and Simulating Reconfigurable Object Nets

5 / 13 Volume X (2008)



RON Analysis

Object Net Editor. The kernel component is a graphical editor for object nets, i.e. the net
tokens on the RON’s NET-typed places. This component is actually a place/transition net editor,
allowing the simulation of firing transitions. An object editor panel is shown in Fig. 4, View 2 ,
holding the object net ProdCons, which models producer-consumer interaction.

Transformation Rule Editor. The editor for transformation rules mainly consists of three ed-
itor panels, one for the left-hand side (LHS), one for the right-hand side (RHS) and one for a
negative application condition(NAC) (see view 3 in Fig. 4). Each editor panel is basically an
object net editor itself, but with the additional possibility to relate the object nets by defining
mappings on places and transitions. Mappings are realized by the mapping tool of the rule editor
that allows the matching of LHS objects to RHS objects to define which objects are preserved
by the rule, or to NAC objects to define which objects are connected to additional forbidden ob-
jects. In the editor, mappings are shown by object colouring. In order to ensure that the mapping
specified by the mapping tool is also a valid Petri net morphism, it is checked for each mapped
transition that all places in its pre- (post-)domain in the LHS are mapped to the corresponding
places in the pre- (post-)domain of in the RHS. Another restriction is that all rules are injective,
so different LHS objects must be mapped to different RHS objects. Note that the object net
ProdCons in Fig. 4, View 2 , is the result of applying rule mergePC to two object nets Prod1
and Cons2 from the places Producers and Consumers, respectively. (For the situation before the
rule is applied, see Fig. 1).

High-Level Net Editor. A high-level net controls object net behaviour and rule applications
to object nets. Such a high-level net is drawn in the high-level net editor panel, shown in Fig. 4,
View 4 . Here, NET places carrying object net tokens are blue containers marked by an “O” for
Object Nets. RULE places carrying transformation rules are green containers marked by an “R”
for Rules. Each transition type has a special graphical icon as visualization: for FIRE,
for APPLYRULE, for SPLIT, and for STANDARD. Enabled HL-transitions are coloured,
disabled ones are gray.

Simulation of RONs. A RON HL-transition is fired when double-clicked. The simulation of
firing HL-transitions of kinds STANDARD, FIRE, and SPLIT has been implemented directly in the
editor. In order to simulate firing of APPLYRULE HL-transitions, internally the RON editor was
extended by a converter to AGG, an engine to perform and analyze algebraic graph transforma-
tions [AGG]. If the user gives the command to fire an APPLYRULE HL-transition he has to select
the rule and the object net token(s) in the pre-domain the rule should be applied to. This is real-
ized in the user interface shown in Fig. 4, View 4 , by ordering the tokens in the corresponding
NET and RULE containers in a way that the uppermost tokens are the ones considered by the rule
application. Furthermore, the user is asked for a match defining the occurrence of the rule’s left-
hand side in the selected object net. Optionally, AGG can find or complete partial matches and
propose them to the user in the RON editor. With the selected rule, match, and object net AGG
computes the result of the transformation which is put on the post-domain places according to
the firing semantics explained in Section 2.

A RON HL-transition of type FIRE triggers the firing of an object net transition for an object net

Proc. GT-VMT 2008 6 / 13



ECEASST

in the FIRE transition’s pre-domain. We decided to implement object net transition firing directly
in Java instead of modeling firing steps by graph transformation rules and using AGG to compute
the successor markings. This design decision is based on the complexity of encoding P/T net
behavior in graph transformation systems: there are two possibilities: 1) we could translate each
single object net transition into a (model-dependent) graph rule [Erm06]; 2) we could envisage a
more general encoding resulting in more than one rule for a single firing step due to the arbitrary
number of input and output places for each transition. In case 1) we have the problem that our
net transformation rules may delete / add / replace transitions. So, after each rule application
we might be forced to adapt the set of model-dependent graph rules representing our object
net. In case 2), we cannot make use of AGG’s analysis features to find transitions in conflict,
since the analysis of graph transformation steps is based on finding critical pairs of rules and
needs one firing step to be modeled by one rule only. Thus, it proved to be more natural and
straightforward to implement both the object net firing behavior and the check for conflicting
object net transitions directly in Java.

4 Extending the RON Environment by Independence Analysis

4.1 Independence in Reconfigurable P/T Systems

In this section we give a brief overview on the different analysis cases and demonstrate them by
conflict examples in our producer-consumer system (Fig. 1).

As object nets in RONs can evolve in two different ways (by firing object net transitions and
by applying net transformation rules), the notions of conflict and concurrency become quite
complex. We illustrate the situation in Fig.5, where we have in the center an object net PN0,
with marking M0 and two transitions that are both enabled leading to firing steps (PN0,M0)

t1−→
(PN0,M′

0) and (PN0,M0)
t2−→ (PN0,M′′

0 ), and two transformations (PN0,M0)
prod1,m1=⇒ (PN1,M1)

and (PN0,M0)
prod2,m2=⇒ (PN2,M2) via the corresponding rules and matches.

