
ECEASST

The GP Programming System

Greg Manning and Detlef Plump

The University of York

Abstract: We describe the programming system for the graph-transformation lan-
guage GP, focusing on the implementation of its compiler andabstract machine. We
also compare the system’s performance with other graph-transformation systems.
The GP language is based on conditional rule schemata and comes with a simple
formal semantics which maps input graphs to sets of output graphs. The imple-
mentation faithfully matches the semantics by using backtracking and allowing to
compute all possible results for a given input.

Keywords: GP, programming system, graph transformation, non-determinism

1 Introduction

GP is a non-deterministic graph programming language basedon conditional rule schemata in
the double-pushout approach [PS04]. The core of GP consists of just four constructs: single-
step application of a set of rule schemata, sequential composition, branching and iteration. The
language is computationally complete [HP01] and comes with a formal semantics [PS08]. The
current implementation of GP consists of a graphical editorfor programs and graphs, a compiler
and the York Abstract Machine (YAM). These components communicate as shown in Figure1
(where YAMG is an internal graph format of the abstract machine).

Figure 1: An overview of the GP system

We describe GP by means of an example. Consider the programminimum spanning tree

1 / 13 Volume X (2008)

The GP Programming System

in Figure2. This program calculates a minimum spanning tree for its input graph.1 The program

main = pickNode;(addEdge;minEdge!;addNode)!.

pickNode(x:int)

x

1

=⇒ x 0

1

addEdge(x,a,e:int)

x 0

1

a

2

e
=⇒ x 0

1

a

2

e 0

minEdge(x,y,e,f,a,b:int)

x 0 a

y 0 b

3 4

1 2

f

e 0

=⇒

x 0 a

y 0 b

3 4

1 2

f 0

e

all matches where f < e

addNode(x,a,e:int)

x 0

1

a

2

e 0
=⇒ x 0

1

a 0

2

e 0

Figure 2: GP programminimum spanning tree

consists of four rule-schema declarations and the main command sequence following the key
word main. Given an input graph whose nodes and edges are labelled withintegers, the pro-
gram first uses the rule schemapickNode to choose any node and replace its labelx with x 0.
The underscore operator allows to add atag to a label, where in general a tagged label consists
of a sequence of expressions joined by underscores. (Sequences of expressions are just ordinary
labels, allowing GP’s underlying theory to be based on a standard variant of the double-pushout
approach rather than on some complicated model of attributed graph transformation.) This pro-
gram uses the tag 0 to mark the nodes of a spanning tree. After the initial node has been marked,
the iteration operator ’!’ executes the subprogram(addEdge;minEdge!;addNode)as long
as possible. The subprogram first picks any edge between a marked node and an unmarked node.
Then the loopminEdge! repeatedly swaps this edge with an edge having a smaller label, where

1 A spanning tree for a directed graphG is a subgraphS of G such that the undirected graph underlyingS is a
spanning tree for the undirected graph underlyingG.

Proc. GT-VMT 2008 2 / 13

ECEASST

the latter is checked by the conditionwhere f < e. The flagall matches allows this rule
schema to be matched non-injectively whereas the default inGP is injective matching. After the
minimum edge between the current tree nodes and any unmarkednode has been determined, the
unmarked node of this edge is added to the spanning tree by therule schemaaddNode. It is not
difficult to see that upon termination of the outer loop, the marked nodes and edges constitute
a minimum spanning tree of the input graph. (The rule schemata addEdge, minEdge and
addNode are actually sets of rule schemata which are obtained from those depicted by revers-
ing edges in all possible ways:addEdge andaddNode consist of two rule schemata while
minEdge contains four schemata. For readability, we have omitted these rule schemata in Fig-
ure2.) In general, a graph can have several minimum spanning trees and the program in Figure
2 allows to compute all of them.

