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Preface

GT-VMT 2008 is the seventh workshop of a series that serves as a forum for all researchers
and practitioners interested in the use of graph transformation-based notations, techniques and
tools for the specification, modelling, validation, manipulation and verification of complex sys-
tems. Due to the variety of languages and methods used in different domains, the aim of the
workshop is to promote engineering approaches that starting from high-level specifications and
robust formalizations allow for the design and the implementation of such visual modeling tech-
niques, hence providing effective tool support at the semantic level (e.g., for model analysis,
transformation, and consistency management). The workshop gathers communities working on
popular visual modelling notations like UML, Petri nets, Graph Transformation and Business
Process/Workflow Models.

This year’s workshop has an additional focus on visualization, simulation, and animation of
models as means of providing an intuitive representation of both their static semantics and for the
validation of model behavior. For this purpose, two invited talks have been scheduled, one from
industry and the other from academia. The first invited speaker is Juha-Pekka Tolvanen, from
MetaCase (Finland), and his presentation is entitled “Domain-Specific Modelling in Practice”.
The second invited speaker is Hans Vangheluwe from the Modelling, Simulation and Design Lab
(McGill University of Montreal in Canada), whose presentation will be on the subject “Founda-
tions of Modelling and Simulation of Complex Systems”.

Regarding scientific contributions, we had 41 submissions, from which 24 were accepted. The
topics of the papers range a wide spectrum, including model integration, verification of model
transformations, object oriented notations, visual language processing and grid computing. The
accepted papers balance theoretical and applied concepts, including tool issues. The workshop
program has been organized in six technical sessions, in two days:

Saturday, March 29, 2008 Sunday, March 30, 2008

Model Transformations and Queries Dynamic Reconfiguration
Distribution and Semantics Verification and Programming
Analysis and Visualization Case Studies and Tools

We would like to thank the members of the Program Committee and the secondary reviewers
for their excellent work in selecting the papers of this workshop, they are listed below. We would
also like to thank the organizing committee of ETAPS for their constant support.

February 2008.

Claudia Ermel, Reiko Heckel, Juan de Lara.

PC chairs of GT-VMT 2008.
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Domain-Specific Modeling in Practice

Juha-Pekka Tolvanen1

MetaCase
Ylistönmäentie 31

FI-40500 Jyväskylä
Finland

1jpt@metacase.com

Abstract

Languages and transformations have played a significant role in raising the level of abstraction
for software development. A key to the success has been that work in the higher level of abstrac-
tion is automatically transformed to the lower level. Today, Domain-Specific Modeling (DSM)
languages provide a viable solution for continuing to raise the abstraction level beyond coding,
making development faster and easier. With DSM, the models are composed of elements repre-
senting concepts that are part of the domain world, not the code world. In many cases, full, final
product code can be automatically generated from these high-level specifications using domain-
specific code generators. This automation is possible because both the language and generators
are domain-specific rather than general purpose: they are narrowed to address specific needs,
often those of a single company and domain.

In this talk, we describe DSM and how it differs from other modeling and code generation
approaches: a level of abstraction higher than in code, closer fit with the problem domain, and
the transference of control from tool vendors to company expert developers. In particular, we
describe the various roles transformations have between language specifications (metamodels),
system/software specifications (models), and the final application code. Throughout the talk, we
inspect DSM examples from industry to demonstrate DSM practices, and to answer questions
companies adopting transformations face. This leads to suggestions for possible future research
in this area.

1 / 1 Volume X (2008)
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From Model Transformation to Model Integration based on the
Algebraic Approach to Triple Graph Grammars

Hartmut Ehrig1 , Karsten Ehrig2 and Frank Hermann1

1 [ehrig, frank]@cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany

2 karsten@mcs.le.ac.uk
Department of Computer Science

University of Leicester, United Kingdom

Abstract: Success and efficiency of software and system design fundamentally
relies on its models. The more they are based on formal methods the more they can
be automatically transformed to execution models and finally to implementation
code. This paper presents model transformation and model integration as specific
problem within bidirectional model transformation, which has shown to support
various purposes, such as analysis, optimization, and code generation.

The main purpose of model integration is to establish correspondence between var-
ious models, especially between source and target models. From the analysis point
of view, model integration supports correctness checks of syntactical dependencies
between different views and models.

The overall concept is based on the algebraic approach to triple graph grammars,
which are widely used for model transformation. The main result shows the close
relationship between model transformation and model integration. For each model
transformation sequence there is a unique model integration sequence and vice
versa. This is demonstrated by a quasi-standard example for model transformation
between class models and relational data base models.

Keywords: model transformation, model integration, syntactical correctness

1 Introduction

Whenever one can expect benefits out of different modeling languages for the same specific task
there is a substantial motivation of combining at least two of the them. For this purpose it is
useful to have model transformations between these modeling languages together with suitable
analysis and verification techniques. In cases of bidirectional model transformation the support
for the modeling process increases, for instance, if results of analysis can be translated backwards
to mark the original source of deficiency or defect, respectively.

In [EEE+07] Ehrig et al. showed how to analyze bi-directional model transformations based
on triple graph grammars [Sch94, KS06] with respect to information preservation, which is es-
pecially important to ensure the benefits of other languages for all interesting parts of models.

1 / 14 Volume X (2008)
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Model Integration

Triple graph grammars are based on triple rules, which allow to generate integrated models G
consisting of a source model GS, a target model GT and a connection model GC together with
correspondences from GC to GS and GT . Altogether G is a triple graph G = (GS← GC→ GT ).
From each triple rule tr we are able to derive a source rule trS and a forward rule trF , such that
the source rules are generating source models GS and the forward rules allow to transform a
source model GS into its corresponding target model GT leading to a model transformation from
source to target models. On the other hand we can also derive from each triple rule tr a target
rule trT and a backward rule trB, such that the target rules are generating target models GT and
backward rules transform target models to source models. The relationship between these for-
ward and backward model transformation sequences was analyzed already in [EEE+07] based
on a canonical decomposition and composition result for triple transformations.

In this paper we study the model integration problem: Given a source model GS and a target
model GT we want to construct a corresponding integrated model G = (GS ← GC → GT ). For
this purpose, we derive from each triple rule tr an integration rule trI , such that the integration
rules allow to define a model integration sequence from (GS,GT ) to G. Of course, not each pair
(GS,GT ) allows to construct such a model integration sequence. In our main result we charac-
terize existence and construction of model integration sequences sequences from (GS,GT ) to G
by model transformation sequences from GS to GT . This main result is based on the canoni-
cal decomposition result mentioned above [EEE+07] and a new decomposition result of triple
transformation sequences into source-target- and model integration sequences.

In Section 2 we review triple rules and triple graph grammars as introduced in [Sch94] and
present as example the triple rules for model transformation and integration between class models
and relational data base models. Model transformations based on our paper [EEE+07] are intro-
duced in Section 3, where we show in addition syntactical correctness of model transformation.
The main new part of this paper is model integration presented in Section 4 including the main
results mentioned above and applied to our example. Related and future work are discussed in
sections 5 and 6, respectively.

2 Review of Triple Rules and Triple Graph Grammars

Triple graph transformation [Sch94] has been shown to be a promising approach to consistently
co-develop two related structures. Bidirectional model transformation can be defined using mod-
els consisting of a pair of graphs which are connected via an intermediate correspondence graph
together with its embeddings into the source and target graph. In [KS06], Königs and Schürr
formalize the basic concepts of triple graph grammars in a set-theoretical way, which was gen-
eralized and extended by Ehrig et. el. in [EEE+07] to typed, attributed graphs. In this sec-
tion, we shortly review main constructions and relevant results for model integration as given in
[EEE+07].

Definition 1 (Triple Graph and Triple Graph Morphism) Three graphs SG, CG, and T G, called
source, connection, and target graphs, together with two graph morphisms sG : CG→ SG and
tG : CG→ T G form a triple graph G = (SG

sG←CG
tG→ T G). G is called empty, if SG, CG, and

T G are empty graphs.

Proc. GT-VMT 2008 2 / 14
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A triple graph morphism m = (s,c, t) : G→ H between two triple graphs G = (SG
sG←CG

tG→
T G) and H = (SH sH←CH tH→ T H) consists of three graph morphisms s : SG→ SH, c : CG→CH
and t : T G→ T H such that s◦ sG = sH ◦c and t ◦ tG = tH ◦c. It is injective, if morphisms s, c and
t are injective.

Triple graphs G are typed over a triple graph TG = (TGS← TGC→ TGT ) by a triple graph
morphism tG : G→ TG. Type graph of the example is given in Fig. 1 showing the structure of
class diagrams in source component and relational databases in target component. Where classes
are connected via associations the corresponding elements in databases are foreign keys. Though,
the complete structure of correspondence elements between both types of models is defined via
the connection component of T G. Throughout the example, originating from [EEE+07], ele-
ments are arranged left, center, and right according to the component types source, correspon-
dence and target. Morphisms starting at a connection part are given by dashed arrow lines.

Class 

name: String

Table

name: String

src

ClassTableRel

Association

name: String

PrimitiveDataType

name: String

FKey
AssocFKeyRel

AttrColRel Column

type: String

name: String

cols

fkeys
referencesdest

fcols

pkey

Attribute

is_primary: boolean

name: String

attrs

Source Component Connection Component Target Component

type

parent

type

Figure 1: Triple type graph for CD2RDBM model transformation
A triple rule is used to build up source and target graphs as well as their connection graph, i.e.

to build up triple graphs. Structure filtering which deletes parts of triple graphs, is performed by
projection operations only, i.e. structure deletion is not done by rule applications. Thus, we can
concentrate our investigations on non-deleting triple rules without any restriction.

Definition 2 (Triple Rule tr and Triple Transformation Step)
A triple rule tr consists of triple graphs L and R, called
left-hand and right-hand sides, and an injective triple
graph morphism tr = (s,c, t) : L→ R.
Given a triple rule tr = (s,c, t) : L→ R, a triple graph
G and a triple graph morphism m = (sm,cm, tm) : L→
G, called triple match m, a triple graph transforma-
tion step (TGT-step)G =

tr,m
==⇒ H from G to a triple graph

H is given by three pushouts (SH,s′,sn), (CH,c′,cn)
and (T H, t ′, tn) in category Graph with induced

L = (SL
tr �� s ��

CL
sLoo

c
��

tL // T L)
t��

R = (SR CRsR
oo

tR
// T R)

SL

��

sm yyrrr CLoo //

��

cm ~~}}
T L

��

tm ||yy
G = (SG

tr
�� s′ ��

CGoo //

c′ ��

T G)

t ′ ��
SR

snyy
CRoo //
cn~~

T R
tn||yy

H = (SH CHsH
oo

tH
// T H)

morphisms sH : CH→ SH and tH : CH→ T H. Morphism n = (sn,cn, tn) is called comatch.

Moreover, we obtain a triple graph morphism d : G→H with d = (s′,c′, t ′) called transforma-
tion morphism. A sequence of triple graph transformation steps is called triple (graph) transfor-
mation sequence, short: TGT-sequence. Furthermore, a triple graph grammar TGG = (S,T R)
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consists of a triple start graph S and a set T R of triple rules. Given a triple rule tr we refer by
L(tr) to its left and by R(tr) to its right hand side.

Remark 1 (gluing construction) Each of the pushout objects SH,CH,T H in Def. 2 can be
constructed as a gluing construction, e.g. SH = SG +SL SR, where the S-components SG of G
and SR of R are glued together via SL.

:Class {new}

name = n

:Table {new}

name = n

:ClassTableRel 

{new}

:Class :Table 

:attrs {new}
:ClassTableRel 

:Attribute {new}

name = an

primary = true

:PrimitiveDataType {new}

name = t 

:Column {new}

type = t

name = an:AttrColRel 

{new}

:cols {new}

:type {new}

:Class :Table 

:attrs 

:ClassTableRel 

:Attribute 

is_primary = true :Column
:AttrColRel 

:cols

:pkey {new}

:Class :Table 

:parent {new}

:ClassTableRel 

:ClassTableRel {new} 
:Class {new} 

name=n

Class2Table(n:String)

SetKey()

PrimaryAttribute2Column(an:String, p:Boolean, t:String) Subclass2Table(n:String)

Figure 2: TGT-rules for CD2RDBM model transformation

:Class :Table 
:ClassTableRel {new}

:Association {new}

name = an

:src {new}

:Class 

:dest {new}

:FKey {new}

:Table 

:AssocFKeyRel {new}

:ClassTableRel

:Column {new}

type = t

name = an+“_“+cn

:cols {new}

:fcols {new}

:fkeys {new}

:references {new}
:Column 

type = t

name = cn
:pkey

Figure 3: Rule Association2ForeignKey(an : String) for CD2RDBM model transformation

Examples for triple rules are given in Fig. 2 and Fig. 3 in short notation. Left and right hand
side of a rule are depicted in one triple graph. Elements, which are created by the rule, are labeled
with ”new” and all other elements are preserved, meaning they are included in the left and right
hand side. Rule ”Class2Table” synchronously creates a class in a class diagram with its corre-
sponding table in the relational database. Accordingly the other rules create parts in all com-
ponents. For rule ”PrimaryAttribute2Column” there is an analogous rule ”Attribute2Column”
for translation of non primary attributes, which does not add the edge ”:pkey” in the database
component.

3 Model transformation

The triple rules T R are defining the language VL = {G | /0⇒∗ G via TR} of triple graphs. As
shown already in [Sch94] we can derive from each triple rule tr = L→ R the following source
and forward rule. Forward rules are used for model transformations from a model of a source
language to models of the target language. Source rules are important for analyzing properties
of forward transformations such as information preservation, presented in [EEE+07].
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L = (SL
tr �� s ��

CL
sLoo

c
��

tL // T L)
t��

R = (SR CRsR
oo

tR
// T R)

triple rule tr

(SR
id ��

CL
s◦sLoo

c
��

tL // T L)
t��

(SR CR
sRoo tR // T R)

forward rule trF

(SL
s ��

/0oo

��

// /0)

��
(SR /0oo // /0)

source rule trS

For simplicity of notation we sometimes identify source rule trS with SL−s→ SR and target rule
trT with TL−t→ TR.

Theses rules can be used to define a model transformation from source graphs to target graphs.
Vice versa using backward rules - which are dual to forward rules - it is also possible to define
backward transformations from target to source graphs and altogether bidirectional model trans-
formations. In [EEE+07] we have shown that there is an equivalence between corresponding
forward and backward TGT sequences. This equivalence is based on the canonical decomposi-
tion and composition result (Thm. 1) and its dual version for backward transformations.

Definition 3 (Match Consistency) Let tr∗S and tr∗F be sequences of source rules triS and for-
ward rules triF , which are derived from the same triple rules tri for i = 1, . . . ,n. Let further

G00 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn be a TGT-sequence with (miS,niS) being match and comatch of triS
(respectively (mi,ni) for triF ) then match consistency of G00 =

tr∗S=⇒ Gn0 =
tr∗F=⇒ Gnn means that the

S-component of the match mi is uniquely determined by the comatch niS (i = 1, . . . ,n).

Theorem 1 (Canonical Decomposition and Composition Result - Forward Rule Case)

1. Decomposition: For each TGT-sequence based on triple rules tr∗

(1) G0 =tr∗=⇒ Gn there is a canonical match consistent TGT-sequence

(2) G0 = G00 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn = Gn based on corresponding source rules tr∗S and for-
ward rules tr∗F .

2. Composition: For each match consistent transformation sequence (2) there is a canonical
transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each other.

Proof. See [EEE+07].

Now we want to discuss under which conditions forward transformation sequences G1 =
tr∗F=⇒

Gn define a model transformation between suitable source and target languages. In fact we
have different choices: On the one hand we can consider the projections V LS = pro jS(V L)
and V LT = pro jT (V L) of the triple graph language V L = {G | /0 =⇒∗ G via TR}, where pro jX is a
projection defined by restriction to one of the triple components, i. e. X ∈ {S,C,T}. On the other
hand we can use the source rules TRS = {trS | tr ∈ TR} and the target rules TRT = {trT | tr ∈ TR}
to define the source language VLS0 = {GS | /0 =⇒∗ GS via TRS} and the target language VLT 0 =
{GT | /0 =⇒∗ GT via TRT}. Since each sequence /0 =⇒∗ G via TR can be restricted to a source
sequence /0 =⇒∗ GS via TRS and to a target sequence /0 =⇒∗ GT via TRT we have VLS ⊆ VLS0 and
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VLT ⊆ VLT 0, but in general no equality. In case of typed graphs the rules in TR are typed over
TG with TG = (TGS← TGC→ TGT ) and rules of TRS and TRT typed over (TGS← /0→ /0) and
( /0← /0→ TGT ), respectively. Since GS and GT are considered as plain graphs they are typed
over TGS and TGT , respectively.

Given a forward transformation sequence G1 =
tr∗F=⇒ Gn we want to ensure the source component

of G1 corresponds to the target component of Gn, i.e. the transformation sequence defines a a
model transformation MT from VLS0 to VLT 0, written MT : VLS0V VLT 0, where all elements of
the source component are translated. Thus given a class diagram as instance of the type graph in
Fig. 1 all corresponding tables, columns and foreign keys of the corresponding data base model
shall be created in the same way they could have been synchronously generated by the triple
rules of TR. An example forward transformation is presented in [EEE+07]. Since GS ∈ VLS0 is
generated by TRS-rules we have a source transformation /0 =⇒∗ GS via TRS. In order to be sure that

G1 =
tr∗F=⇒ Gn transforms all parts of G1, which are generated by /0 =⇒∗ GS, we require that /0 =⇒∗ GS

is given by /0 =
tr∗S=⇒ G1 with G1 = (GS ← /0→ /0), i.e. projS(G1) = GS based on the same triple

rule sequence tr∗ as G1 =
tr∗F=⇒ Gn. Finally we require that the TGT-sequence /0 =

tr∗S=⇒ G1 =
tr∗F=⇒ Gn

is match consistent, because this implies – by Fact 1 below – that GS ∈ VLS and GT ∈ VLT and
that we obtain a model transformation MT : VLSV VLT (see Fact 1).

Definition 4 (Model Transformation) A model transformation sequence (GS,G1 =
tr∗F=⇒ Gn,GT )

consists of a source graph GS, a target graph GT , and a source consistent forward TGT-sequence

G1 =
tr∗F=⇒ Gn with GS = projS(G1) and GT = projT (Gn).

Source consistency of G1 =
tr∗F=⇒ Gn means that there is a source transformation sequence /0 =

tr∗S=⇒
G1, such that /0 =

tr∗S=⇒ G1 =
tr∗F=⇒ Gn is match consistent. A model transformation MT : VLS0V VLT 0

is defined by model transformation sequences (GS,G1 =
tr∗F=⇒ Gn,GT ) with GS ∈ VLS0 and GT ∈

VLT 0.

Remark 2 A model transformation MT : VLS0V VLT 0 is a relational dependency and only in
special cases a function.

This allows to show that MT : VLS0V VLT 0 defined above is in fact MT : VLSV VLT

Fact 1 (Syntactical Correctness of Model Transformation MT ) Given GS ∈ VLS0 and G1 =
tr∗F=⇒

Gn source consistent with pro jS(G1) = GS then GT = pro jT (Gn) ∈ VLT and GS ∈ VLS, i.e.
MT : VLSV VLT .

Proof. Given G1 =
tr∗F=⇒ Gn source consistent, we have /0 =

tr∗S=⇒ G1 =
tr∗F=⇒ Gn match consistent and

hence, by Theorem 1 above with G0 = /0 =tr∗=⇒ Gn which implies Gn ∈ VL. Now we have
projS(Gn) = projS(G1) = GS ∈ VLS and projT (Gn) = GT ∈ VLT .
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4 Model Integration

Given models GS ∈VLS0 and GT ∈VLT 0 the aim of model integration is to construct an integrated
model G ∈ VL, such that G restricted to source and target is equal to GS and GT , respectively, i.e.
projSG = GS and projT G = GT . Thus, given a class diagram and a data base model as instance
of the type graph in Fig. 1 all correspondences between their elements shall be recovered or
detected, respectively. Similar to model transformation we can derive rules for model integration
based on triple rule tr. The derived rules are source-target rule trST and integration rule trI given
by

(SL
s ��

CL
sLoo

c
��

tL // T L)
t��

(SR CRsR
oo

tR
// T R)

triple rule tr

(SL
s ��

/0oo

��

// TL)
t ��

(SR /0oo // TR)
source-target rule trST

(SR
id ��

CL
s◦sLoo

c
��

t◦tL // TR)
id��

(SR CR
sRoo tR // TR)

integration rule trI

An example for both kinds of rules is given in Fig. 4 for the triple rule Class2Table in Fig. 2.

:ClassTableRel {new}

:Table 

name = n

:Class 

name = n

(a) integration rule Class2TableI

:Class{new} 

name = n

:Table{new} 

name = n

(b) source-target rule Class2TableST

Figure 4: Derived rules for Class2Table()

Similar to the canonical decomposition of TGT-sequences G0 =tr∗=⇒ Gn into source and for-
ward transformation sequences we also have a canonical decomposition into source-target and

integration transformation sequences of the form /0 =
tr∗ST==⇒ G0 =

tr∗I=⇒ Gn. Such a sequence is called
S-T -consistent, if the S- and T -component of the comatch of triST is completely determined by
that of the match of triI for tr = (tri)i=1...n.

Theorem 2 (Canonical Decomposition and Composition Result - Integration Rule Case)

1. Decomposition: For each TGT-sequence based on triple rules tr∗

(1) G0 =tr∗=⇒ Gn there is a canonical S-T -match consistent TGT-sequence

(2) G0 = G00 =
tr∗ST==⇒ Gn0 =

tr∗I=⇒ Gnn = Gn based on corresponding source-target rules tr∗ST
and integration rules tr∗I .

2. Composition: For each S-T -match consistent transformation sequence (2) there is a
canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each other.

In the following we give the proof of Theorem 2 which is based on the Local-Church-Rosser
and the Concurrency Theorem for algebraic graph transformations (see [Roz97], [EEPT06]).
The proof uses two lemmas, where the proof of the lemmas is given in [EEH08]. In Lemma 1
we show that a triple rule tr can be represented as concurrent production trST ∗E trI of the cor-
responding source-target rule trST and integration rule trI , where the overlapping E is equal
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to L(trI), the left hand side of trI . Moreover E-related sequences in the sense of the Con-
currency Theorem correspond exactly to S-T -match-consistent sequences in Theorem 2. In
Lemma 2 we show compatibility of S-T -match consistency with sequential independence in the
sense of the Local-Church-Rosser-Theorem. Using Lemma 1 we can decompose a single TGT-
transformation G0 =tr⇒ G1 into an S-T -match consistent sequence G0 =trST==⇒ G10 =trI=⇒ G1 and vice
versa. Lemma 2 allows to decompose TGT-sequences G0 =tr∗=⇒ Gn into S-T -match consistent

sequences G0 =
tr∗ST==⇒ Gn0 =

tr∗I=⇒ Gn and vice versa.
All constructions are done in the category TripleGraphTG of typed triple graphs and typed

triple graph morphisms, which according to Fact 4.18 in [EEPT06] is an adhesive HLR category.
This implies that the Local-Church-Rosser and Concurrency Theorem are valid for triple rules
with injective morphisms (see Chapter 5 in [EEPT06]).

Lemma 1 (Concurrent Production tr = trST ∗E trI) Let E = L(trI) with e1 = (id, /0, id) :
R(trST ) → E and e2 = id : L(trI) → E then tr is given by the concurrent production tr =
trST ∗E trI . Moreover, there is a bijective correspondence between a transformation G1 =

tr,m
==⇒ G2

and match-consistent sequences G1 =
trST ,m1,n1
=====⇒ H =

trI ,m2,n2
====⇒ G2, where S−T -match consistency

means that the S− and T−components of the comatch n1 and the match m2 are equal, i.e.
n1S = m2S and n1T = m2T . Construction of concurrent production:

L(trST )
l ��

trST //

(1)

R(trST )

e1 %%KKKKKKKK
L(trI)

e2zzttttttt

trI //

(2)

R(trI)
r
��

L(tr)
d1

// E
d2

// R

E− concurrent rule
Lemma 2 (Compatibility of S−T -match consistency with independence)
Given the TGT-sequences on the right
with independence in (4) and matches
mi,m′i and comatches ni,n′i. Then we
have:

G20 tr1I

m1′,n1′ #+
PPPPPP

PPPPPP

G00
tr1ST

m0,n0
+3 G10

tr2ST

m2′,n2′

3;nnnnnn
nnnnnn

tr1I

m1,n1 #+PPPPPP
PPPPPP G21

tr2I

m3,n3
+3 G22

G11

tr2ST

m2,n2

3;nnnnnn
nnnnnn

(1) G00 =tr1ST==⇒ G10 =tr1I==⇒ G11 S−T -match consistent⇔
(2) G00 =tr1ST==⇒ G10 =tr2ST==⇒ G20 =tr1I==⇒ G21 S−T -match consistent
and
(3) G11 =tr2ST==⇒ G21 =tr2I==⇒ G22 S−T -match consistent⇔
(4) G10 =tr2ST==⇒ G20 =tr1I==⇒ G21 =tr2I==⇒ G22 S−T -match consistent

Proof of Theorem 2.
1. Decomposition: Given
(1) we obtain (for n =
3) by Leamma 1 a de-
composition into triangles
(1),(2),(3), where the corre-
sponding transformation se-
quences are S − T -match
consistent.