Figure 5: Concurrency in RONs

Hence, we distinguish three kinds of conflicts corresponding to the squares (1), (2/3) and (4):

Transition / Transition: The classic concurrency situation in P/T systems without place ca-
pacities regards two transitions with overlapping predomains. Such transitions are in conflict if

7 / 13 Volume X (2008)



RON Analysis

they are both enabled and would require more tokens for firing than are available in the current
marking. Hence, for square (1), we have the usual condition that t1 and t2 need to be conflict
free, so that both can fire in arbitrary order or in parallel, yielding the same marking.

Example: Consider the net which results from applying rule addResource to the Producer net
in Fig. 1: here the two transitions UseResource1 and UseResource2 are in conflict because there
is only one token on the place ready to produce.

Rule / Transition: The application of a rule might remove an enabled transition from a given
net. In this case one might be able to fire the transition first and apply the rule afterwards, but
not the other way round. Vice versa, a rule might require a token on a place which might have
been removed by a preceding transition firing step. Hence, for squares (2) and (3), we require
parallel independence which allows the execution of the transformation step and the firing step
in arbitrary order leading to the same object net. Intuitive, a transition firing and a transformation
are parallel independent if the transition is not deleted by the transformation and the successor
marking is still sufficient for the match of the transformation (see [EHP+07]).

Example: Firing the transition produce in net Prod1 on the RON place Producers is in con-
flict with applying the net transformation rule refineProducer to the net Prod1. Since the net
transformation rule removes the transition produce, the firing step cannot take place after the net
transformation step. Vice versa, the transition can fire first without disabling the application of
rule refineProducer.

Rule / Rule: Two rules are in conflict with each other if one of them deletes certain parts of
the object net which the other rule needs for its application. Another conflict possibility is the
creation of net structures by the first rule which are forbidden by a NAC of the second one.
Hence, for square (4), we require parallel independence of both rules. In [EHP+07, EEH+07]
it has been shown that reconfigurable P/T nets fulfill the formal conditions of a weak adhesive
HLR category1. Using such a category not only allows the notions of rules and transformations,
but in addition provides a large amount of results such as:

• Parallelism: The Church-Rosser Theorem states a local confluence in the sense of formal
languages. The Parallelism Theorem states that sequential or parallel independent transfor-
mations can be carried out either in arbitrary sequential order or in parallel. In the context
of step-by-step development these theorems are important as they provide conditions for
the independent development of different parts or views of the system.

• Concurrency and pair factorization: The Concurrency Theorem handles general transfor-
mations, which may be non-sequentially independent. Roughly speaking, for a sequence
there is a concurrent rule that allows the construction of a corresponding direct transfor-
mation.

• Embedding and local confluence: Further important results for transformation systems are
the Embedding, Extension and the Local Confluence Theorems [EEPT06]. The first two

1 Adhesive High-Level Replacement (HLR) systems have been established as a suitable categorical framework for
double-pushout transformations[EEPT06].

Proc. GT-VMT 2008 8 / 13



ECEASST

allow to embed transformations into larger contexts and with the third one we are able to
show local confluence of transformation systems based on the confluence of critical pairs.

Example: Both rule addResources and rule refineProducer delete the original transition pro-
duce, when applied to net Prod1. Hence, only one of these rules can be applied, disabling the
application of the other one (delete-use-conflict). Another example for a conflict would be the
rule mergePC. The NAC of this rule forbids the application if there already exists a connect tran-
sition between the two buffers which results in a conflict of the rule with itself. However the
structure of the high-level net will prevent two consecutive applications of this rule to the same
net.

4.2 Implementation

The editor described in the previous chapter offers support to model reconfigurable object nets
and to perform hand-triggered simulation steps.

We extended the basic editing and simulation features of our RON environment by the analysis
techniques explained in the previous section. To perform the analysis we employ the attributed
graph grammar system AGG [AGG], an environment for the execution and analysis of graph
transformations. Since Petri nets and net transformation rules can be simulated as special graphs
and graph transformation rules, we use AGG to compute possible rule matches, to apply rules
and to perform rule/rule conflict analysis. More specifically, we implemented three methods for
the three analysis cases:

1. Method analyzeTransitionTransition(objectnet) is implemented directly
and searches the given object net for conflicting transitions. The result is a vector of transi-
tion pairs which are in conflict. We implemented this analysis directly like the simulation
of object net transition firing described in Section 3.