A leitmotiv for GP’s design has been syntactic and semantic simplicity, see also [PS08]. There
is only one other core construct besides those occurring in the minimum spanning tree program:
a conditional statement of the formif C then P else Q (whereC, P andQ are programs).
Our programming experience so far suggests that these few constructs are sufficient and allow
succinct solutions to problems. It is possible though to simulate more elaborate control mecha-
nisms. Consider, for example, a conditional loop of the formwhileC do P which executes its
bodyP as long as the programC succeeds. An equivalent GP program is (ifC then P else
fail)!; ifC then fail (wherefail is an always failing program such as the empty set of
rules). As another example, the choice to apply a ruler either once or not at all can be simulated
by the rule set{r, /0⇒ /0} (where /0⇒ /0 has the empty graph on both sides).

The rest of this paper is organized as follows. The next section briefly adresses the graphical
user interface of the GP system, Section3 introduces the York abstract machine and Section4
discusses the GP compiler. Section5 compares the performance of the GP system with other
graph-transformation environments. In Section6, we conclude and give some topics for future
work.

2 Graphical Editor

The GP graphical editing environment is a Java application which allows graph and program
creation, loading, editing and saving, and program execution on a given graph. The outputs of
executions are then available as inputs to other programs. Figure 3 shows a screenshot of the
graphical editor with the ruleminEdge of Figure2 being edited. The editor visualises graphs
using the prefuse data visualisation library [HCL05], which permits graph layout and editing.
The main graph drawing algorithm used is a force-directed layout. Figure5 shows a graph
drawn by this algorithm.

3 The York Abstract Machine

The York abstract machine (YAM) is more fully described in [MP06]. Here, we give an overview
highlighting the areas which have changed in the meantime.

The YAM is a backtracking graph-transformation machine which executes bytecode for low-
level graph operations. It can handle nondeterministic programs and is in parts similar in de-

3 / 13 Volume X (2008)

The GP Programming System

Figure 3: A screenshot of the graphical editor

sign to Warren’s abstract machine for Prolog [AK91]: it manages GP’s nondeterminism using a
mixed stack of choice points and environment frames. The implementation of backtracking in
PROGRES [Zün92] takes a WAM-like approach too, although it uses the host language’s call
stack rather than explicit data structures. The YAM also manages the current host graph and a
(typically) small data stack.

Figure4 shows an example state of the choice point and environment frame stack. Choice
points consist of a record of the number of graph changes at their creation time, a program
position to jump to if failure occurs when the choice point isthe highest on the stack, and pointers
to the previous choice and containing environment. The number of graph changes is recorded so
that, when backtracking, the graph changes can be undone: using the stack of graph changes, the
graph as it was at the choice point is recreated. Environmentframes have a set of registers to store
label elements or graph element identities, and an associated function and program position in
the bytecode. They also show which environment and program position to return to. The number
of registers each frame has is determined by the bytecode — itis fixed at compile time.

The current host graph is stored in a complex data structure,making use of the heavily opti-
mised Judy data structures [Siv02]. The structure is designed in such a way that the graph can be
interrogated easily and very quickly, at the cost of slightly slower graph updates. Typical queries
to the graph structure are “edges whose target node is noden” or “nodes whose label has the
value 1 in position 1”. Each element (node or edge) in the graph is labelled with a list of values,
each of which is of type integer or string. The YAM bytecode allows any query over the length
of the list or the type or value of the list elements, such as “all nodes with a label of size two”, or
“all edges with an integer in the second position.”

The machine as presented in [MP06] handled nondeterminism internally. At the bytecode

Proc. GT-VMT 2008 4 / 13

ECEASST

Figure 4: An example choice/environment stack

level, the instructions effectively returned a correct result: if a choice led to a failure (and such
was a wrong choice), then the machine would trigger backtracking and retry the choice until a
correct result was obtained. Now, however, the machine simply provides explicit instructions
for handling nondeterminism such asOnFail2, UpdateFail3 andAssert4. This change
was made to unite the failing and non-failing versions of thegraph queries, and to allow more
expressiveness at the bytecode level.