G30

(6)

tr1I
 (JJJ

JJJ

G20

(4)

tr1I
 (JJJ

JJJ

tr3ST 6>ttt ttt
G31

(5)

tr2I
 (JJJ

JJJ

G10

(1)
tr1I
 (JJJ

JJJ

tr2ST 6>ttt ttt
G21

(2)
tr2I
 (JJJ

JJJ

tr3ST 6>ttt ttt
G32

(3)
tr3I
 (JJJ

JJJ

G00

tr1ST 6>ttt ttt

tr1
+3G0 = G11

tr2ST 6>ttt ttt

tr2
+3 G22

tr3ST 6>ttt ttt

tr3
+3 G33 = G3
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In the next step we show that G10 =tr1I==⇒
G11 =tr2ST==⇒ G21 is sequentially independent
leading by the Local Church Rosser The-
orem to square (4) sequential indepen-
dence in this case means existence of d :
L(tr2ST )→ G10 with g◦d = m2.

L(tr1I)
m1 ��

tr1I // R(tr1I)

$$HHHHHH
L(tr2ST )

m2zztttttt
//

d

rrf f f f f f f f f f f f R(tr2ST )

��
G1 g

// G2 // G3

The diagram on the right shows that d =
(dS,dC,dT ) = (m2S, /0,m2T ) satisfies this property.
(1)− (4) leads to the following transformation se-
quence G00 =tr1ST==⇒ G10 =tr2ST==⇒ G20 =tr1I==⇒ G21 =tr2I==⇒
G22 =tr3ST==⇒ G32 =tr3I==⇒ G33 which is again S−T -match
consistent due to shift equivalence of correspond-
ing matches in the Local Church Rosser Theorem
(see Lemma 2). Similar to above we can show that
G21 =tr2I==⇒ G22 =tr3ST==⇒ G32 are sequentially indepen-
dent leading to (5) and in the next step to (6) with
corresponding S−T -match consistent sequences.