2. Method analyzeRuleTransition(objectnet, rule) collects all possible mat-
ches of the given rule into the given object net and checks whether there exist enabled
transitions in the object net whose firing would delete tokens which are parts of the match.
Vice versa, the method checks whether the rule application would delete any of the previ-
ously enabled transitions. The resulting pairs, each consisting of an enabled transition and
a match from the LHS of a rule to the object net, describe situations where the transition
will no longer be enabled after applying the rule. We use AGG for match-computing and
implement the formal criteria for conflicts in [EHP+07].

3. Method analyzeRuleRule(rule1, rule2, objectnet) computes all critical
pairs for rule1 and rule2 and checks whether the overlapping graphs are parts of the
intersection of matches from rule1 and rule2 into the object net. Here we use AGG
critical pair analysis for this. The result of the computation will be a vector containing
pairs of matches of the LHS of both rules into the object net. Semantically each pair
describe a situation where the application of the first rule with the first given match will
prevent the application of the second rule under the second given match.

Given a specific RON, our editor offers two modes to perform a conflict analysis: single
conflict mode and local place mode.

9 / 13 Volume X (2008)



RON Analysis

4.3 Single conflict analysis

This mode allows to specify in detail which conflicts are interesting and should be computed.
In our producer-consumer system for example, we would like to know either whether our rules
for adapting a producer’s production workflow might lead to object nets with transition/transition
conflicts, or we might be interested in transition/rule conflicts with the transitions of the producer
net itself or in possible rule/rule conflicts.

For a transition/transition analysis, the user of the RON environment selects an object net and
chooses Analyze Conflicts T/T from its context menu. Window (a) in Fig. 6 shows the result of the
T/T analysis of the object net Prod1, where the two transitions in conflict are highlighted.

Figure 6: A Transition/Transition Conflict (a), a Rule/Transition Conflict (b), and a Rule/Rule
Conflict (c) in the Producer-Consumer System

For a rule/transition analysis, the user of the RON environment selects a rule and an object
net which marks a NET place connected by an APPLYRULE transition to the RULE place which
contains the selected rule. Afterwards, the item Analyze Conflicts R/T can be chosen from the
context menu. Window (b) in Fig. 6 shows that rule refineProd and transition produce are in R/T
conflict with each other because transition produce is deleted by the rule. Note that the steps

Proc. GT-VMT 2008 10 / 13



ECEASST

still can be performed in reversed order: after firing transition produce, rule refineProd is still
applicable because it does not depend on the tokens which are consumed by the transition.

For a rule/rule analysis, two rules and an object net have to be selected in order to be able
to evoke the context menu item Analyze Conflicts R/R. Window (c) in Fig. 6 shows that rules
refineProd and addResources (see Fig. 2) are in conflict with each other. Since the matches of
the rules overlap, both rules replace the same transition produce by a more complex structure.

4.4 Local place conflict analysis

In this analysis mode, a comprehensive direct analysis is evoked for a selected high-level NET
place. This means, all possible local conflicts are computed, taking into account the current
object nets comprising the marking of the selected NET place, the marking of these object nets,
and the rules on RULE places which are connected by an APPLYRULE transition to the selected
NET place. Fig. 7 shows the result of a local place analysis, evoked for the NET place Producer in
our Producer-Consumer-RON from Fig. 1.

Figure 7: Local Place Analysis Results for the NET Place Producer

For all object nets being tokens on the selected high-level NET place, the calculated conflicts
are displayed, sorted by conflict types transition/transition, rule/transition, and rule/rule. Pressing
the corresponding Show button shows the respective conflict in detail, i.e. the conflicting tran-
sitions are highlighted (Fig. 6 (a)), or a match from a rule is shown together with a highlighted
transition this rule is in conflict with (Fig. 6 (b)), or the overlapping matches of two conflicting
rules being in conflict into an object net are shown (Fig. 6 (c)).

5 Conclusion

Modeling mobile and distributed systems requires a modeling language which covers both recon-
figuration and coordination. RONs meet these conditions. The abstract high-level net controls
the flow, selection, manipulation and behavior of object nets (P/T nets) which are tokens on
the high-level net places. For object net reconfiguration at runtime, net transformation rules are

11 / 13 Volume X (2008)



RON Analysis

used, the application of which is also controlled by the high-level net. In this paper, the RON
environment for editing and simulating RONs has been extended with conflict analysis. Apart
from the classical situation of two transitions in a P/T net being in conflict, it is now also possi-
ble to analyze conflicts between parallel applicable net transformation rules, as well as between
enabled transitions and net transformation rules. The knowledge about conflicts helps to detect
potential problems in system behavior, e.g. ”a produce transition can be deleted even if there are
still resources for productions available”.

To the best of our knowledge, no other Petri net tool offers the possibility to define and analyze
net transformations by rules represented as tokens in a high-level net.