Using these instructions, the compiler constructs helper functions to implement backtracking.
Nondeterministic choice between a set of graph rules is handled by trying them in textual order
until one succeeds. Before each is tried, the failure behaviour is configured to try the next.
Nondeterministic choice between graph-element candidates for a match is handled by choosing
and saving the first element, and on failure, using the saved previous answer to return (and save)
the next element.

Nodes and edges are identified in the structure by integers, and the graph structure contains
many ordered lists of such integers. This allows complex conjunctive queries to be performed
by intersecting ordered lists of integers. For example, in finding the left-hand side of the rule
addEdge in the program of Figure2, having found thex 0 node, a list of potential edges is
created by intersecting the list of all edges leaving this node, the list of all edges which havee
as their first label, and the list of all edges having a label sequence of length one. The code then
creates an environment to store the previous answer returned, and uses theNext instruction to
give the first answer in the intersection which is numerically greater than the previous answer.
It saves this answer to the stack and returns it. If a failure occurs whilst this choice point is on
top of the stack, the code will return the next answer. When there are no more answers it will
propagate the failure to a previous choice point.

2 OnFail pops a code location and creates a new choice point which willjump to that code location on failure.
3 UpdateFail pops a choice point pointer and a code location and changes the choice point so that it now goes
to the new location on failure.
4 Assert pops the top of stack and fails if it is zero.

5 / 13 Volume X (2008)

The GP Programming System

Because the underlying data structure stores the node and edge references in the lists as ordered
lists of integers, finding the next element in the intersection is very fast. An intersection can be
done in timeO(ln), wherel is the length of the shortest list in the intersection andn is the number
of lists being intersected. Note that the entire intersection is not generated in one go, the elements
of the intersection are found one at a time, as needed.

4 Compiler

The GP compiler converts textual GP programs into YAM bytecode. It does this by translating
each individual rule or macro into a sequence of instructions, and composing these sequences
using the YAM function calls.

4.1 Generating a searchplan for graph matching

Searchplan generation is a common technique for implementing graph matching [GBG+06,
HVV07, Zün96]. The GP compiler decomposes graph rules into a static searchplan of node
lookups, edge lookups (find an edge whose source and target have not been found yet) and ex-
tensions (find an edge whose source or target has been found).The choice and order of these
search operations is determined using the following priorities, always preferring elements with
value labels over those with variable labels:

1. Check parts ofwhere clauses whose variables have all been bound, that is, all label
variables have been instantiated, and all nodes or edges referred to have been found.

2. Find nodes on the ends of edges which have been found.

3. Find edges where both the start and the end node have been found.

4. Find edges where either the start or the end node has been found.

5. Find nodes where there is a negative edge condition of the formnot edge(v,w) at the
top level of thewhere clause5 and eitherv or w has been found.

6. Find nodes.

The nondeterminism in this list of priorities increases: where clause checks and finding nodes of
known edges are deterministic operations, finding unrestricted nodes is highly nondeterministic.
There will be many different plans which satisfy these priorities, however since the compiler
generates static plans (that is, the host graph is not interrogated), there is no more information to
use in the generation. The choice between possible plans is made using an ordering taken from
the programmer: elements mentioned first in the textual input program will be found first. For
example, the first step in a searchplan is to find the first (labelled) node mentioned.

Both GrGen [GBG+06] and Fujaba [NNZ00] also make extensive use of searchplans. Gr-
Gen.NET [BG07] uses online searchplan generation, so that the searchplans can be recalculated
during execution. This improves the quality of the generated searchplan significantly.