SL2

dS=m2S
~~~~~~~~

��~~~~~~~ m2S

444444

��444444
/0

dC
����

�������������� m2C

44444

��44444444

OO

��
T L2

dT
��

���������������� m2T

33

��333333333333
G10,S

id
// G11,S = G10,S

G10,C gC
//

OO

��

G11,C

OO

��
G10,T

id
// G11,T = G10,T

2. Composition: Vice versa, each S−T -match consistent sequence (2) leads to a canonical S−
T -match consistent sequence of triangles (1),(2),(3) and later by Lemma 1 to TGT-sequence
(1). We obtain the triangles by inverse shift equivalence, where subsequence 1 as above is S−T -
match consistent. In fact S−T -match consistency of (2) together with Lemma 2 implies that the
corresponding sequences are sequentially independent in order to allow inverse shifts according
to the Local Church Rosser Theorem. Sequential independence for (6) is shown below

R(tr1ST )

n1
��

SR1 = L(tr3ST )

m3

��

tr1I // R(tr3ST )

""DDDDDDDD
L(tr1I)

SR1

m1I~~||||||||
//

d

ssh h h h h h h h h h h h h R(tr1I)

��
G10 g1

// G20 g2
// G30 // G31

By S−T -match consistency we have m1I,S = g2S ◦g1S ◦n1S. Define dS = g1S ◦n1S, then g2S ◦
dS = g2S ◦g1S ◦n1S = m1I,S and similar for the T -component, while dC = m1I,C using g2C = id.
3. Bijective Correspondence: by that of the Local Church Rosser Theorem and Concurrency
Theorem.

Given an integration transformation sequence G0 =
tr∗I=⇒ Gn with projS(G0) = GS,projT (G0) =

GT and projC(G0) = /0, we want to make sure that the unrelated pair (GS,GT ) ∈ VLS0×VLT 0 is
transformed into an integrated model G = Gn with projS(G) = GS,projT (G) = GT . Of course
this is not possible for all pairs (GS,GT ) ∈ VLS0×VLT 0, but only for specific pairs. In any case
(GS,GT ) ∈ VLS0×VLT 0 implies that we have a source-target transformation sequence /0 =⇒∗ G0

via TRST = {trST | tr ∈ TR}. In order to be sure that G0 =
tr∗I=⇒ Gn integrates all parts of GS and

GT , which are generated by /0 =⇒∗ G0, we require that /0 =⇒∗ G0 is given by /0 =
tr∗ST==⇒ G0 based on
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the same triple rule sequence tr∗ as G0 =
tr∗I=⇒ Gn. Moreover, we require that the TGT-sequence

/0 =
tr∗ST==⇒ G0 =

tr∗I=⇒ Gn is S-T -match consistent because this implies - using Theorem 2 - that GS ∈
VLS,GT ∈ VLT and G ∈ VL (see Theorem 2).

Definition 5 (Model Integration) A model integration sequence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) con-

sists of a source and a target model GS and GT , an integrated model G and a source-target con-

sistent TGT-sequence G0 =
tr∗I=⇒ Gn with GS = projS(G0) and GT = projT (G0).

Source-target consistency of G0 =
tr∗I=⇒ Gn means that there is a source-target transformation se-

quence /0 =
tr∗ST==⇒ G0, such that /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn is match consistent. A model integration

MI : VLS0×VLT 0 V VL is defined by model integration sequences ((GS,GT ),G0 =
tr∗I=⇒ Gn,G)

with GS ∈ VLS0, GT ∈ VLT 0 and G ∈ VL.

Remark 3 Given model integration sequence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) the corresponding

source-target TGT-sequence /0 =
tr∗ST==⇒ G0 is uniquely determined. The reason is that each co-

match of triST is completely determined by S- and T -component of the match of triI , because
of embedding R(triST )� L(triI). Furthermore, each match of triST is given by uniqueness of
pushout complements along injective morphisms with respect to non-deleting rule triST and its
comatch. Moreover, the source-target TGT-sequence implies GS ∈V LS0 and GT ∈V LT 0.

Fact 2 (Model Integration is syntactically correct) Given model integration sequence ((GS,GT ),

G0 =
tr∗I=⇒ Gn, G) then Gn = G ∈ VL with projS(G) = GS ∈ VLS and projT (G) = GT ∈ VLT .

Proof. G0 =
tr∗I=⇒ Gn source-target consistent

⇒ ∃ /0 =
tr∗ST==⇒ G0 s.t. /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn S-T -match consistent

T hm2⇒ /0 =tr∗=⇒ Gn , i.e. Gn = G ∈ VL

Finally we want to analyze which pairs (GS,GT ) ∈ VLS×VLT can be integrated. Intuitively
those which are related by the model transformation MT : VLS V VLT in Theorem 1. In fact,
model integration sequences can be characterized by unique model transformation sequences.

Theorem 3 (Characterization of Model Integration Sequences) Each model integration se-

quence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) corresponds uniquely to a model transformation sequence

(GS,G′0 =
tr∗F=⇒ Gn,GT ), where tr∗I and tr∗F are based on the same rule sequence tr∗.

Proof. ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) is model integration sequence

de f⇔ source-target consistent G0 =
tr∗I=⇒ Gn with projS(G0) = projS(Gn) = GS, projC(G0) = /0,

projT (G0) = projT (Gn) = GT and Gn = G
de f⇔ /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn S-T -match consistent with projS(Gn) = GS and projT (Gn) = GT

T hm2⇔ /0 =tr∗=⇒ Gn with projS(Gn) = GS and projT (Gn) = GT
T hm1⇔ /0 =

tr∗S=⇒ G′0 =
tr∗F=⇒ Gn match consistent with projS(Gn) = GS and projT (Gn) = GT
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de f⇔ G′0 =
tr∗F=⇒ Gn source consistent with projS(G′0) = projS(Gn) = GS and projT (Gn) = GT

de f⇔ (GS,G′0 =
tr∗F=⇒ Gn,GT ) is model transformation sequence.

PersonCompany

custumer_id : int

Custumer

employee

Figure 5: Source component
of Fig. 6 in concrete syntax

Coming back to the example of a model transformation from
class diagrams to database models the relevance and value of
the given theorems can be described from the more practical
view. Fig. 6 shows a triple graph, which defines a class dia-
gram in its source component, database tables in its target com-
ponent and the correspondences in between. Since this model is
already fully integrated, it constitutes the resulting graph G of

example model integration sequence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G).

The starting point is given by GS as restriction of G to elements of the class diagram, indicated
by pink, and GT containing the elements of the database part, indicated by yellow colour. Now,
the blue nodes for correspondence as well as the morphisms between connection component to
source and target component are created during the integration process. All elements are labeled
with a number to specify matches and created objects for each transformation step. The sequence
of applied rules is

G0 =Class2table======⇒ G1 =Class2table======⇒ G2 =Subclass2Table========⇒ G3 =
PrimaryAttribute2Column
==============⇒

G4 =
Association2ForeignKey
=============⇒ G5 = Gn.

3:Table

name=“Company“

10:FKey

7:fkeys 

2:ClassTableRel

24:AttrColRel 

15:ClassTableRel

9:AssocFKeyRel

19:ClassTableRel

20:cols

6:src

11:dest

16:parent

21:pkey

8:Association 

name = “employee“

1:Class 

name=“Company“

14:Class 

name=“Person“

18:Class 

name=“Customer“

27:PrimitiveDataType 

name = “int“ 

23:Attribute 

is_primary = true

name=“cust_id“

25:Column 

type = “int“

name = “cust_id“

22:attrs

26:type 

17:Table 

name=“Person“

5:Column 

type = “int“

name = “employee_cust_id“

4:cols

12:fcols
13:references

Figure 6: Example of model integration for model transformation Class2Table
Now, Table 1 shows all matches of this sequence for both cases of Theorem 3 being the

model integration sequence G0 =
tr∗I=⇒ Gn and the forward transformation sequence G′0 =

tr∗I=⇒ Gn,
where G0 contains the elements of G except correspondence parts and G′0 is G leaving out all
elements of target and connection component. The column ”Created” in the table lists the ele-
ments which are created at each transformation step. According to the numbers for the elements,
the correspondence component is completely created during the model integration sequence and
the elements of each match are created by the corresponding source-target rule application in
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Integration Sequence Forward Sequence
Elements Elements

Step and Rule Matched Created Matched Created
1 1,3 2 1 2,3
2 14,17 15 14 15,17
3 14-18 19 14-18 19
4 17-20, 22,23, 25-27 24 17-19, 22,23, 26,27 20,21, 24,25
5 1-8, 10-15, 17,21,25 9 1-3,6,8, 11,14,15, 17,21,25 4,5,7,9,10,12,13

Table 1: Steps of example integration sequence

/0 =
tr∗ST==⇒ G0. Therefore, /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn is match consistent. Analogously /0 =

tr∗S=⇒ G′0 consists
of the specified steps in Table 1, where comatches are given by the elements of the match in the

forward transformation sequence implying /0 =
tr∗S=⇒ G′0 =

tr∗F=⇒ Gn being match consistent. Both in-
tegration and forward transformation sequence can be recaptured by analyzing the other, which
corresponds to Theorem 3.

5 Related Work

Various approaches for model transformation in general are discussed in [MB03] and [OMG07]
using BOTL and QVT respectively. For a taxonomy of model transformation based on graph
transformation we refer to [MG06]. Triple Graph Grammars have been proposed by A. Schürr
in [Sch94] for the specification of graph transformations. A detailed discussion of concepts,
extensions, implementations and applications scenarios is given by E. Kindler and R. Wagner in
[KW07]. The main application scenarios in [KW07] are model transformation, model integration
and model synchronization. These concepts, however, are discussed only on an informal level
using a slightly different concept of triple graphs compared with [Sch94].

In this paper we use the original definition of triple graphs, triple rules, and triple transforma-
tions of [Sch94] based on the double pushout approach (see [Roz97], [EEPT06]). In our paper
[EEE+07] we have extended the approach of [Sch94] concerning the relationship between TGT-

sequences based on triple rules G0
tr∗⇒Gn and match consistent TGT-sequences G0

tr∗S⇒Gn0
tr∗F⇒Gm

based on source and forward rules leading to the canonical Decomposition and Composition
Result 1 (Thm 1). This allows to characterize information preserving bidirectional model trans-
formations in [EEE+07].

In this paper the main technical result is the Canonical Decomposition and Composition Re-
sult 2 (Thm 2) using source-target rules trST and integration rules trI instead of trS and trF .
Both results are formally independent, but the same proof technique is used based on the Lo-
cal Church–Rosser and Concurrency Theorem for graph transformations. The main result of
[EEPT06] is based on these two decomposition and composition results. For a survey on tool
integration with triple graph grammars we refer to [KS06].
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6 Future Work and Conclusion

Model integration is an adequate technique in system design to work on specific models in dif-
ferent languages, in order to establish the correspondences between these models using rules
which can be generated automatically. Once model transformation triple rules are defined for
translations between the involved languages, integration rules can be derived automatically for
maintaining consistency in the overall integrated modelling process.

Main contributions of this paper are suitable requirements for existence of model integration
as well as composition and decomposition of source-target and integration transformations to
and from triple transformations. Since model integration may be applied at any stage and several
times during the modelling process, results of model integrations in previous stages can be used
as the starting point for the next incremental step.

All concepts are explained using the well known case study for model transformation between
class diagrams and relational data bases. While other model transformation approaches were
applied to the same example for translation between source and target language, triple graph
grammars additionally show their general power by automatic and constructive derivation of
an integration formalism. Therefore, model integration in the presented way can scale up very
easily, only bounded by the effort to build up general triple rules for parallel model evolution.

Usability extends when regarding partly connected models, which shall be synchronized as
discussed on an informal level in [KW07]. On the basis of model integration rules model syn-
chronization can be defined in future work as model integration using inverse source and target
rules, standard source and target rules as well as integration rules in a mixed way, such that
the resulting model is syntactically correct and completely integrated. Another interesting as-
pect for future work is the extension of triple graph rules and corresponding transformation and
integration rules by negative application conditions (see [HHT96]), or by more general graph
constraints (see [HP05]).
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[KS06] A. König, A. Schürr. Tool Integration with Triple Graph Grammars - A Survey. In
Heckel, R. (eds.): Elsevier Science Publ. (pub.), Proceedings of the SegraVis School
on Foundations of Visual Modelling Techniques, Vol. 148, Electronic Notes in Theo-
retical Computer Science pp. 113-150, Amsterdam. 2006.
http://dx.doi.org/10.1016/j.entcs.2005.12.015

[KW07] E. Kindler, R. Wagner. Triple Graph Grammars: Concepts, Extensions, Imple-
mentations, and Application Scenarios. Technical report tr-ri-07-284, Software
Engineering Group, Department of Computer Science, University of Paderborn,
June 2007.
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/
2007/tr-ri-07-284.pdf

[MB03] F. Marschall, P. Braun. Model Transformations for the MDA with BOTL. In Proc. of
the Workshop on Model Driven Architecture: Foundations and Applications (MDAFA
2003), Enschede, The Netherlands. Pp. 25–36. 2003.
http://citeseer.ist.psu.edu/marschall03model.html

[MG06] T. Mens, P. V. Gorp. A Taxonomy of Model Transformation. In Proc. International
Workshop on Graph and Model Transformation (GraMoT’05), number 152 in Elec-
tronic Notes in Theoretical Computer Science, Tallinn, Estonia, Elsevier Science.
2006.
http://tfs.cs.tu-berlin.de/gramot/Gramot2005/FinalVersions/PDF/MensVanGorp.pdf

[OMG07] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Final Adopted Specification (07-07-2007). 2007.
http://www.omg.org/docs/ptc/07-07-07.pdf

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.
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Verifying Model Transformations by Structural Correspondence
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Abstract: Model transformations play a significant role in model based software
development, and the correctness of the transformation is crucial to the success of
the development effort. We have previously shown how we can use bisimulation
to verify the preservation of certain behavioral properties across a transformation.
However, transformations are often used to construct structurally different models,
and we might wish to ensure that there is some structural correspondence to the
original model. It may be possible to verify such transformations without having
to explicitly specify the dynamic semantics of the source and target languages. In
this paper, we present a technique to verify such transformations, by first specifying
certain structural correspondence rules between the source and target languages,
and extending the transformation so that these rules can be easily evaluated on the
instance models. This will allow us to conclude if the output model has the expected
structure. The verification is performed at the instance level, meaning that each
execution of the transformation is verified. We will also look at some examples
using this technique.

Keywords: Verification, Model transformations

1 Introduction

Model transformations that translate a source model into an output model are often expressed in
the form of rewriting rules, and can be classified according to a number of categories [MV05].
However, the correctness of a model transformation depends on several factors, such as whether
the transformation terminates, whether the output model complies with the syntactical rules of
the output language, and others. One question crucial to the correctness of a transformation is
whether it achieved the intended result of mapping the semantics of the input model into that of
the output model. For instance, a transformation from a Statechart model to a non-hierarchical
FSM model can be said to be correct if the output model truly reproduces the behavior of the
original Statechart model.

Models can also be seen as attributed and typed graph structures that conform to an abstract
syntax. Model transformations take an input graph and produce a modified output graph. In a
majority of these cases, the transformation matches certain graph structures in the input graph
and creates certain structures in the output graph. In such cases, correctness may be defined as
whether the expected graph structures were produced in the output corresponding to the relevant
structures in the input graph. If we could specify the requirements of such correspondences and
trace the correspondences easily over instance models, a simple model checking process at the
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end of a transformation can be used to verify if those instances were correctly transformed. In this
paper, we explore a technique to specify structural correspondence rules, which can be used to
decide if the transformation resulted in an output model with the expected structure. This will be
specified along with the transformation, and evaluated for each execution of the transformation,
to check whether the output model of that execution satisfies the correspondence rules.

2 Background

2.1 GReAT

GReAT [AKL03] is a language framework for specifying and executing model transformations
using graph transformation. It is a meta-model based transformation tool implemented within
the framework of GME [LBM+01]. One of the key features of GReAT is the ability to define
cross-language elements by composing the source and target meta-models, and introducing new
vertex and edge types that can be temporarily used during the transformation. Such cross-meta-
model associations are called cross-links. Note that a similar idea is present in Triple Graph
Grammars [Sch95]. This ability of GReAT allows us to track relationships between elements of
the source and target models during the course of the transformation, as the target model is being
constructed from the source model. This feature plays a crucial role in our technique to provide
assurances about the correctness of a model transformation.

2.2 Instance Based Verification of Model Transformations

Verifying the correctness of model transformations in general is as difficult as verifying compil-
ers for high-level languages. But for practical purposes, a transformation may be said to have
‘executed correctly’ if a certain instance of its execution produced an output model that pre-
served certain properties of interest. We call that instance ‘certified correct’. This idea is similar
to the work of Denney and Fischer in [DF05], where a program generator is extended to produce
logical annotations necessary for formal verification of certain safety properties. An automated
theorem prover uses these annotations to find proofs for the safety properties for the generated
code. Note that this does not prove the safety of the code generator, but only of a particular
instance of generated code.

In our previous effort [NK06], we have shown that it is both practical and prudent to verify
the correctness of every execution of a model transformation, as opposed to finding a correctness
proof for the transformation specification. This makes the verification tractable, and can also find
errors introduced during the implementation of a transformation that may have been specified
correctly.

This technique was applied to the specific case of preservation of reachability related proper-
ties across a model transformation. Reachability is a fairly well-understood property, and can be
verified easily for a labeled transition system (LTS), for instance by model checking [Hol97]. If
two labeled transition systems are bisimilar, then they will have the same reachability behavior.
In our approach, we treated the source and target models as labeled transition systems, and veri-
fied the transformation by checking if the source and target instances were bisimilar.
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Figure 1: Architecture for Verifying Reachability Preservation in a Transformation

Given an LTS (S, Λ, →), a relation R⊆ S×S is a bisimulation [San04] if:

(p, q) ∈ R and p α
→ p′ implies that there exists a q′ ∈ S,

such that q α
→ q′ and (p′, q′) ∈ R,

and conversely,

q α
→ q′ implies that there exists a p′ ∈ S,

such that p α
→ p′ and (p′, q′) ∈ R.

We used cross-links to relate source and target elements during the construction of the output
model. These relations were then passed to a bisimilarity checker, which determined whether the
source and target instances were bisimilar. If the instances were determined to be bisimilar, we
could conclude that the execution of the transformation was correct. Figure 1 shows an overview
of the architecture for this approach.

Figure 2: Meta-model for UML Activity Diagrams

2.3 UML to CSP Transformation

The UML to CSP transformation was presented as a case study at AGTIVE ’07 [BEH07], to
compare the various graph transformation tools available today. We provide an overview of this
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case study here from a GReAT point of view, and we will use this as an example to explain our
technique for verifying model transformations.

The objective of this transformation is to take a UML Activity Diagram [OMG06] and generate
a Communicating Sequential Process [Hoa78] model with the equivalent behavior. The Activity
Diagram consists of various types of Activity Nodes, which can be connected by directed Activity
Edges. Figure 2 shows the GME meta-model for UML Activity Diagrams. A CSP Process is
defined by a Process Assignment, which assigns a Process Expression to a Process Id. Process
Expressions can be a simple Process, a Prefix operator or a BinaryOperator. Figure 3 shows the
GME meta-model for CSP, highlighting the relevant parts for our example.

Figure 3: Meta-model for CSP

The UML to CSP mapping assigns a Process for each Activity Edge. For each type of Activity
Node, a Process Assignment is created, which assigns the Process corresponding to the incoming
Activity Edge to a Process Expression depending on the type of the Activity Node. Figure 4
shows one such mapping, for the type Action Node. This assigns the incoming Process to a
Prefix expression. The resulting CSP expression can be written as A = action −→ B, which is
shown in Figure 4 as a model instance compliant with the CSP meta-model.

3 Structural Correspondence

As in the UML to CSP case, model transformations can be used to generate a target model of a
certain structure (CSP) from a source model of a different structure (UML). Specific structural
configurations in the source model (such as an Action Node in the UML model) produce specific
structural configurations in the target model (such as a Prefix in the CSP model). The rules to
accomplish the structural transformations may be simple or complicated. However, it is fairly
straightforward to compare and verify that the correct structural transformation was made, if we
already know which parts of the source structure map to which parts of the target structure.

In our technique to verify a transformation by structural correspondence, we will first define
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(a) Activity Diagram (b) CSP

Figure 4: CSP Process Assignment for Action Node

a set of structural correspondence rules specific to a certain transformation. We will then use
cross-links to trace source elements with the corresponding target elements, and finally use these
cross-links to check whether the structural correspondence rules hold.

In essence, we expect that the correspondence conditions are independently specified for a
model transformation, and an independent tool checks if these conditions are satisfied by the
instance models, after the model transformation has been executed. In other words, the corre-
spondence conditions depend purely on the source and target model structures and not on the
rewriting rules necessary to effect the transformation. Since the correspondence conditions are
specified in terms of simple queries on the model around previously chosen context nodes, we
expect that they will be easier to specify, and thus more reliable than the transformation itself.
We also assume that the model transformation builds up a structure for bookkeeping the mapping
between the source and target models.

3.1 Structural Correspondence Rules for UML to CSP Transformation

A structural correspondence rule is similar to a precondition-postcondition style axiom. We will
construct them in such a way that they can be evaluated easily on model instances. We will
use the UML to CSP example to illustrate structural correspondence. Consider the case for the
Action Node, as shown in Figure 4. The Action Node has one incoming edge and one outgoing
edge. It is transformed into a Process Assignment in the CSP. The CSP structure for this instance
consists of a Process Id and a Prefix, with an Event and a target Process. This is the structural
transformation for each occurrence of an Action Node in the Activity Diagram.

We can say that for each Action Node in the Activity Diagram, there is a corresponding
Process Assignment in the CSP, with a Prefix Expression. When our transformation creates this
corresponding Process Assignment, we can use a cross-link to track this correspondence. The
structural correspondence is still not complete, as we have to ensure that the Process Id and
the Prefix Expression are created correctly. We use a kind of path expression to specify the
correctness of corresponding parts of the two structures, and the correspondence is expressed
in the form SourceElement = Out putElement. Let us denote the Action Node by AN, and the
Process Assignment by PA. Then the necessary correspondence rules can be written using path
expressions as shown in Table 1.
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Rule Path expression
The Action Node corresponds to a
Process Assignment with a Prefix PA.procExpr.type = Pre f ix
The incoming edge in the UML
corresponds to the Process Id AN.inEdge.name = PA.procId.name

The outgoing edge corresponds to
the target Process AN.outEdge.name = PA.procExpr.Process.name

The action of the Action Node
corresponds to the Event AN.action = PA.procExpr.event

Table 1: Structural Correspondence Rules for Action Node

These rules together specify the complete structural correspondence for a section of the Ac-
tivity Diagram and a section of its equivalent CSP model. The different types of Activity Nodes
result in different structures in the CSP model, some of which are more complex than the fairly
straightforward case for the Action Node. Next, we look at the structural mapping for some of
the other nodes.

A Fork Node in the Activity Diagram is transformed into a Process Assignment with a Con-
currency Expression. Figure 5 shows a Fork Node with an incoming edge A and three outgoing
edges B, C and D. This is represented by the CSP expression A = B ‖ (C ‖D), where ‖ represents
concurrency (the actual ordering of B, C and D is immaterial). The structural representation of
this expression as an instance of the CSP meta-model is shown in Figure 5. The Fork Node is
transformed into a CSP Process Assignment that consists of a Process Id corresponding to the
incoming Activity Edge of the Fork Node, and a Process Expression of type Concurrency. The
Concurrency Expression consists of Processes and other Concurrency nodes, depending on the
number of outgoing Activity Edges.

If we denote the Fork Node by FN and the Process Assignment by PA, the structural corre-

(a) Activity Diagram (b) CSP

Figure 5: CSP Process Assignment for Fork Node
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Rule Path expression
The Fork Node corresponds to a

Process Assignment with a Concurrency PA.procExpr.type = Concurrency
The incoming edge in the UML
corresponds to the Process Id FN.inEdge.name = PA.procId.name

For each outgoing edge, ∀o ∈ FN.outEdge
there is a corresponding Process ∃p ∈ PA.procExpr..Process : o.name = p.name

in the Process Expression

Table 2: Structural Correspondence Rules for Fork Node

(a) Activity Diagram (b) CSP

Figure 6: CSP Process Assignment for Decision Node

spondence rules can be described using path expressions as shown in Table 2. We will use the
double-dot ‘..’ to denote the descendant operator (similar to ‘//’ in XPath queries), to specify
ancestor-descendant relationships.

By evaluating these rules on the Activity Diagram and the CSP models, we can determine
whether the structural correspondence was satisfied for Fork Nodes. Another type of node in the
Activity Diagram is the Decision Node. The transformation mapping for the Decision Node is
a slight variation of the Fork Node. Figure 6 shows a Decision Node with an incoming edge A,
and three outgoing edges B, C and D, with guards x, y and else respectively (in this case study,
we will assume that the Decision Node always has exactly one ‘else’ edge). This is represented
by the CSP expression A = B 6< x 6> (C 6< y 6> D), where the operator C 6< y 6> D is the condition
operator with the meaning that if y is true, then the process behaves like C, else like D.

The Decision Node is transformed to the CSP model shown in Figure 6 as a model instance
of the CSP meta-model. The Decision Node is transformed into a Process Assignment that
consists of a Process Id corresponding to the incoming Activity Edge of the Decision Node, and
a Process Expression of type Condition. The Condition’s expression attribute is set to the guard
of the corresponding Activity Edge, and a Process corresponding to the Activity Edge is created
as it’s LHS. For the final ‘else’ edge, a Process is created in the last Condition as it’s RHS. The
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Rule Path expression
The Decision Node corresponds to a

Process Assignment with a Condition PA.procExpr.type = Condition
The incoming edge in the UML
corresponds to the Process Id DN.inEdge.name = PA.procId.name

For each outgoing edge, there is
a corresponding Condition in the ∀o ∈ DN.outEdge∧o.guard 6= else

Process Expression and a corresponding ∃c ∈ PA.procExpr..Condition :
Process in the Condition’s LHS c.expression = o.guard∧ c.lhs.name = o.name

For the outgoing ‘else’ edge,
there is a Condition in the ∀o ∈ DN.outEdge∧o.guard = else
Process Expression with a ∃c ∈ PA.procExpr..Condition :

corresponding Process as it’s RHS c.rhs.name = o.name

Table 3: Structural Correspondence Rules for Decision Node

structural correspondence rules for this mapping are shown in Table 3.

3.2 Specifying Structural Correspondence Rules in GReAT

Specifying the structural correspondence for a transformation consists of two parts:

1. Identifying the significant source and target elements of the transformation

2. Specifying the structural correspondence rules for each element using path expressions

The first step is accomplished in GReAT by using cross-links between the source and target
elements. A composite meta-model is added to the transformation, by associating selected source
and target elements using a temporary ‘Structural Correspondence’ class. There will be one
such class for each pair of elements. This class will have a string attribute, which is set to
the path expressions necessary for structural correspondence for that pair. Figure 7 shows a
composite meta-model specifying the structural correspondence for Fork Nodes. The Fork Node
class comes from the Activity Diagram meta-model, and the Process Assignment class comes
from the CSP meta-model.

Figure 7: Composite Meta-model to Specify Structural Correspondence

Once the structural correspondence has been specified for all the relevant items, the transfor-
mation is enhanced to create the cross-link when creating the respective target elements. Figure 8
shows the GReAT rule in which the Process Assignment for a Fork Node is created, enhanced to
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Figure 8: GReAT Rule with Cross-link for Structural Correspondence

create the cross-link for structural correspondence. Note that in incoming Activity Edge is rep-
resented as an Association Class named ActivityEdgeIn. The transformation for the Fork
Node is actually accomplished in a sequence of several rules executed recursively, as shown in
Figure 9. First all the Fork Nodes are collected, and a sequence of rules are executed for each
node. These rules iterate through the out-edges of each Fork node, creating the Concurrency tree.
Though several rules are involved in the transformation for Fork nodes, the cross-link needs to
be added to one rule only.

It must be noted that it is necessary to specify the structural correspondence rules only once in
the composite meta-model. The cross-link must however be added to the transformation rules,
and in most cases will be required only once for each pair of source and target element.

3.3 Evaluating the Structural Correspondence Rules

Once the structural correspondence rules have been specified, and the cross-links added to the
transformation, the correspondence rules are evaluated on the instance models after each execu-
tion of the transformation. These rules can be evaluated by performing a simple depth first search
on the instance models, and checking if the correspondence rules are satisfied at each relevant
stage.

This consists of two phases. The first phase is to generate the code that will traverse the
instance models and evaluate the correspondence rules. Since the meta-models of both the source
and target languages are available with the transformations, and the path expressions are written
in a standard form that can be parsed automatically, the model traverser code can be automatically
generated from the structural correspondence specification. This needs to be done only once each
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Figure 9: Sequence of GReAT Rules for Fork Node Transformation

time the structural correspondence specification changes. The second phase is to call the model
traverser code at the end of each execution of the transformation, supplying to it the source and
target model instances along with the cross-links.

In the case of the UML to CSP transformation, we traverse the input Activity Diagram model