Work is in progress to optimize the analysis result visualization (e.g. by showing the overlap-
ping part of two rule matches only once, and by indicating which are the critical objects causing
the conflict). Furthermore, we plan to improve the conflict analysis performance for analyzing
also more complex case studies.

Bibliography

[AGG] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[BEHM07] E. Biermann, C. Ermel, F. Hermann, T. Modica. A Visual Editor for Reconfigurable
Object Nets based on the ECLIPSE Graphical Editor Framework. In Juhas and Desel
(eds.), Proc. 14th Workshop on Algorithms and Tools for Petri Nets (AWPN’07). GI
Special Interest Group on Petri Nets and Related System Models, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/BEHM07.pdf

[EEH+07] H. Ehrig, C. Ermel, K. Hoffmann, J. Padberg, U. Prange. Concurrency in Reconfig-
urable Place/Transition Systems: Independence of Net Transformations as Well as
Net Transformations and Token Firing. Technical report 2007/02, TU Berlin, 2007.
http://iv.tu-berlin.de/TechnBerichte/2007/2007-02.pdf

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer Verlag, 2006.

[EHP+07] H. Ehrig, K. Hoffmann, J. Padberg, U. Prange, C. Ermel. Independence of Net
Transformations and Token Firing in Reconfigurable Place/Transition Systems. In
Kleijn and Yakovlev (eds.), Petri Nets and Other Models of Concurrency. Proceed-
ings of ICATPN 2007. LNCS 4546, pp. 104–123. Springer Verlag, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EHP+07.pdf

[EMF06] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 2.2.0. 2006.
http://www.eclipse.org/emf.

[EP04] H. Ehrig, J. Padberg. Graph Grammars and Petri Net Transformations. In Lectures
on Concurrency and Petri Nets Special Issue Advanced Course PNT. LNCS 3098,
pp. 496–536. Springer Verlag, 2004.

Proc. GT-VMT 2008 12 / 13

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tu-berlin.de/publikationen/Papers07/BEHM07.pdf
http://iv.tu-berlin.de/TechnBerichte/2007/2007-02.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EHP+07.pdf
http://www.eclipse.org/emf


ECEASST

[Erm06] C. Ermel. Simulation and Animation of Visual Languages based on Typed Algebraic
Graph Transformation. PhD thesis, Technische Universität Berlin, Fak. IV, Books
on Demand, Norderstedt, 2006.

[For06] ForMAlNET. DFG Project, Technical University of Berlin. Formal Modeling and
Analysis of Flexible Processes in Mobile Ad-hoc Networks. 2006.
http://www.tfs.cs.tu-berlin.de/formalnet

[GEF06] Eclipse Consortium. Eclipse Graphical Editing Framework (GEF) – Version 3.2.
2006. http://www.eclipse.org/gef.

[HME05] K. Hoffmann, T. Mossakowski, H. Ehrig. High-Level Nets with Nets and Rules as
Tokens. In Proc. of 26th Intern. Conf. on Application and Theory of Petri Nets and
other Models of Concurrency. LNCS 3536, pp. 268–288. Springer Verlag, 2005.
http://tfs.cs.tu-berlin.de/publikationen/Papers05/HEM05.pdf

[PEH07] J. Padberg, H. Ehrig, K. Hoffmann. Formal Modeling and Analysis of flexible Pro-
cesses in Mobile Ad-Hoc Networks. EATCS Bulletin 91:128–132, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/PEH07.pdf

[PER95] J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Sys-
tems. Mathematical Structures in Computer Science 5:217–256, 1995.

[PU03] J. Padberg, M. Urbášek. Rule-Based Refinement of Petri Nets: A Survey. In Ehrig
et al. (eds.), Advances in Petri Nets: Petri Net Technology for Communication Based
Systems. LNCS 2472, pp. 161–196. Springer Verlag, 2003.

[RON07] Student’s Visual Language Project. TFS, TU Berlin. Reconfigurable Object Nets.
2007.
http://www.tfs.cs.tu-berlin.de/roneditor

[Val98] R. Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets.
In ICATPN ’98: Proceedings of the 19th International Conference on Application
and Theory of Petri Nets. LNCS 2987, pp. 1–25. Springer, 1998.

13 / 13 Volume X (2008)

http://www.tfs.cs.tu-berlin.de/formalnet
http://www.eclipse.org/gef
http://tfs.cs.tu-berlin.de/publikationen/Papers05/HEM05.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers07/PEH07.pdf
http://www.tfs.cs.tu-berlin.de/roneditor

	Introduction
	Example: A Producer-Consumer System
	The RON Environment: Editor and Simulator
	Extending the RON Environment by Independence Analysis
	Independence in Reconfigurable P/T Systems
	Implementation
	Single conflict analysis
	Local place conflict analysis

	Conclusion