5 That is, the negative edge condition is one of the conjunctsC1, ...,Cn in whereC1 and . . .andCn.

Proc. GT-VMT 2008 6 / 13

ECEASST

Once a match has been found, and thewhere clause has passed, the remainder of the code
for the graph rule handles the changes to be made to the graph.The compiler determines the
changes and orders them as follows: deleted edges, deleted nodes, relabelled nodes or edges,
added nodes, added edges. This order ensures that no nodes are deleted before their incident
edges, and no edges are created before their incident nodes.

4.2 Compiling GP commands

With the individual graph rules compiled, they can be composed into a complete YAM program.
There are several ways of joining subprograms in GP: sequential composition, macro calling,
if-then-else branching, and as-long-as-possible iteration. The compilation of a sequential com-
positionP;Q is trivial: the bytecodes forP andQ are concatenated. Macro calling is achieved
by using theCall or TailCall6 bytecode instructions.

As-long-as-possible iteration,P!, is implemented as follows:

1. Create new failure behaviour to succeed (continue) on failure.

2. ExecuteP once.

3. Change failure from instruction 1 from succeed to fail. Having a failure behaviour which
simply fails is the same as having no failure behaviour at all; however, failure behaviours
cannot be removed since they may be referenced elsewhere in the stack.

4. Go to instruction 1.

The failure behaviour must be altered in step 3 to maintain the semantics and not an any-number-
of-times semantics.

As rule sets (apply one rule from a set) are compiled, an ordering is imposed upon them. The
compiled bytecode tries the first rule, and on failure will try the next rule until the end of the set
is reached. If none of the rules successfully applied, then the whole rule set fails. The ordering
imposed is the order in which the rules appear in the program text.

GP’s branching constructifCthenPelseQ first executes the subprogramC on the input
graph. If this yields a result, programP is executedon the input graph. Otherwise, if all execu-
tions ofC end in failure, programQ is executed on the input graph. The construct is compiled in
the following way:

1. Create failure behaviour to go to step 5 on failure.

2. Execute the conditionC.

3. ClearFail the failure point created in step 1, that is, undo the graph changes, forget
the choices back to that point and remove that failure frame,but leave the program pointer
unchanged.

4. Execute the then-partP and succeed.

5. Execute the else-partQ and succeed.

6 TailCall is equivalent to call-then-return, but is actually implemented as return-then-call because this saves
space on the call stack.

7 / 13 Volume X (2008)

The GP Programming System

5 Performance

In this section we compare the performance of the GP system with the performance of similar
environments. We focus on a simple problem which has been implemented in different graph
programming systems in the context of the AGTIVE 2007 tool contest [TBB+08]. The task is to
generate a graph of thenth generation of the Sierpinski triangle, producing one generation at a
time. A Sierpinski triangle is a triangle split into 4 subtriangles (made by joining the midpoints
of the 3 edges), where the 3 subtriangles containing one of the original vertices are themselves
Sierpinski triangles. Sierpinski triangles are represented as graphs using nodes as vertices of
triangles and edges as edges of triangles. As a true Sierpinski triangle has infinite detail, we
must generate an approximation. We say that thenth generation of a Sierpinski triangle is one
which has a depth ofn. The 0th generation Sierpinski triangle is a simple triangle. Figure5
shows the 4th generation Sierpinski triangle.

Figure 5: A 4th generation Sierpinski triangle

Proc. GT-VMT 2008 8 / 13

ECEASST

5.1 Generating Sierpinski triangles with GP

The GP programsierpinski is presented in Figure6. It expects as input a graph consisting
of a single node labelled with the generation number of the Sierpinski triangle to be produced.
The rule schemainit creates the initial Sierpinski triangle (generation 0) andturns the input
node into a unique “control node” whose label is of the formx y. The underscore operator is
used here to hold the required generation numberx and the current generation numbery in a
single node.