and evaluate the correspondence rules at each activity node. For each Activity Node, the cross-
link is traversed to find the corresponding Process Assignment. If a correspondence rule has
been defined for an Activity Node, and no corresponding Process Assignment is found, then this
signals an error in the transformation. After locating the corresponding Process Assignment, the
path expressions are evaluated. If any of the rules are not satisfied, the error is reported. If all the
rules are satisfied for all the nodes, then we can conclude that the transformation has executed
correctly.

The instance model is traversed in a depth-first manner. The corresponding elements are
located using the cross-links, which will take constant time. The path expressions are evaluated
on the instances, which will take polynomial time in most cases. Thus, the overall verification
process does not incur a significant performance overhead in most cases.

3.4 Remarks

The structural correspondence based verification described here can provide important assur-
ances about the correctness of transformations, while being practically applicable in most com-
mon transformations.

The use of path expressions to specify correspondence rules makes it easy to specify cor-
rectness. The path expressions use a simple query language that can be easily evaluated on the
instance models. Our future research concentrates on the requirements of such a query language.
Most complex transformations may involve multiple rules executing recursively to transform a
particular part of a model. However, it may be possible to specify the correspondence for that
part of the model using a set of simple path expressions. Such a specification would be simpler
and easier to understand than the complex transformation rules.

The structural correspondence is also specified orthogonal to the transformation specification.

Proc. GT-VMT 2008 10 / 14



ECEASST

Thus, these rules may be written by someone other than the original transformation writer, or
even supplied along with the requirements document.

4 Related Work

[K0̈4], [KHE03] present ideas on validating model transformations. In [KHE03], the authors
present a concept of rule-based model transformations with control conditions, and provide a
set of criteria to ensure termination and confluence. In [K0̈4], Küster focuses on the syntactic
correctness of rule-based model transformations. This validates whether the source and target
parts of the transformation rule are syntactically correct with respect to the abstract syntax of the
source and target languages. These approaches are concerned with the functional behavior and
syntactic correctness of the model transformation. [de ] also discusses validation of transforma-
tions on these lines, but also introduces ideas of syntactic consistency and behavior preservation.
Our technique addresses semantic correctness of model transformations, addressing errors intro-
duced due to loss or mis-representation of information during a transformation.

In [BH07], Bisztray and Heckel present a rule-level verification approach to verify the seman-
tic properties of business process transformations. CSP is used to capture the behavior of the
processes before and after the transformation. The goal is to ensure that every application of a
transformation rule has a known semantic effect. We use path expressions to capture the relation
between structures before and after a transformation. These path expressions are generic (they
do not make any assumptions about the underlying semantics of the models involved), and can
be applied to a wide variety of transformations.

Ehrig et. al. [EEE+07] study bidirectional transformations as a technique for preserving in-
formation across model transformations. They use triple graph grammars to define bi-directional
model transformations, which can be inverted without specifying a new transformation. Our ap-
proach offers a more relaxed framework, which will allow some loss of information (such as by
abstraction), and concentrates on the crucial properties of interest. We also feel that our approach
is better suited for transformations involving multiple models and attribute manipulations.

In other related work, [VP03] presents a model level technique to verify transformations by
model checking a selected semantic property on the source model, and transforming the property
and validating it in the target domain. The validation requires human expertise. After transform-
ing the property, the target model is model checked. In our approach, since the properties are
specified using cross links that span over both the source and target languages, we do not need to
transform them. [LLMC06] discuss an approach to validate model transformations by applying
OCL constraints to preserve and guarantee certain model properties. [GGL+06] is a language
level verification approach which addresses the problem of verifying semantic equivalence be-
tween a model and a resulting programming language code.

4.1 MOF QVT Relations Language

The MOF 2.0 Query / View / Transformation specification [OMG05] addresses technology per-
taining to manipulation of MOF models. A relations language is prescribed for specifying rela-
tions that must hold between MOF models, which can be used to effect model transformations.
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Relations may be specified over two or more domains, with a pair of when and where predicates.
The when predicate specifies the conditions under which a relation must hold, and the where
predicate specifies the condition that all the participating model elements must satisfy. Addition-
ally, relations can be marked as checkonly or enforced. If it is marked checkonly, the relation is
only checked to see if there exists a valid match that satisfies the relationship. If it is marked
enforced, the target model is modified to satisfy the relationship whenever the check fails.

Our approach can be likened to the checkonly mode of operation described above. However,
in our case, the corresponding instances in the models are already matched using cross links,
and the correspondence conditions are evaluated using their context. The cross links help us
to avoid searching the instances for valid matches. Specifying the correspondence conditions
using context nodes simplifies the model checking necessary to evaluate the conditions, thus
simplifying the verification process. Since we verify the correspondence conditions for each
instance generated by the transformation, these features play an important role.

4.2 Triple Graph Grammars

Triple Graph Grammars [Sch95] are used to describe model transformations as the evolution of
graphs by applying graph rules. The evolving graph complies with a graph schema that consists
of three parts. One graph schema represents the source meta model, and one represents the target
meta-model. The third schema is used to track correspondences between the source and target
meta models. Transformations are specified declaratively using triple graph grammar rules, from
which operational rules are derived to effect model transformations.

The schema to track correspondences between the source and target graphs provides a frame-
work to implement a feature similar to cross links in GReAT. If the correspondence rules can
be encoded into this schema, and the correspondence links persisted in the instance models, our
verification approach can be implemented in this scenario.

5 Conclusions and Future Work

In this paper, we have shown how we can provide an assurance about the correctness of a trans-
formation by using structural correspondence. The main errors that are addressed by this type of
verification is the loss or misrepresentation of information during a model transformation.

We continue to hold to the idea that it is often more practical and useful to verify transfor-
mations on an instance basis. The verification framework must be added to the transformation
only once, and is invoked for each execution of the transformation. The verification process
does not add a significant overhead to the transformation, but provides valuable results about the
correctness of each execution.

The path expressions must use a simple and powerful query language to formulate queries on
the instance models. While existing languages such as OCL may be suitable for simple queries,
we may need additional features, such as querying children to an arbitrary depth. Our future
research concentrates on the requirements of such a language.

While the path expressions can be parsed automatically and evaluated on the instances, the
cross-link for the relevant elements must be manually inserted into the appropriate transformation
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rules. However, in most cases, it may be possible to infer where the cross-links must be placed.
If the cross-links could be inserted into the rules automatically, the transformation can remain
a black box. The main concern with this is that the cross-links are crucial to evaluating the
correspondence rules correctly and also to keep the complexity down.

We have seen simple string comparisons added to the path expressions in this paper. Some
transformations may require more complex attribute comparisons, or structure to attribute com-
parisons such as counting. We wish to explore such situations in further detail in future cases, to
come up with a comprehensive language for specifying the path expressions.
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Abstract: Graph grammars have a long history in visual programming dating back
to the seventies. Due to their declarative nature, even complex systems can be cap-
tured by clear and concise specifications. Recently, with the OMG’s standard for
model transformations QVT, graph grammar concepts have also found their way
into an industrial scale. Although numerous languages and tools for graph trans-
formations exist, they have no technical basis such as an execution framework in
common. Instead, graph transformation machineries are usually implemented anew
for each of these tools.

The DRAGOS graph database is especially well-suited for building graph transfor-
mation systems, as it is able to store complex graph structures directly. Besides its
storage functionality, the database also provides a Query & Transformation Mecha-
nism which is able to handle complex queries upon the stored graphs, and to modify
them accordingly. Being designed as a basis for graph and model transformation
tools, this mechanism is required to allow a flexible adaptation and extension ac-
cording to the respective applications’ needs. The present paper discusses how this
requirement is covered by the proposed Query & Transformation Mechanism.

Keywords: graph database, extensibility, constraint satisfaction

1 Introduction

Model transformations are an enabling technique for model-driven software engineering, as they
allow the formal definition of automated model translations. For example, model transformations
can be used to enrich generic models by platform-specific informations, or to define refactoring
rules at model level. The sheer amount of recent publications on the use of graph transformations
for these purposes indicates their well-suitedness for this task. Presumably, this is caused by
the fact that they rely on a mature and formally defined background with proper tool support.
Nevertheless, the all-encompassing graph (or model) transformation language does not seem to
exist, as new ones are proposed regularly. All of them share a common requirement: A proper
data repository to store graph structures persistently, and an according execution framework to
carry out the specified transformation rules.

Applications specified using graph transformation languages are called graph transformation
systems (GTS). These system often utilize memory-based solutions as graph storage, which pro-
vide a direct access to the stored data. However, large-scaled applications usually require addi-
tional functionality, such as persistent transactional storage (instead of dedicated save actions).
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Furthermore, support for concurrency isolation, and the ability to store large graph structures
which are too unhandy for continuous transfer between file and memory, come into play. DRA-
GOS, a graph-oriented database management system (graph-database for short), is especially
designed for this purpose. In contrast to traditional databases, DRAGOS provides a data model
based on graphs. Therefore, graph structures can be stored directly, without any need for techni-
cal helper elements, such as tables for n-to-m relations.
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Figure 1: Applying DRAGOS in graph transformation systems

For implementing graph transformation systems, basically two alternatives exist (as shown in
Figure 1). First, Figure 1a depicts an approach based on generating source code from the graph
transformation rules. This code invokes operations on the graph database to retrieve and manip-
ulate individual entities. Second, transformation rules can be executed directly by the database,
as indicated by Figure 1b. As the figure suggests, the corresponding UI framework does not need
to incorporate any generated code, but only relies on the functionality provided by the database.
However, the database has to be able of interpreting the respective graph transformation lan-
guage. This is currently not supported by the DRAGOS graph database, for which reason we
develop an according mechanism. As discussed in [Wei07], this solution provides an easier in-
tegration with graph transformation tools and a larger optimization potential. To subsume the
second argumentation, the code generation approach is less suitable for GTS based on databases.
Due to the fact that operations utilized by the generated code are usually situated on a very low
level of abstraction, they cannot consider the database-internal specifics. As result, a lot of simple
operations are invoked, whereas few complex operations would cause less overhead.

In order to support not only a single, but arbitrary graph transformation approaches and their
respective languages, DRAGOS only offers a basic, yet extensible core language. High-level
languages are used to provide a user-friendly concrete syntax, which is not provided by the
core language. The integration of these languages is basically performed as follows: First, rule
definitions of the high-level language are imported into the database, e.g. by parsing textual
specifications. Graph transformations then convert the imported rules to the DRAGOS Query &
Transformation Language. The resulting graphs are evaluated by the underlying rule processor
at runtime. Thus, application integration is achieved through graph transformations, instead of
providing a complex code generation module as required in Figure 1a.

The conversion of graph transformation rules is usually complicated by complex mappings of
high-level language constructs to the low-level ones provided by DRAGOS. We therefore allow
to extend the core language by additional constructs to yield a more concise conversion. Like-
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wise, the extended language constructs can be re-used for integrating other graph transformation
languages, which is not possible for conversion rules. In this paper, we present the DRAGOS
Query & Transformation Language and, as novel contribution, show how the core language can
be extended. This is achieved by reducing new language constructs to existing ones.

The rest of this paper is structured as follows: We first introduce the basic functionality of
DRAGOS in Section 2, and afterwards the Query & Transformation Language in Section 3.
The following Section 4 presents how the language can be extended by additional language
constructs. The paper finally discusses relations to other projects in Section 5 and gives an
outlook on future work in Section 6.

2 Graph database DRAGOS

The DRAGOS database1 allows to store and retrieve graph structures. Its data model is based on
graphs, which are able to capture even complex data structures without need to introduce techni-
cal helper elements. For example, the relational data model often requires additional elements,
such as extra tables to store many-to-many relations.

Architecture. Figure 2 shows a coarse-grained overview of the DRAGOS architecture. In the
middle, the DRAGOS Kernel encapsulates the core graph model and a set of basic services. The
services’ responsibilities include opening and closing of databases as well as transaction and
event management.

DRAGOS Kernel

DBMS

Graph Model & Schema

DBMS-specific  Storage Implementations

Application

ServicesCore Services

Figure 2: DRAGOS architecture

DRAGOS does not implement an own graph storage module. Instead, several implementations
of the core graph model exist, which utilize existing database management systems as storage
facility. Implementations are available for various databases accessible through JDBC and for the
Java Data Objects framework. For testing purposes, an in-memory storage is provided. Database-
specific implementations initialize connections to the database and perform queries and updates
according to the operations invoked on the core model.

1 Database Repository for Applications using Graph-Oriented Storage, previously called Gras/GXL.
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Figure 3: Sample query searching three connected nodes

Graph model. DRAGOS offers a rich graph model originally inspired by the Graph eXchange
Language (GXL) [HWS00]. Among other things, DRAGOS supports hierarchical graphs in-
cluding graph-crossing connections. Nodes, graphs, edges and relations are treated as first-class
citizens, and thus can be identified and attributed. This enables flexible connections between
entities, e.g. edges connecting edges and the attribution of all entities. All entities need to be
typed by some graph entity class. Type structuring is supported, including multiple inheritance.

3 Queries & Transformations for DRAGOS

In this section, we present the Query & Transformation Language by means of an example, re-
lating it to the well-known graph transformation language PROGRES [SWZ99]. The language’s
abstract syntax is presented and its semantics are sketched. Unfortunately, no comprehensive
definition of the DRAGOS Query & Transformation Language can be given here due to the lack
of space. Also, only the query aspect of the language is handled in this paper. For the transfor-
mation of graphs, the reader is referred to [Wei07].

3.1 Introductory example

Figure 3a shows a simple visual query modeled using the PROGRES graph transformation lan-
guage. This query checks whether three nodes connected by edges of proper type and direction
exist in the host graph. Another (intuitive, but rather implicit) condition is that indeed two dif-
ferent nodes ‘1 resp. ‘2 exist.

As the DRAGOS graph model is a lot more complex than the PROGRES model, queries
according to the PROGRES syntax would be hard to represent. Therefore, the Query & Trans-
formation Language separates between graph entities to be searched from the conditions that
need to be fulfilled by these entities. The DRAGOS query shown in Figure 3b contains a set of
variables (middle row, depicted as circles). In order to confirm the query, each of these variables
has to be bound to a graph entity from the host graph, otherwise the query fails.
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Figure 4: Meta-Model of the Query & Transformation Language (simplified)

Constraints (depicted as diamonds in Figure 3b) are used to restrict the queries’ results in sev-
eral ways: IncidenceConstraints demand connectivity of entities, using role names to distinguish
between variables for the source, the target and the connector. This distinction is necessary as
DRAGOS allows edges to be connected to other edges, and so querying these structures needs
to be supported. TypeConstraints restricts legal values to a certain type, where the desired type
is indicated by the reqType attribute. The IsomorphismConstraint is used to ensure that attached
variables are bound to pairwise different entities. Its name stems from the theoretical concept
of searching an isomorphic mapping of queried entities to host graph entities, although it could
be called NonIdentityConstraint as well. It is only added between variables of the same type, as
inheritance is not considered in the current example.

3.2 Syntax & Semantics

The language’s abstract syntax is depicted in Figure 4 by means of its meta-model. According to
this model, each Pattern consists of a set of PatternElements, which are sub-divided into Variables
and Constraints. Constraints are connected to at least one Variable via Restricts edges, which can
be distinguished using the role attribute. To support manipulation of graphs, the complete meta-
model additionally provides Operators, which are not discussed in this paper.

Figure 4 only defines the basic structure of patterns, but does neither define static semantics
(e.g. well-formedness of patterns) nor dynamic semantics (the actual meaning of the pattern).
Here, these two kinds of semantics are introduced for a small subset of the Query & Transfor-
mation Language. We utilize the OMG’s Object Constraint Language (OCL), as it allows to
combine first-order predicate formulae with object-oriented concepts. Nevertheless, it should be
noted that the OCL has not been comprehensively defined in a formal way, so that no unique in-
terpretation of the presented formulae can be given. However, several research activities [BW02]
strive to define the OCL’s semantics, which would lead to an unambiguous understanding.

Besides the language’s meta-model depicted above, several well-formedness conditions for
patterns exist, which cannot be expressed using class-diagrams in a convenient way. For exam-
ple, the following OCL invariant defines conditions on the IncidenceConstraint:
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c o n t e x t I n c i d e n c e C o n s t r a i n t
def : S : C o l l e c t i o n ( V a r i a b l e ) = s e l f . r e s t r i c t s→ s e l e c t ( r | r . r o l e = ” s r c ” )
def : T : C o l l e c t i o n ( V a r i a b l e ) = s e l f . r e s t r i c t s→ s e l e c t ( r | r . r o l e = ” t r g ” )
def : C : C o l l e c t i o n ( V a r i a b l e ) = s e l f . r e s t r i c t s→ s e l e c t ( r | r . r o l e = ” conn ” )

inv : w e l l f o r m e d n e s s =
s e l f . C → s i z e ( ) = 1 and s e l f . C . s o r t = V a r i a b l e S o r t .EDGE and
s e l f . S → s i z e ( ) ≤ 1 and
s e l f . T → s i z e ( ) ≤ 1 and
1 ≤ s e l f . S → s i z e ( ) + s e l f . T → s i z e ( )

This invariant requires that the constraint is connected to exactly one Variable via a Restricts edge
with role conn (connector). This variable has to specify the meta-class EDGE, i.e. it must query
edges from the database. In addition, either a unique source variable (role src), or an unique
target variable (role trg), or both, have to be given.

An assignment of graph entities to a Pattern’s Variables not violating any Constraints is called
a Match. Matches are instantiated by the language implementation according to the given Pattern
and the contents of the graph database. As specified by the class diagram, each Match holds
a (possibly empty) set of Assignments, each of which points to a Variable and its corresponding
value. In addition, Matches have to comply to the following invariants.

c o n t e x t Assignment
inv : v a l i d i t y =

( s e l f . v a r i a b l e . s o r t = V a r i a b l e S o r t .NODE i m p l i e s s e l f . v a l u e . oclIsTypeOf ( Node ) ) and
( s e l f . v a r i a b l e . s o r t = V a r i a b l e S o r t .EDGE i m p l i e s s e l f . v a l u e . oclIsTypeOf ( Edge ) ) and

[ . . . ]

The validity invariant requires that each Assignment relates Variables to proper entities in the
database. Therefore, i.e. a Variable of sort EDGE may only be related to an Edge in the database.

c o n t e x t Match
inv : c o m p l e t e n e s s =

l e t V : C o l l e c t i o n ( V a r i a b l e ) =
s e l f . p a t t e r n . c o n t a i n s→ s e l e c t ( oclIsKindOf ( C o n s t r a i n t ) )→ c o l l e c t ( c | c . v a r i a b l e )

in s e l f . a s s i g n m e n t s→ c o l l e c t ( a | a . v a r i a b l e )→ i n c l u d e s A l l (V )

inv : u n i q u e n e s s =
s e l f . a s s i g n m e n t s→ f o r A l l ( a1 | s e l f . a s s i g n m e n t s→ f o r A l l ( a2 |

a1 . v a r i a b l e = a2 . v a r i a b l e i m p l i e s a1 = a2 ) )

inv : c o r r e c t n e s s =
s e l f . p a t t e r n . c o n t a i n s→ s e l e c t ( oclIsKindOf ( C o n s t r a i n t ) )→ f o r A l l ( c | c . f u l F i l l e d ( s e l f ) )

Besides the Assignments’ validity, a Match has to be complete, unique, and correct.

• For completeness, an Assignment has to exist for all Variables which are referred to by any
of the Pattern’s Constraints. Hence, all restricted Variables must have a value assigned.

• The uniqueness invariant demands that each Match holds at most one Assignment for each
Variable. This restriction eases the definition of Constraints.

• correctness means that a Match fulfills every Constraint of its Pattern. Fulfilledness is defined
depending on the respective Constraint’s type (see below).
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c o n t e x t T y p e C o n s t r a i n t
def : f u l F i l l e d (m: Match ) : Boolean =

s e l f . v a r i a b l e→
f o r A l l ( v | m. a s s i g n m e n t s→ s e l e c t ( a | v = a . v a r i a b l e ) . v a l u e . t y p e = s e l f . reqType )

c o n t e x t I n c i d e n c e C o n s t r a i n t
def : f u l F i l l e d (m: Match ) : Boolean =

l e t c = m. a s s i g n m e n t s→ s e l e c t ( a | C = a . v a r i a b l e ) . v a l u e
in (S →isEmpty ( ) or m. a s s i g n m e n t s→ s e l e c t ( a | S = a . v a r i a b l e ) . v a l u e = c . s o u r c e )

and (T →isEmpty ( ) or m. a s s i g n m e n t s→ s e l e c t ( a | T = a . v a r i a b l e ) . v a l u e = c . t a r g e t )

A TypeConstraint is fulfilled iff the values of all attached variables are of the type demanded by
its reqType attribute. This definition does not consider any type hierarchy. The IncidenceCon-
straint demands that the edge assigned to the connector variable (the singleton collection C ) is
the source resp. the target of the corresponding variables. This restriction only applies if an
according variable is connected to the constraint.

The presented invariants (partially) define the validity of Matches, but do not state how such
an assignment can be computed. Language implementations therefore need to provide an opera-
tional implementation of these invariants.

4 Extending the Query & Transformation language

The core language defined in the previous section allows to model queries using a basic set
of language constructs. This section introduces a technique to add additional constructs to the
language, e.g. to represent special semantics of a high-level language. As example, the Type-
Constraint mentioned above is extended to support type inheritance. This is achieved by adding
an additional constraint to the language’s meta-model, and by reducing its intended semantics to
those of existing constraints.

4.1 Type-level reasoning

The reduction of constraints usually requires to reason on the entities’ types and their relations.
For this purpose, we added a mechanism which reflects the database graph schema into the run-
time graph, as shown in Figure 5. On the left side (Figure 5a), the standard situation using
separate instance and schema models is shown. Dashed arrows indicate an entities’ type. How-
ever, the Query & Transformation Mechanism is not able to traverse this relation or examine the
entities’ types. Therefore, Figure 5b reflects the graph schema into the runtime data as special
Reflection Graph. Node classes and edge classes are represented by nodes in this graph, with
attributes storing the types’ names. Edges model the inheritance relations. Additional edges
connect entities of the regular instance graph to nodes representing their types in the Reflection
Graph. The Query & Transformation Mechanism can therefore traverse and analyze this graph
in the same way as regular instance graphs are handled. For the sake of clarity, some represents
and instance of lines are omitted in the figure.
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4.2 Basic constraint reduction

To revive the initial example, Figure 6 (left side) shows an additional SubTypeConstraint used to
check an entities type compatibility. Just like the regular type constraint, it receives the type’s
name by the reqType attribute. In order to evaluate this constraint based on the core language, it
is reduced to the query on the right. Node variable h1 corresponds to the original variable. An
IncidenceConstraint is used to traverse the instanceof relation, as checked by the TypeConstraint of
edge variable h2 . The value of h3 is a node in the reflection graph representing the entities class.
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Figure 6: Definition of the SubTypeConstraint

From variable h3 , a so-called IncidenceClosureConstraint traverses an arbitrary (including zero)
number of edges, just like the Kleene star operator does for regular expressions. In contrast
to the IncidenceConstraint, this constraint is not connected to any edge variable, as an unknown
number is traversed during pattern matching. To restrict the traversed edges to a certain type, the
IncidenceClosureConstraint expects an edge class passed as value of the reqType attribute. In this
case, the type superclass is given, whose instances model inheritance relations in the reflection
graph. According to this relation, entities assigned to the target variable h4 are again nodes of
the reflection graph representing classes. Another AttributeConstraint checks the respective class
name, only retaining the class named B as valid assignment.

As result of this transition, the SubTypeConstraint is fulfilled iff the pattern on the right of Fig-
ure 6 is fulfilled. For variable h1 , the value’s type h3 is retrieved, and all reachable supertypes are
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checked whether they carry the requested name B. Variables h3 and h4 may get the same entity
assigned, so the case that the value of h1 is an instance of class B is covered, too. Furthermore,
the reachability check also supports multiple inheritance offered by DRAGOS.

The replacement shown in Figure 6 can be expressed easily by a graph transformation rule.
This replacement rule is run in a pre-processing phase before invoking the resulting query.

4.3 Nested pattern matching

The previous subsection demonstrated a simple conversion rule to replace extended language
constructs by basic ones. The DRAGOS Query & Transformation Language additionally allows
to replace parts of a rule recursively, which is necessary to define the IncidenceClosureConstraint
used above. Our approach for recursive replacements is based on the idea of nested queries,
which is presented in the following.

On the syntactic level, the Query & Transformation Language meta-model is extended by
adding Pattern to the subclasses of PatternElement (c.f. Figure 4), so that its instances may contain
other patterns. Furthermore, class Match gains a reflexive association to model nested matches.
For all matches, this relation has to be coherent with their respective patterns’ nesting. This
condition implies that a child pattern is evaluated only if a match of its parent pattern exists.

Semantically, nested patterns are matched independently from each other if constraints only
refer to variables of the same pattern. The resulting set of matches (if “joining” assignments of
parent and child matches) is the cross-product of matches of non-nested patterns. However, there
are two possible interactions between parent and child patterns: Firstly, constraints can restrict
variables of child patterns. As the child pattern’s variable is not bound when checking fulfilled-
ness of the parent pattern, such constraints cannot be verified. Fulfilledness of the constraint’s
pattern therefore only demands that no constraint is violated, thus allowing unevaluable con-
straints to persist. In addition, a pattern is matched only if no constraint of any ancestor pattern
is violated by its variable assignments. Secondly, variables can be restricted by constraints of
child patterns. Here, the common conditions for non-nested queries suffice, demanding fulfilled-
ness (more generally non-violatedness) of a pattern’s constraints. However, references between
entities of sibling patterns are forbidden to keep matches independent of each other.

A final aspect on nested queries that needs to be addressed here is the processing of the re-
sulting match structure. As result, we determine the validity of a match with regards to its child
matches. From the application’s point of view, an invalid match is treated as non-existent. Match
validity can be specified w.r.t. two criteria: The pattern condition ensures that a match contains
appropriate child matches for a specific child pattern. One usage of this condition is to reason on
the number of these matches, e.g. at most zero matches to model negative application conditions.
In the following, nested patterns are treated according to the intuitive at least one cardinality. An-
other approach is the group condition, which specifies the treatment of distinct child patterns (if
any, otherwise the condition is true). Here, e.g. a boolean operator such as ∨ or ∧ can be applied
on the pattern conditions’ results. In the following, we assume an ∨ condition, so that at least
one match for at least one child pattern has to be found.

Figure 7a shows a nested pattern searching for paths of length 0 or 1. The outer variables
are assumed to be bound before, in surrounding parent pattern. Pattern h1 contains a single
IsomorphismConstraint. As only the outer variables are bound when searching for matches of
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Figure 7: Patterns for incidence closure

h1 , this constraint is always fulfilled. Therefore, a single match without any assignments exists
for this pattern. The inner pattern h2 checks whether the outer variables have the same value
assigned, which represents a path of length 0. In contrast, pattern h3 traverses an edge (according