After init has been applied, the nested loop(inc; expand!)! is executed. In each
iteration of the outer loop, the rule schemainc increases the current generation number if it is
smaller than the required number. The latter is checked by the conditionwhere x > y. If the test
is successful, the inner loopexpand! performs a Sierpinski step on each triangle whose root7

is labelled with the current generation number: the triangle is replaced by four triangles such that
the roots of the three outer triangles are labelled with the next higher generation number. The test
x > y fails when the required generation number has been reached.In this case the application
of inc fails and, as a consequence, the outer loop terminates and returns the current graph. It
is not difficult to see that the resulting graph is indeed the Sierpinski triangle of the required
generation.

5.2 Comparison with other systems

In Figure7 we present the execution times for the GP system and some other graph transforma-
tion systems that participated in the Sierpinski tool contest. The times for GP were obtained on a
PC with an Intel Pentium 4 processor with a clock rate of 2.8GHz and 512MB of main memory.
The times for the other systems were obtained on comparable machines. Our figure includes
only a subset of the tools described in [TBB+08]. We have omitted tools that are tailored for
parallel rule applications in specialised areas but cannotbe considered as general-purpose graph
transformation tools.

As Figure7 demonstrates, GP is faster than five other systems and is beaten only by Gr-
Gen.NET and Fujaba. GrGen.NET requires the programmer to specify types of node and edges
(often hierarchical types with multiple inheritance). Theinformation gained from these types
gives more information to the graph matching algorithm and also allows better compilations.
GP has very little typing, freeing the programmer from specifying these overarching types. This
allows shorter, more succinct programs at the cost of some speed. However, as demonstrated by
this benchmark, the speed lost is not too great.

5.3 Non-deterministic programs

Other graph programming systems do not fully exploit the non-deterministic nature of graph
transformation rules. The semantics of GP programs on inputgraphs areall possible output
graphs, and this is taken seriously by the implementation inthat it provides users with the option
to generate several or even all possible results. This mechanism is complete for terminating

7 Theroot of a triangle is the unique node (if it exists) from which a 0-edge and a 1-edge is outgoing. Note that the
inner triangle on the right-hand side ofexpand does not have a root, hence it will never be expanded.

9 / 13 Volume X (2008)

The GP Programming System

main = init;(inc;expand!)!.

init(x:int)

x

1

=⇒ 1

x 0 1

0 0

0 1

2

inc(x,y:int)

x y

1

=⇒ x y+1

1

where x > y

expand(x,y,u,v:int)

1 2

3 4

x y y

u v

0 1

2

=⇒

1 2

3 4

x y y+1

u v

y+1 y+1

0

0

0 0

1

1 1
2

2 2

Figure 6: The Programsierpinski

programs. In contrast, AGG [ERT99] makes its nondeterministic choices randomly, with no
backtracking. Similarly, Fujaba has no backtracking. It seems that PROGRES [SWZ99] is the
only other graph transformation language in use that provides backtracking.

The Sierpinski example presented above is a deterministic problem. That is, the program
sierpinski computes a function where each input graph produces a singleoutput graph.
Although in the GP implementation there is a choice of which order to convert subtriangles
to the next generation, since they will all get done eventually this is a confluentprogram in
that all output graphs are isomorphic. This is not always thecase. For example, the program
minimum spanning tree presented in the Introduction is non-confluent: for an inputgraph,
there is not necessarily a unique minimum spanning tree. Theimplementation of GP respects
the semantics, and allows computation of all possible minimum spanning trees. The use of

Proc. GT-VMT 2008 10 / 13

ECEASST

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 2 4 6 8 10 12 14 16 18

M
ill

is
ec

on
ds

Generation

GP
AGG

Fujaba
GReAT

GrGen.NET
Groove

MOMENT2
Tiger EMF

Viatra
VMTS

Figure 7: Execution times for the Sierpinski benchmark

this non-determinism is not limited to finding multiple answers. It is possible, and common, to
write programs which rely on the backtracking behaviour to filter results, or make correct non-
deterministic guesses. Most other graph transformation systems do not allow such programs.
Neither AGG nor Fujaba allow backtracking over graph rules.The GrGen.NET API supplies
tools necessary to perform backtracking (such as presenting all possible matches of a rule), but
the GrShell example environment [BG07] does not allow backtracking in this manner.

Using nondeterminism to this extent is sometimes problematic. In the Sierpinski example, the
order in which the matches of theexpand rule are applied makes no difference, yet if later in the
program there was a failure, the backtracking mechanism would try all possible different orders
of the matches. It is an item of future work to develop analysis techniques to detect and disable
the backtracking in such cases (see also the remarks in the next section). Since no backtracking
is required in the Sierpinski example, our solution had the backtracking mechanism of the YAM
disabled.

6 Conclusion and Future Work

The GP implementation matches faithfully GP’s semantics and allows to compute all results of
a (terminating) program. GP is a small clean language, with enough structure so that it is us-
able, but little enough that the semantics is understandable and useable for arguments and proofs
[PS08]. The system is reasonably fast; slow execution is usually caused by a vast nondetermin-
istic search space which can often be avoided by programmingcarefully.

The YAM can give more than one answer, or all answers. It provides a clearly defined sep-
aration between runtime and compile time actions. Whilst the YAM has been designed as part

11 / 13 Volume X (2008)

The GP Programming System

of the GP system, it is by no means restricted to it; other graph systems and semantics could be
realised using the bytecode provided by the YAM.

In the current implementation of GP, only one match of one rule is executed at a time. Other
graph programming systems can execute multiple rules or multiple matches in parallel, which
can give large speed gains in certain situations. The GP system does not currently do this because
it involves a considerable amount of checking that all the matches can be successfully executed
without interfering with each other, and would make the bookkeeping for backtracking very
complex.

The GP system generates static searchplans at compile time,so no host-graph interrogation
is possible. With runtime searchplan generation (as in GrGen.NET [GBG+06]), it is possible to
always match the rarest elements first, which reduces the search space to find a match.

As GP programs get larger, it may be useful to include optional conservative static type check-
ing. This may be implemented as graph metamodels or more complex typing systems such as
the GRS types of [BPR04]. By analysing programs, it will sometimes be possible to guarantee
that certain graph structures do or do not occur.

In many cases, nondeterministic (sub)programs are confluent: they cannot possibly fail, and all
solutions are isomorphic. Using static analysis techniques such as critical-pair analysis [Plu05],
it will sometimes be possible to detect these situations. This is useful information in itself,
but can also be used to speed up the implementation, since backtracking would not be required
through a confluent section of a program.

Bibliography

[AK91] H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press,
1991.

[BG07] J. Blomer, R. Geiß. The GrGen.NET User Manual. Technical report 2007-5, Univer-
sität Karlsruhe, IPD Goos, July 2007.
http://www.info.uni-karlsruhe.de/papers/TR2007 5.pdf

[BPR04] A. Bakewell, D. Plump, C. Runciman. Specifying Pointer Structures by Graph Re-
duction. InApplications of Graph Transformations With Industrial Relevance (AG-
TIVE 2003), Revised Selected and Invited Papers. Lecture Notes in Computer Sci-
ence 3062, pp. 30–44. Springer-Verlag, 2004.

[ERT99] C. Ermel, M. Rudolf, G. Taentzer. The AGG Approach: Language and Environ-
ment. In Ehrig et al. (eds.),Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 2, chapter 14, pp. 551–603. World Scientific, 1999.

[GBG+06] R. Geiß, G. V. Batz, D. Grund, S. Hack, A. M. Szalkowski. GrGen: A Fast SPO-
Based Graph Rewriting Tool. InProc. Graph Transformations (ICGT 2006). Lecture
Notes in Computer Science 4178, pp. 383–397. Springer-Verlag, 2006.

[HCL05] J. Heer, S. K. Card, J. A. Landay. Prefuse: A Toolkit for Interactive Information Vi-
sualization. InProc. SIGCHI Conference on Human Factors in Computing Systems
(CHI 2005). Pp. 421–430. ACM Press, 2005.