variable and type check are omitted here), and checks whether the reached node equal the outer-
right variable’s value. The IsomorphismConstraint of h1 requires that the target node is not identical
to the outer-left variable’s value, to exclude reflexive edges. Processing rules discussed above
state that at least one of these nested patterns need to be matched to obtain a valid match for h1 .

4.4 Recursive constraint reduction

Although nested queries allow to express alternative patterns, they can only be used to check a
limited number of variables. Usually, this number cannot be given in advance, e.g. the Incidence-
ClosureConstraint requires to check for paths of an arbitrary length. The only, albeit impossible,
solution would be the specification of an infinite number of patterns. Therefore, we apply a
mechanism for recursive expansion of queries at runtime.

The language’s meta-model is extended by a PatternReference class, which references a pattern
defined by the developer. References are replaced by the corresponding pattern when its con-
tainer pattern is matched successfully. Recursion is achieved by copying a pattern into itself, also
copying the reference being expanded. If multiple references exist within the same pattern, their
order of replacement is undefined. However, consistency conditions introduced below ensure
that the result is indeed independent of this order. Furthermore, reference expansion should be
guaranteed to terminate in recursive situations. Although this property is not ensured directly,
expansion can only occur whenever a pattern is matched. Therefore, termination of reference
expansion is given if only a finite number of patterns can be matched. Obviously, this can be
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achieved by an IsomorphismConstraint limiting at least one variable per pattern to an entity not
assigned to other variables. Therefore, finiteness of the host graph implies finiteness of matched
patterns and expansion steps.

The actual application of pattern references is introduced by referring to the IncidenceClosure-
Constraint. Figure 7b shows a variant of the nested pattern introduced above. In contrast to
Figure 7a, pattern h3 does not contain an own IdentityConstraint to check the connectedness of the
path ends. Instead, two PatternReferences are given: The upper one refers to pattern h2 , which
means that this pattern is copied into pattern h3 if the latter can be matched. Furthermore, the
lower reference copies pattern h3 into itself.

Reference expansion is conducted as follows: Each PatternReference is replaced by a new pat-
tern created inside the reference’s container, and filled with copies of the referenced pattern’s
entities. This covers the entities’ types, attribute values, and connectedness to other copied en-
tities. However, the question remains how the copied pattern’s context should be handled. This
context is defined by the edges connecting its contained entities to entities not contained in the
pattern being copied, the so-called external links. Figure 7c highlights the external links of Fig-
ure 7b for both copied patterns. Here, this concerns Restricts edges (four times), but also the
pattern referred to by the upper PatternReference.

For each pattern reference, the developer has to specify a mapping of entities connected to
external links, relating them to entities that should be connected to the referred pattern. Identical
mapping of an element to itself is a valid choice. Mappings are copied along with other pattern
entities during reference expansion, which is required for recursive expansions.

In order to achieve the desired replacement in case of the IncidenceClosureConstraint, the fol-
lowing mappings are required (c.f. broad arrows in Figure 7c):

• The upper reference copies pattern h2 into pattern h3 to check value-identity of the outer-
right variable and the variable of h3 . Therefore, the outer-left variable referenced by h2 is
mapped to the variable of h3 , whereas the outer-right variable is mapped identically.

• Expansion of the lower reference should yield a query for path of length 2. Therefore, the
same mapping of the outer-left variable to the variable of h3 applies here, such that the
IncidenceConstraint of the copy of pattern h3 refers to the original’s variable as source.

• The traversed node should not have been visited before, so all node variables are connected
to the IsomorphismConstraint of h1 , which is mapped identically for this purpose. This
constraint ensures termination of the replacement, as discussed above.

• A last external link of the lower reference is the pattern referred to by the upper reference.
Here, pattern h2 is mapped to its reference, such that the copied reference will refer to
the expanded upper reference of h3 . In this case, identical mapping would lead to broken
copied mappings in later expansion steps, if the lower reference is expanded first.

Using these mappings, expanding both references yields the pattern structure shown in Figure 7d.
Expanding the upper reference results in h5 , whereas the lower one is expanded to h4 . The
resulting query checks for paths of length 0 by matching h1 and h2 , and 1 by matching h1 , h3 ,
and h5 , respectively. Paths of length 2 can be found after the next step, using h1 , h3 , h4 , and the
expanded reference to h5 .
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This section showed how complex or application-specific language constructs (represented by
constraints) can be reduced to basic ones. With the presented nested query mechanism, recursive
expression can be captured as well. Although its evaluation might be inefficient, it serves as the
guideline for implementing the DRAGOS Query & Transformation Language. This is required
by the fact that the actual storage backend of DRAGOS is exchangable, and so is the implemen-
tation of its language. As discussed in [Wei07], such implementations may either rely on the
DRAGOS core graph model, or convert rules into a backend-specific format. e.g. SQL state-
ments. To provide an efficient implementation, language extensions might also be converted into
such a backend-specific language. The modeled reduction rules in this case serve as the formal
definition and as reference used in test-based validation of the specific implementations.

5 Related Work

In contrast to previous publications on DRAGOS [Böh04] and the according Query & Transfor-
mation Language [Wei07], this paper focusses on the language’s extensibility. In this section,
we give a brief comparison to other research in the area of graph transformations.

Graph transformations based on constraint satisfaction. The DRAGOS Query & Trans-
formation Language is based on the theory of constraint satisfaction problems (CSPs) known
from artificial intelligence. CSPs are well-suited to model graph pattern matching by solving
the subgraph-isomorphism problem [LV02]. Algorithms have been proposed for this purpose
which circumvent efficiency concerns arising from the problem’s complexity in most situations
[FSV01]. In our work, we implement the proposed language based on existing databases, and
therefore extensive development of a basic constraint solver is not of crucial importance. Instead,
we focus on implementations based on sophisticated storage backends like databases.

Graph transformations on databases. As briefly mentioned in Section 4, we not only provide
an operational implementation of the presented language. In addition, queries and transforma-
tion rules can be converted into a language offered by the respective storage backend, e.g. SQL.
Building GTS on this language has been presented by [VFV06], which is based on the construc-
tion of database views and update operations from graph transformation rules.

Ongoing work in our project generalizes this idea by deriving SQL statements from the more
expressive DRAGOS Query & Transformation Language. Furthermore, its language structure
allows an easier processing, as it already separates between variables and constraints. Therefore,
we are able to apply an extensible rule language on various storage backends, not limited to
the SQL or one of its DBMS-specific variants. Implementations do not need to cover the entire
DRAGOS Query & Transformation Language, as extended language constructs may be reduced
to basic ones. Moreover, evaluation may fall back on a generic implementation only based on
the DRAGOS graph model, which is independent of the actual storage backend.

Complex pattern matching. A large amount of recent publications deals with the represen-
tation and semantical definition of complex graph patterns. Besides recent work in our own
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department, [Ba07] proposes set-valued graph patterns by grouping, and [LLP07] discusses re-
peated pattern structures beyond binary path expressions. [DHJ+07] utilizes graph grammars to
build transformation rules, similar to two-level grammars.

The stepwise extension of pattern references can be seen as a simple graph grammar, and
indeed provides similar functionality. Therefore, arbitrary repeated structures can be expressed
by building nested queries, as shown in Figure 7. This is not limited to binary path expressions,
but can be applied for n-ary structures as well. The definition of proper sub-pattern interfaces,
expressing how sub-patterns are to be glued together, is given by a consistent element mapping.

Graph transformation languages for visual programming. Graph transformation languages
like PROGRES provide similar functionality to the DRAGOS Query & Transformation Lan-
guage. In fact, PROGRES can already generate code to store the runtime data persistently using
DRAGOS. However, this approach leads to inefficient applications because the generated code
performs many simple operations on the DRAGOS graph model. In our approach, DRAGOS in-
terprets transformation rules itself, and hence may utilize storage backends more appropriately.

In contrast to common graph transformation languages, the low-level DRAGOS Query &
Transformation Language is not feasible for direct use by a specificator. Therefore, it should not
be considered as competitor to existing languages, but as a common core for existing and new
languages to build on.

6 Conclusion

In this paper, we introduced the Query & Transformation Language currently being developed
for the DRAGOS graph database. This language especially focuses on extensibility, which is the
core aspect of this publication. Developers may choose to add new constructs to the language
in case existing ones do not suffice the application’s needs or do not match its semantics. These
are implemented by reduction to existing ones, also allowing recursive substitutions. In addition,
language constructs may be converted into a storage-specific query such as SQL statements.

The presented work is fully implemented based on the DRAGOS graph model interface, des-
ignated as generic implementation in [Wei07]. Currently, we are working on an SQL-based
solution. Interesting problems remain in the recursive evaluation of queries, which cannot be
expressed directly in many database systems2. Upon completion, we will conduct performance
evaluations comparing the Query & Transformation Language to DRAGOS applied in the code
generation approach. Furthermore, comparisons to other graph transformation solutions based
on databases are of interest.

Currently, we are embedding support for control flow into the language definition and its
generic implementation. Core features of this mechanism include hierarchical rule composition,
optional dataflow and rule invocation. Rule application strategies will allow non-deterministic
and random (with or without backtracking) processing of multiple matches. Using this mecha-
nism, rules can be combined to complex graph transformation systems.

As next step, we will investigate which additional language constructs are required to support
different approaches to graph transformations, such as the algebraic approach or hyper-edge
2 Altough recursive SELECT statements are defined by SQL3, support is optional and obviously not very popular.
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replacement grammars [Hab93]. This way, DRAGOS can serve as a platform to develop new
constructs for graph transformation languages by offering a high-level extension mechanism.
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Abstract:

This paper presents a Live Sequence Chart (LSC) to automata transformation al-
gorithm that enables the verification of communication protocol implementations.
Using this LSC to automata transformation a communication protocol implementa-
tion can be verified using a single verification run as opposed to previous techniques
that rely on a three stage verification approach. The novelty and simplicity of the
transformation algorithm lies in its placement of accept states in the automata gen-
erated from the LSC. We present in detail an example of the transformation as well
as the transformation algorithm. Further, we present a detailed analysis and an em-
pirical study comparing the verification strategy to earlier work to show the benefits
of the improved transformation algorithm.

Keywords: live sequence charts, transformation, automata, verification, non-determinism

1 Introduction

Current trends in system development are shifting towards creating and developing larger sys-
tems using several smaller communicating sub-systems. With the increasing popularity of such
modular designs comes the burden of creating, implementing, and testing the implemented com-
munication protocols. Specification of communication protocols has been explored significantly
in the past. English, which has been traditionally used as the most common language for spec-
ifying protocols, lacks the formal rigor and preciseness needed for clarity. Viable alternatives
are formal specification languages such as UML, Message Sequence Charts (MSCs) and Live
Sequence Charts (LSCs) [IT93, DH99, BDK+04]. The evolution of these graphical languages
has led to their application to modeling and specifying communication behaviors in a variety of
different domains [BHK03, KHG05, DK01]. Other research has also investigated the automatic
synthesis of systems from LSCs as well as the verification and validation of requirements on
the LSCs themselves [HK01, AY99, SD05]. Efficient methodologies for using these graphical
languages in a formal verification environment provide the support in the development process
to completely certify, test and develop a system. Since LSCs are a more expressive and seman-
tically rich visual specification language compared to MSCs, Timing Diagrams and Sequence
Diagrams in UML, we focus on techniques related to LSCs. Due to the encompassing nature
of LSCs, the techniques and algorithms presented in this paper are also applicable to the afore

1 / 14 Volume X (2008)

mailto:rahul@cs.byu.edu
mailto:egm@cs.byu.edu


Improved LSC to Automata Transformation

mentioned specification languages.
Previous work in [KTWW06,Klo03] presents a strategy to verify systems against LSC specifi-

cations by transforming the LSC to a positive automaton. We use the term positive automaton to
denote automaton that witness chart completions. With the positive automaton, a system is veri-
fied against the LSC in three stages: reachability analysis for detecting safety violations, ACTL
verification for detecting liveness errors, and finally, if the first two steps fail to provide a signif-
icant result, full LTL verification is required to completely verify the system. The authors argue
that the verification algorithms are applied in increasing order of cost and for certain sub-classes
of LSCs not all algorithms need to be applied, which can eventually save on the total verifica-
tion cost. Although the approach presented in [KTWW06] is sound, it has several drawbacks.
For any arbitrary LSC, the approach at a minimum has to apply reachability analysis as well as
ACTL model checking for verifying the safety and liveness properties of the system against the
LSC. In the worst case, LTL verification is required to completely verify the system, which was
shown to be impractical for LSC verification [KM07]. Another drawback of the verification ap-
proach is the specialized algorithms and tools that have to be created to perform the verification,
which limit the general applicability and acceptance of the approach. The approach presented
in this paper only requires one verification algorithm of the same cost as reachability analysis to
completely verify a system against any arbitrary LSC.

We present a direct and obvious transformation of the LSC to a negative automaton by chang-
ing the placement of accept states. We use the term negative automaton to denote automaton that
witness chart violations as opposed to chart completions. Using this improved LSC to automa-
ton transformation a system can be formally verified against the LSC specification by performing
only language containment on the parallel composition of the system automaton and the nega-
tive automaton of the LSC created using the transformation algorithm presented in this paper.
Additionally, this approach does not require the use of customized algorithms and tools to verify
a system against a specification. Using our new LSC to automaton transformation, we verify
systems against larger more concurrent LSCs that were previously not verifiable with direct LSC
to LTL or LSC to positive automaton transformations.

The structure of the paper is as follows. Section 2 presents a brief introduction to LSCs and
an overview of the basic LSC to automaton transformation algorithm as described in [Klo03].
Section 3 discusses in detail an example of using our approach for verifying a system against
an LSC. This example will be used for the remainder of the paper as well. Section 4 dis-
cusses the details of the transformation algorithm and presents the theoretical results to prove
the correctness of the transformation algorithm. Section 5 presents an analysis of the improved
transformation compared to the old transformation presented in [Klo03]. Section 6 presents a
subset of the results using the improved verification approach in both symbolic and explicit state
model checkers. Finally, 7 discusses the conclusions and future work. Proofs, details and addi-
tional results can be found in the long version of the paper at http://vv.cs.byu.edu/∼
rahul/lsc2automata.pdf.
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2 LSC Overview

We briefly introduce some constructs of the LSC grammar1. Fig. 1(a) shows an example LSC
where an idle node in a compute cluster requests and processes a job from the scheduler’s queue
with a possible implementation of the Node and DB process in Fig. 1(b). There are three pro-
cesses in the example LSC: Scheduler, Node and DB. Each process is drawn with a rectangular
instance head and a vertical life-line originating from each instance head. The life-line represents
the time dimension in the LSC with time progressing in the downward direction. Communication
between processes occurs via messages with the arrows representing the direction of communi-
cation. The idle message is an example of a synchronous message (filled arrowhead) where both
the sender and receiver have to be ready for the message to be observed. The actual message
communication occurs instantaneously for the sender and receiver. The result message is an ex-
ample of an asynchronous message (unfilled arrowhead) where the sender does not have to block
for the receiver to be ready to receive the message. The send event is written as result! and the
receive event is written as result?. The example LSC also contains a cold non-bonded condition
(second dashed hexagon) which enforces the validID predicate after a jobID has been received
from the Scheduler. If the condition is violated, the Node process exits the chart. On each
life-line any point where a condition or an event occurs is referred to as a location. Locations
are unique to each life-line and in our research are represented by numbers next to the instance
life-line. By default all locations are hot or mandatory locations unless specified otherwise using
a dashed line for the life-line. The location for receiving the result message in the Scheduler
life-line is the only cold location in the example chart. The behavior specified on a cold loca-
tion is not mandatory, which implies that the result message may or may not be received by the
Scheduler. Finally, behaviors described by the LSC are partitioned into the pre-chart (dashed
hexagon before solid rectangle) and the main chart (rectangle after pre-chart). The pre-chart
specifies the activation condition of the LSC and the main chart describes the behavior which
must follow the pre-chart. In the example LSC, the main chart is a universal main chart (solid
line), which represents behaviors that have to be observed every time the pre-chart is satisfied.

In addition to the constructs shown in the example LSC, several other constructs are also
available. The main chart can be specified as an existential chart (drawn with a dashed rectangle)
that specifies behavior the system must satisfy at least once when the pre-chart is satisfied (as
opposed to every time the pre-chart is satisfied). Conditions if attached to another event are
bonded otherwise non-bonded. By attaching conditions to other events, the condition is evaluated
at the exact moment the bonded event occurs, as opposed to non-bonded conditions where the
condition is continuously evaluated until satisfied. LSCs also allow the specification of invariants
which are conditions spanning over multiple events in the LSC. Co-regions specified with a
dashed line parallel to a life-line allow events to occur in any order. For example, if the messages
getData and data are specified in a co-region, either message data or getData may occur first.
It is only necessary for all events in a co-region to occur. Finally, conditions, messages, and
locations may be specified as hot or cold. If drawn with a solid line, the construct is hot and
specifies mandatory behavior, and if drawn with a dashed line, the construct specifies cold or
provisional behavior.

1 See [DH99, BDK+04] for details.
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getData
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Process Node:
1: if(idle) then
2: Send(‘‘idle’’, Scheduler)
3: Receive(‘‘jobID’’, Scheduler)
4: if(not ‘‘validID’’)
5: break
6: Send(‘‘getData’’, DB)
7: Receive(‘‘data’’, DB)
8: Send(‘‘result’’, Scheduler)
9: endif
10: End Process Node
11: Process DB:
12: while(true){
13: Receive(msg, Node)
14: if(msg is ‘‘data’’)
15: Receive(‘‘data’’, Node)
16: endif
17: RemoveData(data)
18: endif
19: end while
20: End Process DB

(a) (b)

Figure 1: An example specification describing the interaction between a cluster node (Node), a
database (DB) and a job scheduler (Scheduler), and a possible implementation of the Node and
DB processes (a) The example LSC containing a subset of the complete LSC grammar (b) A
system implementing the Node and DB processes described in the LSC.

Our method supports all the mentioned constructs of LSCs with the following commonly
accepted restrictions. First, we adopt the strict interpretation of LSCs (i.e., no duplicate message
instances are allowed within a chart). Second, the LSC and all charts within the LSC are to
be acyclic. Third, we also do not consider overlapping LSCs or iterative LSCs (Kleene stars)
where multiple instances of the chart may be executed simultaneously. Since most scenario
based specifications in general do not deal with the constructs omitted from this research, the
restrictions do not affect the general applicability of our results.

2.1 Transforming Live Sequence Charts to Automata

Past research in the area of transforming LSCs to automaton has primarily revolved around the
generation of positive automaton that detect chart completions [Klo03, HK01, BH02, KW01].
Work in [Klo03] gives a detailed presentation of the algorithm to transform an LSC to positive
automaton. We present an overview of this algorithm followed by a discussion of some key
aspects of the algorithm.

The LSC to automaton unwinding algorithm explores all possible inter-leavings of the events
defined in the LSC starting from the top and ending at the bottom of each life-line in the chart.
The possible event inter-leavings are explored by considering the partial order induced by the
semantics of the LSC. The partial order of the chart dictates that the locations in each instance
are totally ordered unless part of a co-region; thus, implying that each instance has to progress
linearly from top to bottom. For example, in the chart shown in Fig. 1(a), instance Node cannot
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move from location 1 to location 4. From location 1, Node has to move to the next logical
location: location 2. To maintain the current state of the LSC, we define a cut as a set of locations
in the chart with exactly one location for each instance. The cut is used to record the current
state of the chart and create successor cuts. The reachable set of cuts from the initial cut is the
automaton for the chart. Each state of the automaton corresponds to a reachable cut of the chart.
Successor cuts are generated using the set of enabled transitions for a given cut. The initial cut for
all charts is created by placing each instance at its first location, (0,0,0), where the first, second
and third locations correspond to the locations for the Scheduler, Node and DB instances.

The enabled set of transitions for a cut is created using the chart semantics. For example,
a synchronous message is enabled if both the sender and receiver of the message are at their
respective send and receive locations. In our chart, the message idle is observed if the Scheduler
and Node instances are each at locations 0. At the initial cut, (0,0,0), the idle message is
enabled. On the other hand, since the Node is not at location 3, the getData message is not
enabled in the initial cut, even though the DB is at location 0. When the idle message is explored
from the enabled set, a successor cut is generated where the locations for the involved instances
have been updated. In this case, the locations for the Node and Scheduler instances are updated
to their next logical location giving us the successor cut (1,1,0). At the cut (1,1,0), the jobID
message is enabled, which leads to the cut (2,2,0). Asynchronous sends are enabled by default
when the corresponding instance is at the send location and asynchronous receives are enabled
only if the corresponding send event has occurred and the receiving instance is at the receive
location. Conditions act as a synchronization point where each participating instance should be
at its respective condition location for the condition to be evaluated. A full description of these
semantics can be found in [Klo03]. Multiple enabled transitions lead to multiple successor cuts
from the given cut representing the concurrency in the chart.

Using the chart semantics, successor cuts are generated from the initial cut and each unique
cut is processed until the final cut is reached where each instance is at the bottom of its life-line.
Each unique cut of the chart corresponds to a state in the final automaton. The initial cut (0,0,0)
corresponds to state q0 in Fig. 2(a). The successor cut (1,1,0) corresponds to the state q1 where
the idle message has already been observed and the next message to be observed is jobID. Cut
(2,2,0) corresponds to state q2 and the final cut corresponds to state q7 where no further events
are to be observed. Notice that transitions taken to generate successor cuts correspond to the
transition labels in the automaton.

Finally, to create the positive automaton from the LSC, states corresponding to legal exits of
the chart are marked as accept states. For example, state q7 in Fig. 2(a) is marked as an accept
state because it corresponds to the final cut of the LSC which represents a legal completion of
the chart. Additionally, state q6 is also marked as an accept state since it corresponds to the cut
where the cold message result does not have to be received.

From the automaton in Fig. 2(a) we also notice that state q2, where cold condition validID
occurs is non-deterministic. This non-determinism is a result of the adopted semantics of cold
conditions in [Klo03]. If validID is not satisfied, the automaton can either stay in state q2 and
wait for the condition to be satisfied or move to the exit state qexit to signify that the cold condition
was not satisfied and the chart has exited successfully. This non-determinism resulting from non-
bonded conditions forces the approach of [Klo03, KTWW06] to translate the LSC automaton to
an LTL property and re-perform the verification using the LTL property, which has been shown to
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be ineffective for even moderate size charts due to the size of the resulting LTL formula [KM07].

3 Transformation and Verification Example

We use the automaton produced by the unwinding algorithm discussed earlier as our initial
automaton. The initial automaton from the unwinding algorithm is shown in Fig. 2(a). We
transform this positive automaton to a negative automaton that can be used in our single pass
verification approach. Fig. 2(b) and (c) show the transformed negative automaton.

Our approach transforms the LSC chart to a negative automaton capable of detecting chart
violations (as opposed to chart completions) that is naturally suited for verifying systems using
language containment. The first step in the transformation process is to remove all the accept
labels from the automaton. Next the exit state qexit and any transitions leading to the exit state
are removed from the initial automaton. In our example of Fig. 2(a) we remove the transition
from state q2 to state qexit , which also removes the non-determinism from the automaton arising
from the non-bonded condition. The algorithm then introduces safety transitions (dashed edges
in Fig. 2(b)) from all states that contain a transition belonging to the main chart to the safety
state qsa f ety. The safety state is an accept state introduced in the automaton to capture all safety
violations in the system. It has a single outgoing transition to itself predicated on true. The
safety transitions enable the detection of safety violations which consist of duplicate messages
(messages that have been observed before) and out of order messages in states that correspond
to main chart states. For example, in state q1 of Fig. 2(b), the only legal transition is if the jobID
message is observed. Since jobID is a main chart transition, state q1 corresponds to a main chart
state and a safety transition is introduced. The safety transition idle∨getData∨data∨ result!∨
result? from state q1 to qsa f ety is taken if any message except jobID is observed.

After the introduction of safety transitions, the algorithm updates the self-loops on each state
(dotted edges in Fig. 2(b)). The self-loops enable the automaton to remain in a given state until
an event forcing progress is observed. For example, in the automaton shown in Fig. 2(b), state q4
has a self-loop, ¬idle∧¬ jobID∧¬getData∧¬data∧¬result!∧¬result?, that is taken until the
data message is observed, which moves the automaton to the next state q5. The only exception
is the self-loop for the first state and the final state. The first state q0 contains a self-loop with
the true annotation to capture all possible future instances (and possible errors) of the chart in
a reactive system. The final state does not have any self-loops. This is because the final state
represents the successful completion of the chart and no further errors are possible unless a new
chart instance is observed, which is detected in the first state.

Finally, the algorithm marks illegal end points of the main chart as accept states to facilitate
detection of chart violations. For example, state q1 in Fig. 2(b) is at the beginning of the main
chart where the message jobID is yet to be received. If the jobID message is never observed,
the automaton remains in state q1 indefinitely, which should be reported as an error. To report
this error, state q1 is marked as an accept state. States containing no transitions corresponding
to hot constructs in the main chart are not marked as accept states. For example, in Fig. 2(b),
state q2 is not marked as an accept state because the validID condition is a cold condition, and
its absence does not result in an error. State q0 is not marked as an accept state either because it
does not contain any outgoing transitions corresponding to a hot construct in the main chart. If
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f0 idle∨getData∨data∨ result!∨ result? f1 idle∨ jobID∨getData∨data∨ result!∨ result?
f2 idle∨ jobID∨data∨ result!∨ result? f3 idle∨ jobID∨getData∨ result!∨ result?
f4 idle∨ jobID∨getData∨data∨ result? f5 idle∨ jobID∨getData∨data∨ result!
p0 jobID∧¬idle∧¬getData∧¬data∧¬result!∧¬result? p1 validID∧¬ jobID∧¬idle∧¬getData∧¬data∧¬result!∧¬result?
p2 getData∧¬idle∧¬ jobID∧¬data∧¬result!∧¬result? p3 data∧¬idle∧¬ jobID∧¬getData∧¬result!∧¬result?
p4 result!∧¬idle∧¬ jobID∧¬data∧¬getData∧¬result? p5 ¬idle∧¬ jobID∧¬getData∧¬data∧¬result!∧¬result?

(c)

Figure 2: The initial and transformed automaton for the example LSC shown in Fig. 1(a). (a) the
initial automaton (b) the transformed automaton and (c) list of transition labels.

the idle message is never observed, the pre-chart is not satisfied, which is not a violation of the
specification. State q6 is not marked as an accept state since the location of the result? event is
cold implying that the result? event does not have to be observed. Finally, state q7 in Fig. 2(b)
is also not marked as an accept state since it is the final state where the behavior as described in
the universal chart has been satisfied without errors.

Verification of the system is performed by first creating the system automaton in the usual
manner. We verify the parallel composition of the system automaton and the negative automaton
of the LSC by searching the behavior space of the intersection for accepting cycles. Any cycles
detected correspond to errors in the system. Fig. 1(b) shows a possible implementation of the
Node and DB processes in a cluster. The Scheduler process has not been shown in the implemen-
tation but is assumed to be correctly implemented. When idle, the Node process requests a job
from the scheduler (line 2). The Node process then waits to receive the jobID and validates the
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jobID using the predicate validID (lines 3 - 5). Next, the Node process requests data from the
DB (line 6), processes the data and sends the result to the Scheduler (lines 7 - 8). The DB process
receives and processes messages as they arrive (lines 12 - 19). In this particular implementation,
the DB process is erroneous because it never receives/processes the getData message from the
Node. Since the getData message is a synchronous message and the DB process is never ready
to receive the getData message, the Node and DB processes never progress even though they
should. Verification of the parallel composition of the system automaton (not shown) with the
property automaton in Fig. 2(b) produces the word (idle, jobID,validID, (¬getData)ω), with
the corresponding trace: (q0,q1,q2,(q3)ω), where ω indicates infinite repetition. Since q3 is
marked as an accept state, the trace is reported as an accepting cycle and the violation has been
discovered. Using the positive automaton in the verification approach of [KTWW06] requires
two verification runs of comparable complexity to detect the same violation.

4 Transformation and Verification Details

The transformation presented in this work is based on language containment and automata the-
ory. We use Symbolic automata, an extension of Büchi automata, that allows observing any of a
possible set of inputs on an edge. Formally Symbolic automata are given by A = 〈Σ,Q,∆,q0,F〉
where, Σ is the finite alphabet of input symbols (variables), Q is the finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final/accepting states, and ∆⊆ Q×φ ×Q is the transition
relation. A transition (q,φ ,q′)∈∆ represents the change from state q to state q′ when the formula
φ is satisfied.

We partition the set of Boolean variables Σ into three distinct sets Σmsgs, Σinvariants, and
Σconditions, that contain the Boolean variables that are used for messages, invariants and condi-
tions in the chart respectively. For the chart shown in Fig. 1(a), Σmsgs = {idle, jobID, getData,
data, result?, result!} and Σconditions = {validID}. The set Σmain = { jobID, validID, getData,
data, result?, result!} is the set of Boolean variables that are used in the main chart only. We
also have a set ∆hot ⊆ ∆ which only contains transitions that correspond to hot constructs in the
chart (hot messages, hot conditions etc.).

For a set of Boolean functions Γ = {φ0,φ1, ...,φn} we define the function dis junct(Γ) which
returns the disjunct of the individual formulas in Γ and the function con junct(Γ) which returns
the conjunction of the individual formulas in Γ. The function f (Σ,φ) = {σ |σ ∈ Σ and σ or
¬σ appears in φ} returns the set of Boolean variables from Σ that appear in φ in either a
positive or negative form. For example, if φ = idle∧ validID, f (Σmsgs,φ) = {idle} and
f (Σcondition,φ) = {validID}.

We take as input the automaton structure for a chart in the form of a symbolic automata
structure, A, with an empty final state set. Intuitively, to capture the bad behaviors of a chart, we
transform the basic automaton structure to the negative automaton that is capable of detecting
safety and liveness errors by yielding accepting cycles in the verification. We do so by adding
accept states to the automaton and adding/updating all transitions.

Fig. 3 shows an intuitive description of the outgoing transitions of a state in the transformed
automaton. The sets ψc,ψm and ψi (initialized by the algorithm in Fig. 4) are sets of condition,
message, and invariant letters used in the outgoing transitions of a given state. There are three
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φsafety = dis junct(Σmsgs \ψm)∨
¬con junct(ψi)

φchild = φ ∧¬dis junct(Σmsgs \ f (Σmsgs,φ))

φself = ¬dis junct(Σmsgs)∧

true

¬dis junct(ψc)∧
con junct(ψi)

Figure 3: A generic state in the transformed automaton with complete annotations for all types
of outgoing transitions 1. φself: self-loop for non-progress, 2. φsafety: transition to state qsafety
for detecting safety errors, and 3. φchild transitions to the successor states.

types of transitions that are introduced/updated for each state in the automaton. The φsafety
transition (dashed edge) leads to the safety state and is responsible for detecting any safety errors.
The self-loop (dotted edge), φself, enables the automaton to remain in the current state until an
event or condition progresses the automaton to a successor state. The φchild transitions (solid
edges) lead to the successor states. The dash-dot edge is only added to the first state of the
automaton to enable verification of multiple chart instances in a reactive system.

States are marked as accept states in the automaton based on two criteria. First, the safety state
is marked as an accept state for detecting safety violations such as duplicate message instances
and out of order messages. Second, any state that is not a legal exit point of the chart is marked
as an accept state. We now discuss in detail the creation of the transitions and the marking of
accept states.

Fig. 4 shows the algorithm for transforming the input automaton. We only present an overview
of the algorithm in this version of the paper and refer the reader to the long version for more
details. The algorithm has a general Depth First Search (DFS) structure with line 4 enumerating
the successors and line 11 making a recursive call for each successor. The algorithm is always
invoked for the one initial state of the input automaton to be transformed. Lines 1 - 2 remove any
transitions to the exit state qexit. In the automaton shown in Fig. 2(a), the transition from state
q2 to the exit state qexit is removed. Lines 5 - 7 of the algorithm build the sets of variables that
are used for messages, invariants, and conditions in the transitions from the current state to the
successor states.

Lines 8 - 10 update the transitions to the successor states by first removing the transition and
adding a new transition with the updated label. The updated child transition ensures that only the
enabled messages, invariants and conditions at a given state can enforce progress in the automa-
ton. For example, the algorithm transforms the transition from state q1 to state q2 in Fig. 2(a)
from φ = jobID to φchild = jobID∧¬idle∧¬getData∧¬data∧¬result!∧¬result?.

Lines 12 - 15 update the self-loop for the current state to ensure that the automaton remains in
the current state if no relevant messages are observed. For example, in state q1 of Fig. 2(b), the
self-loop ¬idle∧¬ jobID∧¬getData ∧¬data∧¬result?∧¬result! is enabled if no message is
observed. As mentioned earlier, the first state of the automaton has a self-loop with the true label
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Algorithm: T RANSFORM(q)
1: for ∀δ : (q,φ ,qexit) ∈ ∆ do
2: ∆← ∆\{δ}
3: ψm← /0, ψi← /0, ψc← /0
4: for ∀φ ,q′ : (q,φ ,q′) ∈ ∆ do
5: ψm← ψm∪ f (Σmsgs,φ)
6: ψi← ψi∪ f (Σinvariant,φ)
7: ψc← ψc∪ f (Σconditions,φ)
8: ∆← ∆\{(q,φ ,q′)}
9: φchild← φ ∧¬dis junct(Σmsgs \ f (Σmsgs,φ))

10: ∆← ∆∪{(q,φchild,q′)}
11: T RANSFORM(q′)
12: for φ : (q,φ ,q) ∈ ∆ do
13: ∆← ∆\{(q,φ ,q)}
14: φself←¬dis junct(Σmsgs)∧¬dis junct(ψc)∧ con junct(ψi)
15: ∆← ∆∪{(q,φself,q)}
16: if ∃φ ,q′ : (q,φ ,q′) ∈ ∆ and f (Σmain,φ) 6= /0 then
17: φsafety← dis junct(Σmsgs \ψm)∨¬con junct(ψi)
18: ∆← ∆∪{(q,φsafety,qsafety)}
19: if (q,φ ,q′) ∈ ∆hot then
20: F ← F ∪q
21: return(A)

Figure 4: Algorithm for building a negated automaton from an input LSC automaton.

and the final state of the automaton has no self-loops. These special cases are not shown in the
transformation algorithm in Fig. 4.

If the current state q contains a main chart transition (labels of transitions to successor states
are members of the main chart alphabet Σmain), then lines 16 - 18 of the algorithm add a safety
transition to the safety state qsafety. The safety transition enables the automaton to detect mes-
sage order violations or duplicate messages. For the automaton shown in Fig. 2(a), state q1
contains a single transition for the jobID message. Since jobID is a member of the main chart
alphabet ( jobID ∈ Σmain) a safety transition needs to be added. The safety transition for state
q1, idle∨getData∨data∨ result?∨ result!, detects the presence of any message except the one
allowed message jobID. Because states with no main chart transitions can not violate the chart,
no safety transitions are added to them.

Lines 19 - 20 of the algorithm label the current state as an accept state if it belongs to the main
chart and contains a hot outgoing transition. The check for main chart transitions is performed
on line 16. To check for hot outgoing transitions, each outgoing transition is checked for mem-
bership in the ∆hot set (line 19). If all outgoing transitions from a state are cold, the state is not
marked as an accept state. In our example, for state q2, the only outgoing transition corresponds
to a cold condition and is not part of the ∆hot set; thus, state q2 is not marked as an accept state.
On the other hand state q1 is marked as an accept state because it has one successor transition
that corresponds to the hot message jobID.

We now state the theoretical results of the presented transformation. We first show that for any
main chart state in the automaton at least one transition is enabled for any arbitrary input (i.e.
the transition relation for main chart states is total). Having enabled transitions guarantees that

Proc. GT-VMT 2008 10 / 14



ECEASST

the automaton does not ignore any inputs which could cause violations or progress in the chart.
To conserve space, all proofs have been omitted from this version of the paper but are available
in the long version of the paper.

Lemma 1 For all states containing outgoing main chart transitions, the transition relation is
total. Formally, given a state q with a main chart transition

(∨
∀φi,qi:(q,φi,qi)∈∆ φi

)
= true.

Lemma 1 is only applicable to states containing main chart transitions. Regarding states that
do not contain main chart transitions, the safety transition φsafety is not added, resulting in an
incomplete transition relation. Since these states are responsible for detecting the completion
of the pre-chart and not for detecting violations or errors, the incompleteness of the transition
relation does not affect the correctness of observing the pre-chart. Our next result states that
for all states except the first state of the automaton, the transition relation is deterministic. The
transformed automaton is non-deterministic only in the first state (self-loop annotated with true)
to accommodate for the global verification of every possible instance of the chart in the system.
Non-deterministic automata as used in [KTWW06] result in error traces that have to be validated
using full LTL verification, which has been shown to be impractical for LSCs [KM07]. Using
deterministic automata guarantees that any reported errors are in fact valid errors in the system.

Lemma 2 For states q in the transformed automaton (except the initial state), the transition
relation is deterministic. Formally, ∀q ∈ Q,∀φi,φ j : (q,φi,qi) ∈ ∆∧ (q,φ j,q j) ∈ ∆,(φi ∧ φ j) =
f alse.

The above result guarantees that for any given input to the transformed automaton (except the
first and last state) exactly one transition is ever enabled. We now state our primary result for the
transformed automaton. Intuitively, we show by application of Lemma 1 and Lemma 2 that the
transformed automaton accepts only those words that are not accepted by the LSC and is capable
of detecting all behaviors in a system that violate the LSC. We assume that the automaton created
detects all pre-chart instances correctly.

Theorem 1 The automaton, A, generated by the transformation algorithm in Fig. 4 for a given
LSC, SPEC, defined over an alphabet ΣSPEC⊆ Σ, reads exactly the complement of the language
of the SPEC. Formally, ∀θ = θ0θ1θ2 . . .

[θ ∈ L(SPEC) =⇒ θ 6∈ L(A)]∧ [θ 6∈ L(SPEC) =⇒ θ ∈ L(A)].

where L(A) and L(SPEC) are the languages of the transformed automaton and the SPEC.

4.1 Verification Approach

For explicit state model checking, verification of a system against the specification is performed
in the usual manner. The composition of the system and transformed LSC automata is computed
on-the-fly and checked for accepting cycles using the Double Depth First Search (DDFS) algo-
rithm. If the DDFS algorithm does not discover any accepting cycles, the system implements the
safety and liveness behaviors as described in the chart. For symbolic model checking, we first
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label accept states as fair states in the composition of the system and transformed LSC automata.
This automaton is then verified against the ACTL property EG(true), which searches for fair
Strongly Connected Components (SCCs) reachable from the initial state. Any reported SCCs
are violations of the specification.

5 Analysis

The verification approach presented in [KTWW06] utilizes at least two and in the worst case
three algorithms to completely verify a system against an LSC. If reachability analysis followed
by ACTL verification fails to produce a significant result (proof of correctness or a violation)
the system is verified against an LTL formula generated from the LSC specification [TW06].
Compared to the verification approach of [KTWW06], the new verification approach presented
in this paper only performs one verification run of comparable complexity as the reachability
analysis and ACTL verification in the approach of [KTWW06]. In the average case the total
verification cost is reduced by a factor of two and in the best case (worst case in old approach)
by a factor of three or more.

One side effect of using the negative automaton is the inability to verify multiple instances of
a chart with cold construct violations. For example, if in our example system the Node receives
jobID but is unable to validate jobID, the cold condition validID is never observed and the
chart automaton will remain in state q2. This is not an error since state q2 is a non-accepting
state waiting to observe the cold condition validID. If Node restarts the job acquisition by
sending the idle message to the Scheduler, the safety transition from state q2 to qsa f ety is taken.
Consequently, a false error will be reported (duplicate message). Generally speaking, if in one
instance of the chart a cold construct is never observed, no future instances of the chart can be
observed in a given trace. This drawback can be limiting for highly reactive and iterative systems
with multiple instances in a single trace. A solution is being investigated as future work.

6 Results

We briefly discuss our experiments and results in this section. For a detailed presentation we
refer the reader to the long version of the paper. We create models with multiple communi-
cating processes and test them against highly concurrent worst case specifications as described
in [KTWW06]. All specifications are named Ac×m where c and m are the number of co-regions
and messages in each co-region respectively.

We first test the scalability of our approach in the symbolic model checking domain and com-
pare it to the results presented in [KTWW06]. Table 1 shows a subset of the results for verifying
the abp model using the NuSMV model checker. In general, our verification approach performs
twice as fast as the approach presented in [KTWW06] and we scale to specification sizes that
were unobtainable using the verification approach in [KTWW06]. We also test the scalability of
our approach in explicit state model checking using the SPIN model checker. Table 2 shows a
subset of the results for verifying the plain and soko models. Our approach performs better and
scales to larger specifications when compared to the approach of [KM07].
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Table 1: Results for the traditional and improved verification approaches using NuSMV.
Specification Traditional Verification Improved Verification

Reachability ACTL Total
States Time States Time States Time States Time

A3x5 1.01616e+06 34 1.47142e+07 35 15730360 69 1.41696e+07 34
A3x6 1.01616e+06 237 1.01616e+06 239 2032320 477 471552 251
A3x7 879408 1568 879408 1562 1758816 3130 521504 1550

Table 2: Results for the improved verification approach using SPIN.
Specification Model Without Errors With Errors

States Memory Time States Memory Time
A7x6 soko 97500 17.216 125 89323 16.397 125

plain 406 7.385 123 406 7.385 124
A8x6 soko 97500 18.491 214 89323 17.672 210

plain 406 8.661 216 406 8.661 215
A9x6 soko 97500 20.104 325 89323 19.285 344

plain 406 10.274 335 406 10.274 334

7 Conclusions and Future Work

The presented LSC to automaton transformation algorithm allows us to verify a system against an
LSC using only language containment with readily available tools. Compared to past approaches,
this approach only requires one verification run of comparable complexity as opposed to three
verification runs for any arbitrary LSC. Further, we prove that the generated automaton can
detect all safety and liveness violations in a system and empirically show the effectiveness of
the approach. For future work we are investigating the use of LSCs for automated environment
generation to test individual interfaces in a system. We are also investigating the possibility of
extending the transformation algorithm to constructs such as overlapping chart instances, Kleene
star and multiple instance detection with the presence of cold constructs (as discussed earlier).
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Abstract: We define computation on grids as the composition, through pushout
constructions, of control flows, carried across adjacency relations between grid cells,
with formulas updating the value of some attribute. The approach is illustrated in
the context of the Cyberfilm visual language.

Keywords: Grids, Control flow rules, DPO

1 Introduction

Graphs have been long proposed as a universal formalism for describing the structure of sys-
tem configurations and to support computational specifications of the transformations they may
undergo. Moving from this common ground, the areas of graph transformations and graph algo-
rithms have taken two divergent, possibly complementary paths.

On the one hand, graph transformations propose a declarative approach to computation based
on the iteration of local modifications to the graph structure, so as to define a language of admis-
sible graph configurations, each depicting a possible state of the system being modelled. On the
other hand, algorithms on graphs exploit procedural definitions of visits to the graph structure,
usually to extract some global property of it. In many cases, graph transformations – typically
performed by enriching the graph with additional features such as types [CMR96], attributes
[MW93, HKT02, dBE+07] or control structures on rule application [KK99, SWZ99, BKPT00,
AKN+06] – are capable of replicating many relevant features of the algorithmic approach.

However, the general approach to graph transformations – based on the search for a subgraph
isomorphism between the antecedent of a rule and the host graph under scrutiny – is not optimal
for spatially organized structures, such as grids (in any number of dimensions), trees, or pyra-
mids [YM02, WMYM08], as the inherent non-determinism of the matching process fails to take
advantage of the existence of privileged relations among elements, and of orders for their visit.

We propose to reconcile the use of graph transformation as a general computational framework
with the existence of some spatial structure on the host graph. To this end, we combine a suite of
meta-models for diagrammatic languages – defining the possible spatial relations among identi-
fiable elements [BG04] and their transformation semantics [BLG07] – with a form of algebraic
composition of rules in the framework of the Double Pushout Approach to graph rewriting.

The proposal is applied to theCyberfilmvisual environment, which provides the user with
iconic representations of computational flows on spatial structures, arranged as sequences of
frames highlighting the set of nodes which at each step contribute to the production of a new

2 Work done while P. Bottoni was at Aizu University as adjunct professor, on temporary leave from Sapienza.
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result [WMYM08]. In a separate view, the formulas defining the computations can be defined,
thus allowing their reuse according to different control flows. In particular, we focus on bidimen-
sional grids on which several control flows can be defined, and use a categorical construction to
provide a formal treatment of the composition of control flow and computational formulas.

In the rest of the paper, after related work inSection 2, we provide background on graph
transformations and the adopted metamodels inSection 3. Section 4introduces the categories on
grids needed to define control flow rules inSection 5. Finally, Section 6shows how to compose
formulas and control flows, before drawing conclusions inSection 7.

2 Related Work

Spatial structures, such as those defined by grids or trees, have been the subject of many studies
from the algorithmic point of view, in particular as regards the identification of paths with partic-
ular properties over them [IPS82]. From the algebraic point of view, trees have been studied as
representations of computational structures, such as terms [HP95] or abstract syntaxes [Mos94],
whereas images, rather than grids, have been studied in relation to the sets of languages definable
on them [GR97]. The translation morphism discussed in this paper may be seen as an analogous
of the ”positional overlapping” operation for images [BL07].

The technique for composing control flows and formulas, although equally based on pushouts,
differs from that for (local) application of rules to rules in [Par94], based on finding a match
from a rule component to a component of another rule, as well as from that foraction pattern,
in [BLG07], where a pattern is matched to the right-hand side of a rule to produce a rule whose
effects conform to the pattern. A construction analogous to the one here, exploiting common
subrules, is in [TB94], but we use it to statically construct rules, and not to identify possible
agreements on a host graph.

Finally, we point out a similarity with notions of modularity and Viewpoints [GEMT00], pro-
posed as a way to modeling a system through the integration of partial models. However, we
combine different aspects of the behaviour of the system into an integrated specification, rather
than considering behavioral and structural aspects together. The approach to coordination pro-
posed in [AFGK02] is also based on pushouts (actually colimits), to allow separation of concerns
when defining different aspects of a program behaviour.

3 Background: Metamodels and Graph Transformations

According to the metamodel for diagrammatic languages presented in [BG04], adiagramis com-
posed ofidentifiable elementsamong which significantspatial relationsexist. A whole diagram
is itself an identifiable element, with global properties. An identifiable element is a recognizable
unit in the language, associated with a graphical representation defined by acomplex graphic
element, composed in turn of one or moregraphic elements, each possessing someattach zone,
representing the geometrical support for spatial relations. The existence of a relation is assessed
via a predicateisAttached() implemented by each zone. Symmetries may exist between
spatial relations. Two relationsσ and ρ are tied by a symmetry if there is a size-preserving
diagram transformation changing all instances ofρ into instances ofσ .
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Specializations of these abstract types define language families. For example,Adjacency
indicates a class of relations betweenCell s of regular shape tessellating the plan, and whose
bordersoverlap for a finite segment. According to the type of tessellation, cells may entertain
various adjacency relations, typically possessing symmetric companions, such as inLeft and
Right adjacency for regular arrangements of rectangles.

Based on this metamodel, we can represent diagrams as attributed typed graphs, where nodes
are elements of classes in the metamodel and edges are instances of the associations.

Formally, atype graphis a constructTG = (NT ,ET ,sT , tT) with NT andET sets of node and
edge types.sT : ET → NT andtT : ET → NT define thesourceand target node types for each
edge type. A typed graph onTG is a graphG = (N,E,s, t) with a graph morphismtype: G→
TG composed oftypeN : N→ NT and typeE : E→ ET , s.t. typeN(s(e)) = sT(typeE(e)) and
typeN(t(e)) = tT(typeE(e)). Type graphs with node inheritance exploit a pairTGI = (TG, I),
whereI = (NI ,EI ,sI , t I ) is a node inheritance graph, withNI = NT , i.e. I has the same nodes as
TG, but its edges are the inheritance relations. The inheritanceclan of a noden is the set of all
its children nodes (includingn itself): clan(n) = {n′ ∈ NI |∃ pathn′→∗ n in I} ⊆ NI .

Typed attributed graphs are typed graphs with additionaldatanodes andattribute edges(nodes
of G are now calledobject nodes). A type graphTGhas a set∆ of data type nodesand a setA of
attribute type edges, denoting the domains of the attribute nodes and the set of attributes associ-
ated with nodes, together with functionsσA : NT→P(A), defining the attributes for a given type,
andτA : A→ ∆, defining the admissible domain for each attribute. These elements define atype
graph with attributes TGA. A typed attributed graph onTGA is a construct(TG,G,N∆,EA,sA, tA),
whereTG andG are as before,N∆ is the set of data nodes, coinciding with the disjoint union of
the domains of attributes, andEA is the set ofattribute edges, from object nodes to data nodes.
Edges are typed onA and associate object nodes with the values of its attributes.sA : EA→ N
andtA : EA→ N∆ define the valuation of attributes for a given node, coherently withσA andτA.
We represent data nodes as typed items and distinguish them from object nodes through a dashed
contour, following the convention in Example 8.5 of [EEPT06].

Attributed typed graphs form the adhesive HLR category [LS04] AGraphATG , so that transfor-
mations can be expressed through Double Pushout (DPO) derivations [EEPT06], in which rules
are spansL← K→RandK defines the part which is left unchanged by the rule application. We
also exploit application conditions, as shown inSection 4.

4 Categories on Grids

Rectangular grids are regular arrangements of cells according to symmetrical pairs ofvertical
andhorizontaladjacency relations, withnrow rows andncol columns, conforming to the family
of diagrammatic languages depicted inFigure 1. Hence, nodes are instances ofCell , with
a position given by theirrow andcol attributes and boolean values to distinguish border cells.
Adjacency relations can be of four types, with the obvious constraints on their pairing. Moreover,
there exists a set of additional constraints stating that a grid has to form a rectangle (i.e. its top
and bottom borders must have the same number of elements, as must its left and right borders),
and all border elements are adjacent to three other cells except the four corner elements, adjacent
to two. Mirror and rotation symmetries exists between pairs of adjacency relations.
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Figure 1: The family of bidimensional grids.

Grids thus give rise to a subcategoryAGrid T of AGraphATG , whose morphisms are composed
of a structuralpart, involving nodes of typeCell andAdjacency , and adatapart involving
attributes. The structural part usestranslationsas morphisms. A translation exists from a gridG1

to a gridG2 if G2 is such that an isomorphism exists fromG1 to a subset of its cells, preserving
its connectivity and the relative directions. A translation is uniquely determined by the position
of the upper left corner (or any other cell) of the original grid in the context of the target grid.
Figure 2shows the composition of two translations, where the highlighted rectangles show the
new positions of the original grid. We assume translations occur only rightwards and downwards.
The pairs(r,c) labeling the morphisms indicate the offsets at which the nodes of the original grid
are found in the new grid. The size ofG2 is at least equal to that ofG1, but can also be larger. The
identity morphism is the translation(0,0) from a grid into itself, and morphism composition is
the vectorial sum of the translations. We now study the subcategoryTGrid T , obtained by taking
the structural part ofAGrid T , i.e. maintaining the type information, but forgetting attributes.

In TGrid T , a pushoutG1
p1→ P

p2← G2 for a spanG1
t1← G

t2→ G2 between two grids can be
constructed in the same way as the pushout inGraph if and only if one of the following is true:

(1) eithert1 or t2 is an identity;
(2a)t1 has a label of the form(r1,0) andG1.ncol == G.ncol AND
(2b) t2 has a label of the form(0,c1) andG2.nrow== G.nrow;
(3a)t1 has a label of the form(0,c2) andG1.nrow== G.nrowAND
(3b) t2 has a label of the form(r2,0) andG2.ncol == G.ncol.

Then,P has size(max(G1.nrow,G2.nrow), max(G1.ncol,G2.ncol)); morphismsp1 : G1→
P and p2 : G2→ P are labeled by(max(r1, r2)− r1, max(c1,c2)− c1), and (max(r1, r2)− r2,
max(c1,c2)− c2), respectively, so that parallel arrows have the same label (seeFigure 3). The

pushout complementG
x1→C

x2→ G′, for the compositionG
t1→ G1

t2→ G′, whereG is an object of
size(r,c), G1 of size(r1,c1), andG′ of size(r ′,c′), uniquely exists only ift1 andt2 satisfy the
constraints above, and has size((r ′− r1)+ r,(c′−c1)+c), with x1 andx2 labeled ast1 andt2.

We can now definestructuralDPO rules inTGrid T in accordance with the construction above.
In particular, in order to satisfy the dangling condition, rules are non-deleting (i.e.L← K is an
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Figure 2: Translation morphism and composition.

identity). The gluing condition, ifK → R is not an identity, requires border cells ofL to be
matched to border cells of the host gridG. The pushout complement objectD is now always
equal toG. Hence, grids can be generated so that the constraints on their rectangular form
are maintained by the pushout construction, without having to adopt regulatory mechanisms for
rewriting, such as those needed for the so-called Indian grammars: they first use a set ofhorizon-
tal rules to create the upper row, and then applyvertical rules in parallel to populate the columns
[SK74]. The pushout construction can now be lifted to considering also attributes. In particular,
as typical of attributed graph rewriting, data morphisms are identities (no domain element can be
created or deleted). Hence, the effect of the rule can only be the addition of structural nodes and
edges and the deletion and creation of attribute edges. Note that,instantiationmorphisms are
used to match nodes containing variables to data nodes. These preserve the domains and equality
on variable names, while need not be injective. Relations between variables are expressed via
application conditions. All grids inAGrid T can now be generated by the iterated use of the two
rules inFigure 4andFigure 5, in which the identifiers of theAdjacency nodes indicate their
directions and an application condition defines the coordinates of the new cell.

In both cases, we show the classical representation of DPO rules at the top of the figure, and
use, at its bottom, a compact notation, already exploited in [dGB07]: the difference between
K, L, andR is shown by highlighting the deleted and produced parts with different colours and
marking them with tags{del } and{new}. The elements outside the tagged areas are those
belonging to theK component. Differently from [EEPT06], we explicitly showK as presenting
isolated data nodes, which are connected to different object nodes inL andR.
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Figure 3: The pushout construction for grids

5 Control Flow Rules

Figure 6presents the triple metamodel describing the correspondences induced by assigning the
semantic meaning of acarrier to the adjacency relation in the visual representation. Along a
carrier either data or modifications in theactivation statetravel from and toactive elements. The
left upper part ofFigure 6constitutes the static semantics for the control flow variety on spatial
structures, while the right upper part models the data variety, here simplified by considering a
simple integer-valued attribute, calledlevel . By applying the construction in [dGB07] one
can incrementally define the flow structure through triple graph rules which introduce carriers in
correspondence with the installation of adjacency relations in specified directions. Hence, one
can model thepermeabilityof the cell wall to control or data flow. For example, flows can travel
rightwards and leftwards, but not downwards and upwards.

A control flow (cf) rule is a DPO rule inAGraphATG with graphs conforming to the left
upper part ofFigure 6, so thatA contains the attributestatewith values in some finite domain
ActivationState∈ ∆.

In general, as shown in the rule (in compact form) on the left ofFigure 73, the activation
state may vary during transportation, e.g. a flow can decrease its intensity. The element reached
by the flow could have possessed some other activation value and the one from which the flow
originated may gain a new one, as defined by application conditions. The basic rule on the right
of Figure 7deals with the case of cells entering anactivestate as the control flow reaches them
traveling the grid rightwards from the origin to the destination, while the origin enters aquiescent
state. The carrier identifier indicates the value of itsDirection attribute. Similar rules are
defined for other directions, exploiting rotational and mirror symmetries.cf-rules are composed

3 Abbreviations are used for names of values and types.
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Figure 4: The rule for letting a grid grow horizontally.

to form more complex ones using a componentwise pushout construction inAGraphATG , as
shown inFigure 8, whereL← K→ R is the maximal intersection ofL1← K1→ R1 andL2←
K2→ R2, all the squares commute and those with curved arrows are pushouts. As an example,