Proc. GT-VMT 2008 12 / 13

http://www.info.uni-karlsruhe.de/papers/TR_2007_5.pdf

ECEASST

[HP01] A. Habel, D. Plump. Computational Completeness of Programming Languages
Based on Graph Transformation. InProc. Foundations of Software Science
and Computation Structures (FOSSACS 2001). Lecture Notes in Computer Sci-
ence 2030, pp. 230–245. Springer-Verlag, 2001.

[HVV07] Á. Hórvath, G. Varró, D. Varró. Generic Search Plans for Matching Advanced Graph
Patterns. InProc. Workshop on Graph Transformation and Visual ModelingTech-
niques (GT-VMT 2007). Electronic Communications of the EASST 6. 2007.

[MP06] G. Manning, D. Plump. The York Abstract Machine. InProc. Graph Transformation
and Visual Modelling Techniques (GT-VMT 2006). Electronic Notes in Theoretical
Computer Science. Elsevier, 2006. To appear.

[NNZ00] U. Nickel, J. Niere, A. Zündorf. The FUJABA Environment. InProc. Software En-
gineering (ICSE 2000). Pp. 742–745. ACM Press, 2000.

[Plu05] D. Plump. Confluence of Graph Transformation Revisited. In Middeldorp et al.
(eds.),Processes, Terms and Cycles: Steps on the Road to Infinity: Essays Dedi-
cated to Jan Willem Klop on the Occasion of His 60th Birthday. Lecture Notes in
Computer Science 3838, pp. 280–308. Springer-Verlag, 2005.

[PS04] D. Plump, S. Steinert. Towards Graph Programs for Graph Algorithms. InProc.
International Conference on Graph Transformation (ICGT 2004). Lecture Notes in
Computer Science 3256, pp. 128–143. Springer-Verlag, 2004.

[PS08] D. Plump, S. Steinert. A Structural Operational Semantics for GP. 2008. In prepara-
tion.

[Siv02] A. Siverstein. Judy IV Shop Manual. 2002.http://judy.sourceforge.net.

[SWZ99] A. Schürr, A. Winter, A. Zündorf. The PROGRES Approach: Language and Envi-
ronment. In Ehrig et al. (eds.),Handbook of Graph Grammars and Computing by
Graph Transformation. Volume 2, chapter 13, pp. 487–550. World Scientific, 1999.

[TBB+08] G. Taentzer, E. Biermann, D. Bisztray, B. Bohnet, I. Boneva, A. Boronat, L. Geiger,
R. Geiß,Á. Horvath, O. Kniemeyer, T. Mens, B. Ness, D. Plump, T. Vajk.Generation
of Sierpinski Triangles: A Case Study for Graph Transformation Tools. InApplica-
tions of Graph Transformation with Industrial Relevance (AGTIVE 2007), Revised
Selected and Invited Papers. Lecture Notes in Computer Science. Springer-Verlag,
2008. To appear.

[Zün92] A. Zündorf. Implementation of the imperative/rule-based language PROGRES.
Technical report 92-38, Fachgruppe Informatik, RWTH Aachen, 1992.
http://citeseer.ist.psu.edu/albert92implementation.html

[Zün96] A. Zündorf. Graph Pattern Matching in PROGRES. InProc. Graph Grammars and
Their Application to Computer Science. Lecture Notes in Computer Science 1073,
pp. 454–468. Springer-Verlag, 1996.

13 / 13 Volume X (2008)

http://judy.sourceforge.net
http://citeseer.ist.psu.edu/albert92implementation.html

	Introduction
	Graphical Editor
	The York Abstract Machine
	Compiler
	Generating a searchplan for graph matching
	Compiling GP commands

	Performance
	Generating Sierpinski triangles with GP
	Comparison with other systems
	Non-deterministic programs

	Conclusion and Future Work