directional rules compose through a rule on a single cell passing from theactiveto thequiescent
state.Figure 9illustrates the case of the two horizontal movements, whileFigure 10that of one
directional and one vertical movement.

6 Composing Control Flow and Computation Formulas

We now introducedata-rules to specify the transformation of some attribute according to some
formula. These are defined on the type graph in the right upper part ofFigure 6. Data andcf-
rules are composed, again with a pushout construction, to produce rules which both apply the
formula and propagate the flow, when an active element is reached by the control flow.

The rule inFigure 11doubles the value oflevel . X andY are variables to indicate generic
instances of an integer. Rule composition requires the use of four different types of graphs.
The intersection is defined in a type graph where the typeActiveElement abstracts on
bothControlActiveElement andDataActiveElement and has no attribute, while the
pushout object complies with a type graph formed by taking the quotient of the disjoint union of
the two type systems fromFigure 6and identifying the activity types in aFullActiveElement
type (abbreviated inFActv). Node morphisms go from less to more specific types.

In Figure 12, the bidirectional rule ofFigure 10is composed with the formula ofFigure 11, so
that the latter is now evaluated only when the activation front leaves an element in both directions.
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Figure 5: The rule for letting a grid grow vertically.

Using a different morphism from the intersection to thecf-rule, the formula would be evaluated
when the control flow reaches an element from a specific direction. The resulting rule does not
specify thelevel values for the other elements. Rules can be applied sequentially or in parallel,
if they do not conflict on their result. As an example, the rule ofFigure 12agrees with itself on
any node whose upper and left neighbours are both mapped, by two distinct matches, to the cell
identified by 1. Rules can be enriched with parameters and applied via rule expressions to realize
complex computations [BKPT00].

Figure 6: The triple metamodel for control and data flows on grids.
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Figure 7: A generic rule for transmission of control flows and a basic rule.
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Figure 8: The construction for rule composition.

6.1 Types of activation inCyberfilm

TheCyberfilmlanguage [YM02, WMYM08] provides a collection of predefined control flows,
associated with program templates defining the loops realizing them, and with sequences of
iconic schemes for an intuitive visualization of the main steps in the execution flow.Cyberfilm
allows the separated definition of computational formulae and control flow specifications. Hence,
the constructions above can be exploited to provide a compositional mechanism for it.

In particular, control flow inCyberfilmis defined by the presence of two types of activation
state, calledfull andcontourflashing, according to the visualizations suggested for them4.

An element in the full flashing state computes the associated formula, while in the contour
flashing state it can contribute to some computational activity, i.e. its content is read by a cell,
but it cannot change. At any time, a cell is in only one possible state. The control flows of the
full andcontourflashing can be independent or coordinated. Independent flows can be specified
as described inSection 5, whereas coordinated flows require the identification of the conditions
under which a cell is able to receive the contributions of other cells.

Figure 13shows the composition of a coordinatedcf-rule, for rightward transmission of both
full andcontourflows, with a formula rule where an element reads the value of its down neigh-
bour (without changing it), to compute its new level. The upward adjacency relation is mapped,
in the formula rule, to adata carrier (DC) element, as control and data may flow in different
directions, i.e. cells can have differentpermeabilityto data and control flows.

In this case, thecf-rule is bound to consider both thefull andcontourflows simultaneously.
The same effect could be achieved by considering the two flows independently.Figure 14shows
the first step of the relative construction, in which the rightwards movement for the full flash-

4 Actually, there are several types of flashing for different classes of activity. For example,half-flashingindicates
decision nodes. These other types are not considered here.
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Figure 9: The construction of the rule propagating control flow horizontally in both verses.

Figure 10: The construction of a bidirectional rule.

ing is combined with the same formula to produce a rule which does not affect the state of the
ControlActiveElement identified by 2. InFigure 15, the obtained rule is composed with
that for rightward movement of contour flashing. While the final effect is the same, the interme-
diate step could be combined with other movement rules. Several such rules might be defined,
for example to propagate the flow across several cells, so that only some elements are activated.

7 Conclusions

We have proposed an approach, based on componentwise pushout of DPO rules in the category
of attributed typed graphs, to the specification of computations on grids. The approach allows
the independent definition of two types of rules, one to specify control flow and the other to
specify the actual computations. The construction is symmetrical in control and formula rules, so
that it can be flexibly applied starting from either specification. Symmetries between adjacency
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Figure 11: A rule expressing a computational formula.

Figure 12: The resulting rule specifying the condition of application.

relations can also be exploited to generate different versions of flows and formulas.
Future work will explore other types of spatial structures, typically trees and pyramids, to

define adequatecf-rules, also considering the distinction between formula evaluation on control
flows reaching or leaving the involved cells, and develop ways of reasoning about the compati-
bility of independentcf-rules (e.g. one for reading and one for writing).
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Abstract: In this paper we propose a formal extension of type graphs with notions
that are commonplace in the UML and have long proven their worth in that context:
namely, inheritance, multiplicity, containment and the like. We believe the absence
of a comprehensive and commonly agreed upon formalisation of these notions to
be an important and, unfortunately, often ignored omission. Since our eventual aim
(shared by many researchers) is to give unambiguous, formal semantics to the UML
using the theory of graphs and graph transformation, in this paper we propose a set
of definitions to repair this omission. With respect to previous work in this direction,
our aim is to arrive at more comprehensive and at the same time simpler definitions.

Keywords: UML, Class Diagram, Type Graph, Instance Graph, Graph Constraint

1 Introduction

Software industry is showing an increasing interest in model-driven development. Indeed, we
have little doubt that the future lies in higher-level models to take the place of code, in all but the
most performance critical domains. With this trend, however, the quality of those models is of
increasing importance. By this we do not mean the quality of the product being modelled (which
obviously is the final consideration) but rather of the modelling paradigm. Good models may
not guarantee good software, but on the other hand, a bad (ambiguous, inconsistent or unclear)
model can never be expected to yield a good end product, in particular if the transformation from
model to software is largely automatic.

The quality of models is determined by many aspects, among we believe precision, consis-
tency and completeness to be paramount. The precision of a model corresponds to the lack of
ambiguity, or in other words, the degree to which the model will be understood in exactly the
same way by different persons and tools during the software development process. Consistency
formally means the existence of an (i.e., at least one) instance, or implementation, of the model,
whereas completeness means the inclusion of all relevant aspects, or (in other words) the ability
to predict the behaviour of the system under all circumstances.

The above “quality criteria” have a clear, universally agreed-upon interpretation in the world
of mathematics. To make the benefits of the mathematical interpretation available for everyday
use in the world of software modelling, however, it is imperative that there be a translation from
the latter to the former; in other words, a formal semantics of the modelling language. For
instance, it is commonly agreed that a natural interpretation of (UML-type) diagrams is in terms
of graphs — essentially, just nodes with connecting edges. Indeed, many authors use UML class
(and object) diagrams claiming that they are representations of type graphs. Unfortunately, few
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provide an actual formal underpinning of this claim, or when they do, the semantics covers only
a relatively small part of UML; for instance, [BELT04, LBE+07, KGKK02, TR05]. The most
comprehensive is [VFV06], but even there such basic notions as multiplicities are missing. We
see the absence of a more complete semantics as an important and regrettable omission, although
from a purely formal standpoint, there is little challenge in providing the necessary definitions.
The aim of this work is to bridge the gap between pure formalism and practicality.

Like the papers cited above, in this paper we distinguish the type and instance levels, or in
other words, type graphs and instance graphs. We see a type graph as an intensional defini-
tion of a set of instance graphs, namely, those instance graphs for which it is a correct type.
Type graphs are then enriched with constraints that capture UML concepts such as bi-directional
associations, multiplicities, collection types, inheritance, redefinition of associations, and com-
position relationships. In this, we have based ourselves on the (verbal) descriptions in the UML
2.0 specification [OMG05].

In searching for the aforementioned balance between simplicity and expressiveness of the
semantics, we have used the following guidelines:

• Instance graphs should be as simple and straightforward as we can make them, if necessary
at the price of increasing their sizes. In other words, where there is a choice between
enriching the formalism (resulting in more concise but more complex graphs) or using
larger (sub-)graphs to encode complexity, we have tended to choose in favour of the latter.

• Type graphs should be as close to instance graphs as we can make them; the number of
special features or decorations should be minimised.

We have achieved this by using the concept of a graph constraint, which is essentially a
template for a logical formula on top of an ordinary (type) graph.

The remainder of this paper is structured as follows: after providing the basic definitions to
set the stage in Section 2, we discuss the graph constraints in Section 3. We consider these to
be the heart of our contribution. In Section 4 we relate our constraints to the standardised UML
concepts. Finally, in the conclusion (Section 5) we come back to the above considerations and
re-evaluate our choices.

Unfortunately, it is not possible to include the full set of definitions into this paper. A complete
version can be found in [KR08].

2 Basic concepts

Names and namespaces. UML is a visual language; its “sentences” are diagrams. However, a
major part of any diagram is still text, and so we need conventions for visualising text inside dia-
grams. For this purpose, we define a set of identifiers ID, consisting of a name from a predefined
universe Name, and a namespace from a set NS, defined as follows.

• An identifier is a pair 〈ns,name〉 of a namespace ns and a name name;

• There is a root or top namespace > ∈ NS;

• For every ns ∈ NS and name ∈ Name, the identifier 〈ns,name〉 is again a namespace.
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To visualise an identifier we use a well-known notation, which is less cumbersome than the
angular brackets: the name space and name are separated by a dot, and the top namespace is
omitted altogether. Thus, 〈ns,name〉 is actually written ns.name.

For instance, the identifier a.name.space consists of the name space in the namespace a.name,
which itself is an identifier with namespace a and name name. The identifier a, finally, consists
of the name a in the top name space.

Signatures and algebras. For our definition of model we use the notion of attributed type
graph, as defined in [EPT04]. The ingredients of this definition that are important here are:

• A collection of data sorts Sort, which are in fact identifiers (hence Sort ⊆ ID)

• A collection of carrier sets Data, partitioned into subsets for each of the sorts in Sort.

Graphs. One of the core concepts of this paper is that of graphs. We start by repeating the
usual definition of a directed, multi-sorted graph.

Definition 1 (graph) A graph is a tuple G = 〈Node,Edge,src, tgt〉 where Node is a set of nodes,
Edge a set of (directed) edges, and src, tgt : Edge→Node are source and target functions, respec-
tively.

Note that although this definition does not yet specify node or edge labels, the nodes and
edges do have identities. In some circumstances it will be the case that Node,Edge ⊆ ID and
the identities are actually meaningful to the reader; it then makes sense to include them in a
visualisation of the graph. In particular, this is the case for type graphs — see below.

We will use two kinds of graph: instance graphs and type graphs. Both extend the notion
of graph with some further structure. To start with instance graphs: these have an additional
labelling function that associates an identifier with every node and edge. Furthermore, edges have
indices, which are chosen from the set of natural numbers in such a way that the combination of
source node, index and label together completely determine the edge.

Definition 2 (labelled graph) A labelled graph is a tuple IG = 〈Node,Edge,src, tgt, ix, lab〉
where 〈Node,Edge,src, tgt〉 is a graph and

• ix : Edge→Nat is an indexing function assigning a natural number to every edge;

• lab : (Node∪Edge)→ ID is a labelling of nodes and edges;

• For e1,e2 ∈ Edge, if src(e1) = src(e2), ix(e1) = ix(e2) and lab(e1) = lab(e2), then e1 = e2.

For a given node n ∈ Node and label a ∈ ID, the set of outgoing edges is defined by

out(n,a) = {e ∈ Edge | src(e) = n, lab(e) = a} .

The indices assigned by the function ix are used for two purposes:

• To distinguish edges. Graphs may have distinct edges going out of the same node and
bearing the same label, and even going to the same node (sometimes called parallel edges).
These are useful to represent some UML concepts; in particular, ordered associations and
bags. The indices serve to distinguish such edges, i.e., give them their own identity.
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Figure 1: Example graphical representation of a labelled graph

• To order edges. One of the more powerful UML concepts is that of an ordered association;
this does not only define a one-to-many relation between objects of one type to objects of
another, but also establishes a local ordering over the set of (target) objects related to a
single (source) object.

In contrast to edges, the encoding of node identities is not fixed by the above definition. It
should, however, be understood that there is indeed some distinguishing mechanism, apart from
the labelling function, that tells nodes apart. On the implementation level, for instance, this
mechanism is typically based on memory addresses, or, for nodes in Node∩Data, by the data
value. On the modelling level, the position within a diagram in principle suffices as the distin-
guishing mechanism. On the other hand, for ease of reference it is very common to use symbolic
names for nodes. Thus, we arrive at a graphical representation of labelled graphs based on the
following conventions:

• Nodes are drawn as boxes with inscribed labels. The labels are preceded by a colon (‘:’).
In front of a colon, there may either be a symbolic name, which is in fact itself an element
of Name, but which plays no role in the formal meaning of the graph and in fact has no
counterpart in Definition 2; or, in the case of nodes that are actually data values, the string
representation of the data value may be displayed. (We will see below that the label is
typically the type, which for data values v ∈ Data is given implicitly by type(v).)

• Edges are drawn as arrows with superimposed labels. The labels may be preceded by a
number representing the edge index, separated from the label by a colon; in particular, this
is necessary if there is more than one outgoing edge with that label and the numbering is
needed to determine an ordering.

• As an important special case, edges pointing to nodes that are explicitly identified, either
by data values or by symbolic names, may be represented by inscribed equations of the
form “label = id” or “label:Type = id” instead of arrows.

Labelled graphs are used to represent concrete systems; in other words, they are on the level of
individual programs or object diagrams. An example showing all of the graphical representation
features is given in Figure 1. Here, y and z are symbolic names having no formal meaning within
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the graph, whereas 10 and “yes” are data values of type Int and String, respectively, and 88, 45
etc. are edge indices.

Graph morphisms. With respect to our aim of providing a sound and comprehensive formal-
isation of UML concepts, one aspect is not yet completely covered, namely the fact that node
identities and edge indices are not uniquely determined by the diagrams. In this sense, the formal
interpretation of the diagrams remains ambiguous.

The reason why we are nevertheless content with this solution is that this ambiguity is not
harmful, because the choice in no way matters to the actual meaning. Put differently, it is al-
lowed to abstract away from the precise identities, provided the nodes and edges remain distin-
guishable. The standard way to formalise this type of argument is by interpreting the structures
under consideration — here, our graphs — up to or modulo some equivalence. In this particu-
lar case, the standard way to define an appropriate equivalence is through the notion of graph
isomorphism.

Definition 3 (graph (iso)morphism) Given two graphs G,H, a morphism from G to H is a pair
of mappings f = ( fNode : NodeG→NodeH , fEdge : EdgeG→EdgeH) such that

• Node and edge labels are preserved: labH ◦ ( fNode∪ fEdge) = labG;

• Sources and targets are preserved: srcH ◦ fEdge = fNode ◦srcG and tgtH ◦ fEdge = fNode ◦ tgtG

f is an isomorphism if fNode and fEdge are bijective, i.e., provide a one-to-one mapping between
NodeG and NodeH , resp. EdgeG and EdgeH . We write G ∼= H (G is isomorphic to H) to denote
that there is an isomorphism from G to H.

It is especially important to realise that (iso)morphisms are not required to either respect node
identities or edge indices, symbolic names, or diagram layout.

For one particular purpose we will later on strengthen the requirements on morphisms, in such
a way that the ordering on edge indices is sometimes required to be preserved; namely, when we
use the index to reflect an ordering over the edges themselves.

Type graphs. For purposes of documentation, structuring and correctness, it is common to
impose a discipline over labelled graphs, comparable to the grammar of programming languages,
or more to the point here, comparable to a class diagram. In particular, we use a type graph to
impose local constraints on the allowed labels and connections between edges and nodes, and
associated constraints to impose other, more sophisticated or less local, properties.

Definition 4 (type graph) A type graph is a tuple TG = 〈NType,EType,src, tgt, inh〉 where

1. NType ⊆ ID is a set of node types and EType ⊆ ID a set of edge types;

2. 〈NType,EType,src, tgt〉 is a graph, with NType as node set and EType as edge set, such that
src(e) = ns(e) for any e ∈ EType;

3. inh ⊆ NType×NType is a reflexive partial ordering relation expressing that some node
types inherit from others. (Reflexivity here means that T inh T holds for all node types
T ∈ NType.)
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Figure 2: Example type graph

We typically use capital letters (T,E) to range over node and edge types.

The condition on the source function of edges (clause 2 in the definition) states that the source
type of an edge is at the same time its name space. Since edge types are identifiers and identifiers
are pairs of names and namespaces, it follows that edge types are uniquely determined by their
source type and name. This setup allows us to use edge types with the same name, but only for
distinct source types — which is consistent with the situation in most, if not all, object-oriented
paradigms.

Also note that inh is a partial order, but not necessarily a forest: this implies that a node type
can extend more than one other node type (in common terminology, our type graphs support
multiple inheritance). At the same time, the partial order nature of inh implies that there can be
no inheritance cycles.

For “node type” in the definition above, one may for most purposes read “class;” the only
difference is that the node types typically include data sorts. We say that TG builds on a signature
if Sort ⊆ NType.

A visual representation of a type graph can be given by drawing every node type as a box
with the type identifier inscribed, every edge type as a “normal” arrow with the edge name as
label, and every extension (i.e., from ext, not inh!) as an unlabelled arrow with triangular arrow
head. Figure 2 shows an example type graph. This is very close to the traditional class diagram
view, except that the data sorts are not treated as special cases (i.e., data type attributes are not
distinguished from associations).

Typing and instance graphs. The meaning of a type graph is defined by the set of its (correctly
typed) instances.1 The idea is that the instances of a type graph TG are labelled graphs with labels
chosen from the types of TG, and consistent with the graph structure of TG modulo inheritance.
To formalise it, we use the following auxiliary notation for arbitrary nodes n and node types T ,
resp. edges e and edge types E:

n:T :⇔ lab(n) inh T

e:E :⇔ lab(e) = E .

In words, n:T expresses that the label of the node n (in the instance graph under consideration) is
a node type that inherits from T . Note that it follows that, for a given n, there can easily be more
than one node type T such that n:T , ranging from T = lab(n) to all generalisations of T . On the
other hand, in case of edges, e:E expresses that lab(e) is exactly the edge type E.
1 Strictly speaking, the meaning is defined by the category of instances and valid morphisms: as mentioned above,
in one case we need to impose additional requirements on the morphisms rather than the graphs.
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Definition 5 (instance graph) Let TG be a type graph. A labelled graph IG is typed by TG, or
an instance graph of TG, if for every node n ∈ Node and every edge e ∈ Edge:

• lab(n) ∈ NType and lab(e) ∈ EType;

• src(e):src(lab(e)) and tgt(e):tgt(lab(e)).

The set of instance graphs of TG is denoted Inst[TG] (but see Footnote 1).

For instance, the labelled graph in Figure 1 is not an instance graph of the type graph in
Figure 2, since it contains several edge labels that are not present in the type graph.

3 Constraints

The concepts introduced in the previous section are, in the sense of existing graph theory,
straightforward; in fact, the only non-standard concepts are the structure we have chosen for
identifiers, and the fact that we are using indexed edges in labelled (instance) graphs. In this sec-
tion, we introduce a way to enrich type graphs, and so constrain the set of valid instance graphs,
in ways that formalise the concepts found in UML.

First of all, we give a general definition of a constraint set over a graph; then, we define a
series of special types of constraints tuned towards UML concepts.

Definition 6 (graph constraint) Let TG be a type graph. A constraint set over TG is a tuple
〈Con,sat〉 where Con is a set of graph constraints, and sat ⊆ Inst[TG]×Con is a satisfaction
relation over the instances of TG. We denote IG sat c to denote that an instance graph IG satisfies
a constraint c.

This definition only specifies that a graph constraint is something for which there exists an
interpretation, expressed in terms of the graphs that satisfy the constraint. The interpretation is
embodied in the satisfaction relation, sat. The real question is how sat is defined. By combining
type graphs with a constraint set, we arrive at the concept of a model, which is our equivalent to
a UML class diagram.

Definition 7 (model) A model is a pair Mod = 〈TG,Con〉 where TG is a type graph, and Con
is a constraint set over TG, consisting of constraints of the types listed below.

The main contribution of this work, apart from the selection of the appropriate type and in-
stance graph definitions, lies in the definition of a number of useful graph constraint “templates”
and the corresponding satisfaction relations. The constraints can be subdivided into a number of
categories, listed in Table 3. In this workshop paper, we can only discuss a few of the templates
in detail; the report version [KR08] contains the complete list, in the same style as the ones
reported here.

3.1 Association constraints: Bidirectionality

Associations in UML class diagrams have the property that they can (in principle) be traversed in
either direction. Moreover, in general the ends of an association can have their own names. This
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Table 3: A classification of constraints

Category Constraints
Node type Abstractness
Association Bidirectionality, Multiplicities, Indexing, Uniqueness
Containment Acyclicity, Unsharedness
Specialisation Subsetting, Redefinition, Union
General OCL

is in contrast to the graphs of this paper, where edges are unidirectional. To model bidirectional
associations, we therefore need two edges, one for either direction, which oppose each other.

Definition 8 (bidirectionality constraint) Let TG be a type graph. A bidirectionality constraint
over TG is a pair oppose(D,E) where D,E ∈ EType are edges in TG, such that src(D) = tgt(E)
and tgt(D) = src(E). Satisfaction is defined for all G ∈ Inst[TG] by

G sat oppose(D,E) :⇔ ∀n1:src(D),n2:tgt(D). |{d ∈ out(n1,D) | tgt(d) = n2}|=
|{e ∈ out(n2,E) | tgt(e) = n1}| .

Figure 4 gives an example of a bidirectionality constraint. The type graph (left hand side) has
an associated constraint oppose(B.c,C.b), visualised as a two-headed arrow. The centre graph
does not satisfy this constraint, as there is a C.b-typed edge without an opposing B.c-typed one.
In the right hand side graph this is repaired, so that this graph is a valid instance of the (enriched)
type graph.

3.2 Association constraints: Indexing

To capture the notion of an ordered collection from class diagrams, we need to formalise what it
means for a set of graph nodes to be ordered. To capture this correctly is actually quite involved,
even though it is conceptually straightforward. Here we make use of the edge indices that are
part of the instance graphs (see Definition 5): if an edge type is declared as indexed, the edge
indices have to be picked from a consecutive range from 1 upwards; and moreover (in fact, more
importantly), morphisms are required to respect the edge indices.

Definition 9 (indexing constraint) Let TG be a type graph. An indexing constraint over TG
is a predicate indexed(E), with E ∈ EType. Satisfaction is defined for all G ∈ Inst[TG] and all

Figure 4: Example type graph modelling bidirectional edges.
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Figure 5: Example type graph with an indexing constraint

morphisms f between instance graphs G,H ∈ Inst[TG] by

G sat indexed(E) :⇔ ∀n:src(E),∀e ∈ out(n,E). 1 ≤ ix(e)≤ |out(n,E)|
f sat indexed(E) :⇔ ∀e : E ⇒ ix( fEdge(e)) = ix(e) .

Figure 5 gives an example of an indexing constraint. The type graph (left hand side) has an
associated constraint indexed(C.b), visualised by the annotation {indexed} near the arrow head.
The centre graph does not satisfy this constraint, as it has two outgoing C.b-typed edges with
indices {54,129}, which do not form a consecutive range. This is repaired in the right hand
side graph. More importantly, where ordinarily the right hand side graph would be considered
symmetric (having two interchangeable B-typed nodes), this is no longer true in the presence of
the indexing constraint: the symmetry (formally, an isomorphism from the graph to itself) maps
(n,C.b,1) to (n,C.b,2) (where n is the C-typed node in the graph) and hence does not satisfy the
constraint, since it does not preserve edge indices.

3.3 Containment constraints: Acyclicity and unsharedness

Another notion from UML class diagrams that has proved to be quite useful in practice is that
of aggregation or containment. Whereas ordinary edges may impose an arbitrary structure on
the nodes they connect, containment is intended to reflect a hierarchy of things. Therefore,
when edges in a type graph are declared to be acyclic, the intention is that the edges in the
corresponding instance graphs do not form a cycle.

This type of constraint is in fact quite powerful if the edge types in the hierarchy do form a
cycle in the type graph. In that case, there could in principle be instance graphs with arbitrarily
large cycles, all of which are ruled out by a single acyclicity constraint. From this it can be seen
that the acyclicity constraint is a non-local property, and hence outside the class of first-order
logic.

Definition 10 (acyclicity constraint) Let TG be a type graph. An acyclicity constraint over TG
is a tuple acyclic(E1, . . . ,En) where E1, . . . ,En ∈ EType is a collection of edge types. Satisfaction
is defined for all G ∈ Inst[TG] by

G sat acyclic(E1, . . . ,En) :⇔ {e:Ei | 1 ≤ i ≤ n} is cycle free.

Figure 6 shows an example of an acyclicity constraint. The type graph (left hand side) has an
associated constraint acyclic(C.b,B.c) visualised by diamond-shaped decorations at the sources
of the edge types. (This visualisation always specifies a single acyclicity constraint, consisting
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Figure 6: Example type graph showing an acyclicity constraint.

of all diamond-decorated edge types. The case where a node or edge type can in principle
be part of distinct acyclic-hierarchies cannot be visualised without adding further distinguishing
information to the diamonds, for instance in the form of identifiers.) The centre graph of Figure 6
shows a small instance of such a cycle; hence this graph violates the constraint. In the right hand
side graph this is repaired, so that this is a valid instance of the (enriched) type graph.

The acyclicity constraint guarantees the absence of cycles (as its name suggests), but it does
not guarantee the absence of sharing; in other words, on its own it is not certain that the structure
imposed by acyclic edges is a forest. To complement this, we also introduce a constraint that
specifies the absence of sharing; as will see, the UML composite is a combination of acyclicity
and unsharedness. For an example unsharedness constraint, we refer to the technical report.

Definition 11 (unsharedness constraint) Let TG be a type graph. An unsharedness constraint
over TG is a tuple unshared(E1, . . . ,En), where E1, . . . ,En ∈ EType. Satisfaction is defined for all
G ∈ Inst[TG] by:

G sat unshared(E1, . . . ,En) :⇔ ∀d:Ei,e:E j. tgt(d) = tgt(e)⇒ d = e .

3.4 Specialisation constraints: Redefinition

We have included node type inheritance as a basic notion in type graphs, reflecting the common
concept from UML and other object-oriented settings. For edges, on the other hand, although
there is likewise a notion of specialisation, but no single commonly accepted way to capture
this. Instead, UML knows several ways to define specialisation-like relationships between edges,
which we here formalise through edge type constraints.

These can be categorised as subset, redefinition and union constraints. The only type we
discuss in this paper is redefinition; for the others see the technical report. Redefinition imposes
a kind of “subtype” relation over edges, such that the supertype is overridden by the subtype.
More precisely, if an edge type D redefines another type E, then a node of D’s source type may
no longer have an outgoing E-type edge — instead, this should be a D-type edge.

Definition 12 (redefinition constraint) Let TG be a type graph. A redefinition constraint over
TG is a pair redefine(D,E), where D,E ∈ EType are edges in TG, such that src(D) inh src(E)
and tgt(D) inh tgt(E). Satisfaction is defined for all G ∈ Inst[TG] by:

G sat redefine(D,E) :⇔ @e:E. src(e):src(D) .

Figure 7 shows an example of a redefinition constraint. The type graph (left hand side) has
an associated constraint redefine(F.b,A.d), visualised by the annotation {redefines} at the arrow
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Figure 7: Example type graph with a redefinition constraint

head. The centre graph does not satisfy the constraint, since there is an A.d-type edge going out
of an F-type node. In the right hand side this is repaired, by changing the offending edge into an
F.b-type; as a result, this instance graph satisfies the redefinition constraint.

4 UML Semantics

In this section, we will apply the general framework introduced above to UML class and object
diagrams, thus providing a formal, graph-based semantics for these diagrams.

Class and object diagrams. The formal meaning of a UML class diagram is that it is a model.
An overview of the mapping of UML class diagram concepts to the concepts in our framework
can be found in Table 9. The model’s type graph can be easily recognized: each class in the
diagram is a node and each directed association is an edge. Non-directed associations translate
to pairs of edges with a bi-directionality constraint, where the edge labels correspond to the
names of the association ends.

Most of the constraint types in our graph-based framework can also be easily recognized in a
class diagram, for instance a bidirectionality constraint is shown in a class diagram in the same
manner as we have shown in Figure 4.

Table 8: Summary of all constraints — including those that are omitted from this
workshop version; see the full report [KR08]. (Notation: ~E = E1 · · ·En)

abstract(T ) @n ∈ NodeG. lab(n) = T
oppose(D,E) ∀n1:src(D),n2:tgt(D).

|{d ∈ out(n1,D) | tgt(d) = n2}|= |{e ∈ out(n2,E) | tgt(e) = n1}|
mult(E,µ) ∀n:src(E). |out(n,E)| ∈ µ

indexed(E) ∀n:src(E),∀e ∈ out(n,E). 1 ≤ ix(e)≤ |out(n,E)|
∀e : E ⇒ ix( fEdge(e)) = ix(e)

unique(E) ∀n:src(E).∀e1,e2 ∈ out(n,E). tgt(e1) = tgt(e2)⇒ e1 = e2

acyclic(~E) {e:Ei | 1 ≤ i ≤ n} is cycle free
unshared(~E) ∀d:Ei,e:E j. tgt(d) = tgt(e)⇒ d = e
subset(D,E) ∀d:D. ∃e:E. src(e) = src(d)∧ tgt(e) = tgt(d)

redefine(D,E) @e:E. src(e):src(D)
union(D,~E) ∀1 ≤ i ≤ n : subset(Ei,D)∧

∀d:D. ∃1 ≤ i ≤ n,e : Ei. src(e) = src(d)∧ tgt(e′) = tgt(e)
ocl(φ) G |= [[φ ]]
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Table 9: Mapping of UML class diagram concepts to graphs

Category UML class diagram Graph model
General class type node

primitive type attribute type edge E with tgt(E) ∈ Sort
non-primitive type attribute type edge E with tgt(E) /∈ Sort

Association directed association type edge
non-directed/bi-directional pair of type edges with oppose
multiplicity mult-constraint
set (default for mult > 1) unique but not indexed
bag neither indexed nor unique
sequence indexed but not unique
ordered set both indexed and unique
aggregation acyclic
composition both acyclic and unshared
OCL constraint ocl

Specialisation inheritance inh-relation on type nodes
subset subset constraint
redefines redefine constraint
union union constraint
UML object diagram Labelled graph

General object node
object type node label
link edge
link type edge label
instance name symbolic id

UML class diagrams can be accompanied by OCL constraints. In our semantics, these are also
translated to graph constraints, of the type ocl(φ)(omitted in this workshop paper) , by relying on
the existing OCL semantics (which essentially provides a translation to first order logic). In other
words, a class diagram together with its OCL constraints is translated to a model, in the sense
of Definition 7. This illustrates the fact that OCL constraints cannot be seen as separate from
the class diagram. It will be no surprise that we define an object diagram to be a labeled graph.
When a labeled graph satisfies a certain model, for instance a class diagram or a class diagram
combined with constraints, it is a valid instance of that model. An overview of the mapping of
UML object diagram concepts to the concepts in our framework can be found in Table 9.

Evaluation. The semantics presented here should, as any semantics, uphold the commonly
known characteristics of UML diagrams, even those that have (unfortunately) not been made
explicit in the UML specification. As an example, we show two such characteristics; again,
we refer the reader to [KR08] for a more comprehensive discussion. Let 〈TG,C〉 be the model
representing the class diagram under consideration.

• A commonly known characteristic of UML class diagrams is that if the one end of a bi-
directional association is marked {bag} then the other end should be marked {bag} or
{sequence}. Likewise, if one end is an (ordered) set, the other end must be a set as well.
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In our semantics, this situation arises when the bi-directionality constraint is combined
with the uniqueness constraint. This UML characteristics then translates to the following
“law” of graph constraints:

oppose(D,E)⇒ (unique(D)⇔ unique(E))

• According to the UML specification, the acyclicity constraint should always be combined
with bi-directionality: “Only binary associations can be aggregations” ([OMG05], page
37). At the same time, only one end of this association can be marked as aggregate. This
is in accordance with common sense, which says that a part cannot contain its container.
In our framework this forbidden situation would occur when the acyclicity constraint is
defined for both edges of a bi-directional association, i.e.:

oppose(D,E)∧acyclic(D)∧acyclic(E) .

In our semantics, there are no instances that would satisfy such a model; in other words,
this combination of constraints is inconsistent (i.e., a contradiction).

These cases give confidence that the presented semantics really conforms to the intuition be-
hind UML. On the other hand, our semantics does not support all UML aspects; in particular, the
following are not included:

• Names of associations. Only the role names associated with the association ends are taken
into account, because we consider these to be more important.

• N-ary associations, i.e. associations between more than two classes. These tend to occur
very rarely in class diagrams; moreover, the UML specification itself treats them more like
classes than like associations.

• Derived attributes or association ends. As the name suggests, these are derived values and
need not be explicitly part of the formal representation.

• Navigability of associations. We feel that the directionality of the edges in the association
pair provides enough information.

• Operations. These cannot be expressed by a static structure.

5 Conclusions

In this paper we present an elegant and simple semantics of UML class and object diagrams
based on graph structures that are as close as possible to familiar notions in graph theory. The
main insight used is that a UML class diagram cannot be treated as a simple type graph. It is
a much richer structure, which is embodied in our framework by the use of (graph) constraints.
The use of constraints also makes it possible to change the given semantics to include or exclude
certain semantic elements. For instance, by disallowing the abstract class constraint type one can
easily define class diagrams without abstract classes. Furthermore, our definitions do not only
provide a semantics for both diagram types, but for the relationship between them as well.
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As stated in the introduction, simplicity was one of our main guidelines. The only addition we
made to the familiar notion of labelled graph is the edge indexing function, in order to capture
ordered associations. We investigated (and rejected) several alternatives. The use of special
“collection node types” makes the definition of instance graph much more complex. Another
possibility is to use hypergraphs, but that in itself makes the model much more complex. A third
option is to use special edges between the target nodes of an ordered association to represent the
ordering, as we have done before in [KKR06]. The problem with this solution is that the ordering
needs to be local not only to all edges of the given type, but also to the source node.

In the introduction we stated that the quality of models is determined by precision, consis-
tency, and completeness. Our semantics provide a precise meaning to class and object diagrams.
Furthermore, the consistency of a model, i.e. the existence of instances, can be checked using the
given definitions. For instance, we can prove that a model with a bi-directional association that
is an aggregate in both directions is inconsistent. Research into this “logic of UML models” has
so far been scarce (see e.g. [MB07]). The completeness of a model cannot be guaranteed by our
semantics. However, the semantics themselves are more complete than any other graph-based
semantics that we have found in the literature. For instance, [BELT04, KGKK02, LBE+07] only
visualise a type graph with inheritance as a UML class diagram, thus implying a graph-based
meaning for class diagrams without actually defining an UML semantics. [VFV06] includes at-
tributes, associations, and inheritance, but not containment, multiplicity, abstract classes, or edge
specialisation.

As a next step, we intend to investigate the integration of our framework with the existing
theory of graph transformation. An important issue is to reconciliate our encoding of indexed
edges with the requirements of algebraic graph transformations.

A final point we would like to make goes back to the introduction, and concerns the (scientific)
merit of the type of effort we have undertaken in this paper. We believe to have achieved a simple,
intuitive and workable graph-based semantics. The fact that UML was conceived over a decade
ago and still no graph-based semantics with this degree of completeness had been presented (in
contrast to other theoretical bases, e.g., [LB98, Gei98, Öve99, Kna99, EK99, DJPV02, Ham05]),
indicates that our undertaking was not trivial. Moreover, there is a great need for such semantics,
if ever model-driven engineering is to become a dependable method. We know that many of the
ideas brought together in this work have been presented earlier; however, the strength of this
contribution lies in the particular combination of these ideas. All in all, we believe that the result
should be judged not only on novelty, but on completeness, adaptability, and usability as well. If
there is no well-defined forum where this type of effort can receive recognition, there will be no
incentive, and the gap between theory and practice may remain with us forever.
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Abstract: The Resource Description Framework (RDF) is a standard developed
by the World Wide Web Consortium (W3C) to facilitate the representation and ex-
change of structured (meta-)data in the “Semantic Web”. While there is a large body
of work dealing with inference on RDF, a concept for transformation and manipu-
lation is still missing. Since RDF uses graphs as a formal basis, this paper pro-
poses the use of algebraic graph transformations with their wealth of well-known
constructions and results for this purpose. It turns out that RDF graphs are an in-
teresting application area for graph transformation methods, where some significant
differences to classical graphs yield practically relevant solutions for features like
attribution, typing and globally unique nodes.

Keywords: Resource Description Framework, Algebraic Graph Transformation,
Category Theory

1 Introduction

The Resource Description Framework (RDF) (see [MM04]) consists of a set of specifications,
which provide an abstract syntax, semantics and several concrete representations for storage,
exchange and reasoning on arbitrary (meta-)data. Its primary use case is the “Semantic Web”,
in which the creation of globally distributed knowledge bases is envisaged. In Section 2 we
summarise the abstract syntax of RDF and provide a categorical framework for it.

The theoretical treatment of RDF mainly consists of inference mechanisms, which allow to
derive information from RDF data stores by the use of inference rules like, e. g., the transitivity of
a predicate. This focus is also apparent in the SPARQL Query Language for RDF (see [PS07]),
the proposed standard for accessing an RDF data store, which in contrast to SQL does not contain
any structures for manipulating the data themselves, but only constructs for retrieval.

At the present time, the modification of data in RDF stores is mostly implemented by adding
and removing individual data items. For many use cases, such as data in web-based applications
or the use of RDF as an abstract syntax for visual languages, it would, however, be desirable to
restrict this to sensible rule-based transformations, which can be modelled and analysed formally.
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This contribution proposes the use of algebraic graph transformation for the purpose of ma-
nipulating RDF data stores. Such a transformation approach allows for the formal treatment of
reversibility, dependencies and conflicts of transformations. Moreover, it facilitates the use of
grammars to restrict the possible structures and their development. In Section 3 we investigate
several well-known graph transformation approaches concerning their suitability for RDF and in
Section 4 we present our proposal for an RDF transformation concept.

2 The Resource Description Framework

In this section we reformulate and slightly extend the theoretical underpinning of RDF in the
framework of category theory. Some of the specific phenomena of RDF theory correspond to
well-known constructions in category theory and can hence be treated more elegantly in this set-
ting, which makes this reformulation worthwhile independently of the transformation approach
developed in the following sections.

2.1 RDF Graphs

The basic building blocks of RDF are Uniform Resource Identifiers (URIs) (see [BFM98]) and
literals. For the purposes of this paper we assume to have a given set URI of URIs, where we will
use XML Namespaces (see [BHLT06]) to shorten URIs. The namespaces rdf:, rdfs: and xsd: are
used for pre-defined URIs in the corresponding RDF and XML Schema specifications.

Literals are Unicode strings (see [Uni07]), which can be typed literals (with a URI denoting
the data type of the literal) or plain literals (with an optional language tag denoting the human
language of the literal). We formalise this by assuming a set String of all Unicode strings and
a set Lang of all language tags (including the empty tag to support optionality). The set of all
literals is then constructed by Lit := (URI× String) + (Lang× String), where × denotes the
(Cartesian) product and + the disjoint union of sets.

The typed literals facilitate the attribution of an RDF graph by literal values from arbitrary
pre- or self-defined data types, which are given by corresponding string representations. For
example, the datatypes of XML Schema (see [BM04]) are recommended in the RDF specifica-
tions, such that literals like (xsd:integer,42) or (xsd:date,2008-03-29) may be used in RDF
graphs. Hence, an extension of the theory by algebraic specifications or similar techniques as it
is necessary for attributed graphs (see, e. g., [EEPT06]) is not needed in RDF.

RDF graphs are now given by sets of statements, where a statement is a triple consisting of a
subject, a predicate and an object. In the language of graph theory subjects and objects are nodes
and statements are edges labelled with predicates. Subjects and objects can be URIs, literals or
“blank nodes”, where blank nodes are nodes, which do not have a global identity, but are local
to the graph. Predicates are always given by URIs.

Definition 1 (RDF Graph) An RDF graph G = (GBlank,GTriple) consists of a set GBlank of blank
nodes and a set GTriple ⊆ (GBlank +URI+Lit)×URI× (GBlank +URI+Lit) of triples.

Remark 1 (Differences to RDF specifications) The formal specifications of RDF (see [KC04]
and [Hay04]) assume the blank nodes to be drawn from an infinite set, which is given globally.
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Our approach is to keep the blank nodes local to the graphs and use category theoretical machin-
ery to ensure disjointness of blank nodes from unrelated graphs in the following subsections.

Moreover, the RDF specifications only allow literals as objects, but not as subjects of triples.
The relaxation of this requirement is, however, common in later literature (see e. g. [MPG07])
and eases our formal treatment significantly.

The use of global sets of URIs and literals enables the distributed creation and storage of
information regarding the same entities and resources, where their connection is established by
the usage of identical URIs without the need to give explicit relations or morphisms.

In order to allow the typing of nodes by classes, the declaration of domains and codomains for
predicates and hierarchies of classes and predicates, RDF defines some special URIs for these
concepts in “vocabularies” (see [BG04]). In [MPG07] it is shown that from the rather verbose
vocabulary in [BG04] only the predicates rdf:type, rdfs:dom, rdfs:range, rdfs:subClassOf and
rdfs:subPropertyOf are needed to achieve the same essential structure. A triple (s, rdf:type,c)
states that one of the classes of node s is represented by the node c. Triples (p, rdfs:dom,c) and
(p, rdfs:range,d) require for a triple (s, p,o) using the URI p as a predicate that c is among the
classes of the subject s and d among the classes of the object o. A triple (c, rdfs:subClassOf,d)
means that each node of class c is also of class d and, finally, a triple (p, rdfs:subPropertyOf,q)
implies that for each statement (s, p,o) also the statement (s,q,o) holds.

This concept, where schema information and typing are represented internally in the graph,
is fundamentally different from the classical approach in graph transformation, where schema
information is kept in a type graph (possibly with inheritance structure) and typings are given
by a morphism from the graph into the type graph. The advantages of the RDF approach lie in
its flexibility: Nodes may have several classes or no classes at all instead of exactly one class in
the case of typed graphs. This facilitates the representation of information, for which there is no
schema available yet, and the application of different schemata to the same instance information.
Moreover, schemata and typing of an RDF graph may be easily modified at runtime.

Example 1 (RDF graph) In Figure 1 a small example of an RDF graph is depicted, where some
information about GT-VMT 2008 is represented. URIs are visualised by ellipses, literals by
rectangles, and blank nodes by circles. The triples of the RDF graph are given by the arrows
in the figure. In the upper row a simple ontology for workshops being held at conferences is
introduced. This schema is instantiated in the second row to state that the workshop GT-VMT
2008 is held at the conference ETAPS 2008. We use different namespaces, ont: for the ontology
and ex: for the instance information, to illustrate the possibility that the ontology namespace and
its elements are defined elsewhere and just imported into this graph. The third row gives some
additional information about the number of accepted contributions for GT-VMT 2008 by a typed
literal, and about the venue of ETAPS 2008 by a plain literal, where the language tag states that
the Hungarian name of the venue is “Budapest”.

2.2 RDF Graph Homomorphisms

To obtain a category of RDF graphs we define RDF graph homomorphisms, which capture the
structural relationships between RDF graphs. Essentially these are subgraph relations modulo
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ont:Workshop ont:heldAt ont:Conference
rdfs:dom rdfs:range

ex:GT-VMT08 ex:ETAPS08

rdf:type
ont:heldAt

rdf:type

(xsd:integer,24) (hu,Budapest)

ex:accepted

ex:number

ex:venue

Figure 1: Example of an RDF graph

a translation of the blank nodes, which means that blank nodes can be renamed, identified and
included into a larger set of blank nodes before the accordingly translated triples are included
into the triples of the codomain graph.

Definition 2 (RDF Graph Homomorphism) Given two RDF graphs G and H, an RDF graph
homomorphism h : G→ H is given by a translation function hBlank : GBlank→ HBlank, such that
(hBlank)#(GTriple) ⊆ HTriple, where the extension (hBlank)# of hBlank to triples is constructed by
(hBlank)# := (hBlank + idURI + idLit)× idURI× (hBlank + idURI + idLit).

Remark 2 (Relationship to concepts of RDF) RDF graph homomorphisms are not considered
explicitly in the normative RDF specifications. However, a notion of graph equivalence, corre-
sponding to a bijective homomorphism in the sense of the above definition, is defined in [KC04]
and [Hay04], where there are some technical differences resulting from the different treatment
of blank nodes mentioned in Remark 1.

Example 2 (RDF graph homomorphism) In Figure 2 an example is shown, which abstractly
illustrates the possibilities of an RDF graph homomorphism. The blank nodes 1 and 2 of graph G
are identified to the blank node 3 in graph H, i. e., the homomorphism h is non-injective. In order
to satisfy the required triple set inclusion, the triples (3, p1,uri1), (3, p2,uri2) and (uri2, p3, lit1)
are included in H. Moreover, H also has some additional information not in the image of h,
namely the blank node 4 and the triples (4, p2,uri2), (4, p4,uri3) and (uri3, p3, lit2), i. e., h is
non-surjective.

Our first result is that RDF graphs and their homomorphisms in fact establish a category.
Moreover, arbitrary limits and colimits can be constructed in this category.

Proposition 1 (Category RDFHom) RDF graphs and RDF graph homomorphisms constitute
a category, denoted by RDFHom. This category is complete and cocomplete, i. e., it has limits
and colimits over all diagrams.

Proof sketch. Composition and identities are just the composition and identities of the underly-
ing translations of blank nodes, i. e., composition and identities in the category Set, which are
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G

lit1uri2uri1

1
2

p1 p2 p2

p3

H

uri1 uri2 lit1 uri3 lit2

3 4

p1 p2 p2 p4

p3 p3

h

Figure 2: Example of an RDF graph homomorphism

known to satisfy associativity of composition and neutrality of identities. The required triple set
inclusions for compositions follow easily from the underlying inclusions, while they are imme-
diately obvious for identical triple sets.

Colimits can be constructed by first taking the colimit CBlank of the blank nodes in Set. Then
the triple sets in the diagram can be translated via the morphisms into the colimit to become
triple sets over CBlank, where we can finally take the set-theoretic union of these translated triple
sets to be the triple set CTriple of the colimit graph.

Limits can be constructed similarly by first taking the limit LBlank of the blank nodes in
Set. The reverse translation of the triple sets in the diagram to triple sets over LBlank can
be built by {(s, p,o) |(hBlank)#(s, p,o) ∈ GTriple} for all graphs G and corresponding functions
hBlank : LBlank→ GBlank. Finally, the triple set LTriple of the limit is obtained by the set-theoretic
intersection of the translated triple sets.

Remark 3 (Interpretation of limits and colimits) The merge of RDF graphs defined in [Hay04],
which takes the union of RDF graphs, while “standardising apart” common blank nodes, is
naturally obtained as the coproduct of RDF graphs in our category-theoretical setting. The more
complex colimits can be used to construct merges over common blank nodes, which are protected
from being standardised apart.

Intersections of RDF graphs are not treated explicitly in the RDF specifications. The limit
constructions in RDFHom can be used to formalise such intersections under common blank
nodes.

2.3 RDF Graph Instantiations

In [Hay04] blank nodes are interpreted as existential variables and an instance of an RDF graph
is defined to be a graph, where some of the blank nodes are replaced by concrete URIs or literals.
This leads to the following definition of a more general kind of morphism on RDF graphs. Note
that the name “instantiation” does not refer to the instantiation of a schema or ontology, but to
the instantiation of a blank node.

Definition 3 (RDF Graph Instantiation) Given RDF graphs G and H, an RDF graph instan-
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G

3uri1

2
1

p1 p2

p3

H

lit1 uri1

uri2

lit2

uri3

p1 p2

p3 p3

p1

i

Figure 3: Example of an RDF graph instantiation

tiation i : G→ H is given by an assignment function iBlank : GBlank → HBlank +URI+Lit, such
that (iBlank)#(GTriple)⊆ HTriple, where the extension (iBlank)# of iBlank to triples is constructed by
(iBlank)# := (iBlank + idURI + idLit)× idURI× (iBlank + idURI + idLit).

Remark 4 (Related concepts) RDF graph instantiations are a combination of instances and
subgraph relationships in the sense of [Hay04]. This is particularly interesting, because the
Interpolation Lemma of [Hay04] states: “S entails a graph E if and only if a subgraph of S is
an instance of E.” Using the notion of RDF graph instantiation this is simplified to: “S entails
E if and only if there is an instantiation i : E → S.” The characterisation of entailment by graph
homomorphisms is also examined in [Bag05], where RDF graphs are translated into directed,
labelled multigraphs and RDF entailment is shown to correspond to their morphisms.

Instantiations may also be used to formalise queries on an RDF data store. A data store, given
by an RDF graph D, is queried using a pattern, given by another RDF graph P. The result
of the query should be the set of all possible instantiations i : P→ D. In [CF07] a related but
more complex approach is taken, where SPARQL queries and RDF data sets are translated to
conceptual graphs and the results are computed by finding conceptual graph homomorphisms.

Example 3 (RDF graph instantiation) The RDF graph instantiation i : G→H in Figure 3 iden-
tifies the blank nodes 1 and 2 to the URI uri2 and maps the blank node 3 to the literal lit1. In
terms of entailment this means that the triple (uri2, p1,uri1) in H entails the triple (1, p1,uri1) in
G, (uri2, p2,uri1) entails (2, p2,uri1) and (uri1, p3, lit1) entails (uri1, p3,3). The non-surjectivity
of the instantiation i means that not all information in H is used to entail G. In this and follow-
ing figures we depict instantiations by jagged arrows, while plain homomorphisms are shown as
normal arrows.

In the following proposition we show that RDF graph instantiations give rise to another cat-
egory, which comprises RDFHom as a subcategory. This category is neither complete nor co-
complete. In Subsection 4.1 we will, however, examine circumstances under which pushouts of
instantiations exist.

Proposition 2 (Category RDFInst) RDF graphs and RDF graph instantiations constitute a
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Figure 4: Double pushout transformation

category, denoted by RDFInst, with RDFHom ⊆ RDFInst. This category does not have limits
and colimits in general.

Proof sketch. The composition of instantiations i : G→ H and j : H → K can be obtained by
( j ◦ i)Blank := ( jBlank + idURI + idLit)◦ iBlank. Identities idG are given by embeddings idG,Blank of
the blank node set GBlank into the coproduct GBlank +URI + Lit. Associativity of composition
and neutrality of identities follow from the corresponding properties of Set. The required triple
set inclusions are again direct consequences of the underlying inclusions in the composed instan-
tiations. The inclusion of RDFHom into RDFInst is obvious, since each blank node translation
hBlank : GBlank→HBlank is also an assignment hBlank : GBlank→HBlank +URI+Lit, which simply
does not use the possibilities of the extended codomain.

The existence of colimits is impeded by instantiations of the same blank node to different URIs
or literals, which cannot be reconciled. The existence of limits is on the other hand inhibited by
the fact that unique instantiations into the limit are in general impossible: A blank node without
statements can be instantiated to arbitrary URIs or literals.

3 Which Transformation Approach?

In this section we will try to find an algebraic graph transformation approach suitable for trans-
forming RDF graphs, which should not only provide a formal basis for the transformations them-
selves, but also for features like reversibility (to support undoing of editing transformations) and
reasoning about dependencies (to achieve structured version histories).

3.1 Double Pushout Approach

The Double Pushout (DPO) approach is one of the predominant approaches in algebraic graph
transformation. Its theory has been reformulated in the framework of adhesive HLR categories in
[EEPT06]. The main idea of DPO transformations is to split the task of transforming a graph into
the deletion of graph elements by a pushout complement and the creation of new elements by a
pushout. A DPO transformation is shown in Figure 4, where the rule L←K→ R is applied to the
graph G via the match m : L→ G by first constructing the context C by a pushout complement
and then the resulting graph H with comatch n : R→ H by a pushout of R and C over K.

DPO transformations are always reversible due to their symmetric structure. If a graph H is
obtained from a graph G by the application of a rule L← K→ R, then a graph isomorphic to G
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p1p2 p2
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p2 p2
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(a) Pushout complement with deletion

Gl2u2u1l1
p1p2 p2

C∗ l1 u1 u2 l2
p1p2 p2

Lu1 u2
p1

K u1 u2
l

m c∗

l∗

(PO)

(b) Pushout complement without deletion

Figure 5: Ambiguity of pushout complements in RDFHom

may be reconstructed from H by the inverse rule R← K → L. Moreover, there is an extensive
theory about the dependencies and conflicts between DPO transformation rules.

Most instantiations of the DPO approach ensure or require unique pushout complements in
order to facilitate unique transformation results. This is not possible for RDF graphs as can be
seen in the example in Figure 5, where two different pushout complements for the same given
situation are shown. The ambiguity results from the fact that the triple (u1, p1,u2), deleted in
the context graph K, can be deleted as in C in Figure 5(a) or it can be preserved as in C∗ in
Figure 5(b). The graph G is a pushout (set-theoretic union of the triples) in both cases.

3.2 Single and Sesqui Pushout Approach

An early alternative approach to algebraic graph transformation is the Single Pushout (SPO)
approach studied in [EHK+97]. Instead of splitting deletion and creation into seperate construc-
tions the SPO approach achieves both at the same time by pushouts in a suitable category of
partial morphisms. Among the key characteristics of such partial pushouts are the deletion in un-
known context (if a node is deleted all edges connected to this node are also deleted even if they
are not mentioned in the rule) and the precedence of deletion over preservation (if a deleted node
is identified to a preserved one by the match the node is deleted leading to a partial comatch).

A recent proposal is the Sesqui Pushout (SqPO) approach introduced in [CHHK06]. It also
features deletion in unknown context but does not allow the identification of deleted and pre-
served nodes. This is achieved by a split into deletion and creation similar to the DPO approach,
where deletion is modelled by final pullback complements instead of pushout complements.

The SPO and SqPO approaches both result in deletion in unknown context, which is not desir-
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Figure 6: Minimal pushout complement

able in our case, because it impedes the reversibility of transformations. Implicitly deleted edges
may not be reconstructed. While this could be resolved by using, e. g., a SqPO approach with an
additional condition prohibiting dangling edges, we opt for modifying the DPO approach in the
following section.

3.3 The Need for a Modified Approach

Since we want to have unique transformation results, but do not want deletion in unknown con-
text, we cannot use one of the previous approaches unmodified. Returning to Figure 5 we observe
that the result we want to achieve in this situation is the deletion of the triple. Hence, our ap-
proach, developed in the following section for RDF, is to resolve the ambiguity by canonically
selecting the minimal pushout complement (MPOC), i. e., a pushout complement in which as
much as possible is deleted.

Definition 4 (Minimal Pushout Complement) Given morphisms l : K → L and m : L→ G in
an arbitrary category, a minimal pushout complement C of l and m with morphisms l′ : C→ G
and c : K → C is a pushout complement, i. e., G is a pushout of L and C over K, such that for
each pushout complement C∗ of l and m with morphisms l∗ : C∗→ G and c∗ : K→C∗ there is a
unique morphism x : C→C∗ with l′ = l∗ ◦ x and c∗ = x◦ c (cf. Figure 6).

This should preserve most of the well-behavedness of the DPO approach, since the resulting
transformation diagram still is a double pushout with an additional side condition, which ensures
uniqueness of the transformation result.

Proposition 3 (Uniqueness of Minimal Pushout Complements) Minimal pushout complements
are unique up to isomorphism.

Proof sketch. Since two minimal pushout complements have unique morphisms in both direc-
tions and their compositions have to be the respective identities as unique endomorphisms, they
are obviously isomorphic.

Note that neither the existence of POCs nor the existence of MPOCs for non-unique POCs is
guaranteed in general. In the next section we will give a construction for MPOCs in RDFInst,
which under certain conditions also implies their existence.
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4 RDF Graph Transformations and Basic Results

In this section we develop a transformation concept for RDF graphs, which uses minimal pushout
complements for the deletion and pushouts for the creation of blank nodes and triple statements.

4.1 MPOC-PO Transformations for RDF

For the creation of elements we need pushouts in RDFInst. Sufficient conditions for their exis-
tence can be achieved by restricting one of the instantiations in the given span to be an injective
homomorphism. This ensures that contradictions can arise neither due to assignments of one
blank node to different URIs or literals (the homomorphism cannot assign a blank node to a URI
or literal, but only to a blank node) nor due to the identification of several blank nodes assigned
to different URIs or literals (injectivity prevents identifications).

Theorem 1 (Pushouts in RDFInst) Given an injective RDF graph homomorphism r : K → R
and an RDF graph instantiation c : K→C, a pushout H with an injective RDF graph homomor-
phism r′ : C→ H and an RDF graph instantiation n : R→ H can be constructed by

• the blank node set HBlank := CBlank + (RBlank \ rBlank(KBlank)) with the injection r′Blank of
CBlank into the coproduct and the assignment nBlank, which acts on nodes from KBlank as
cBlank does and on the new nodes as an injection into the coproduct, and

• the triple set HTriple := (r′Blank)
#(CTriple)∪ (nBlank)#(RTriple).

Proof sketch. The asymmetric construction of HBlank ensures that the assignment nBlank is well-
defined, because the inclusion of CBlank enables its acting like cBlank on the preserved nodes,
while the addition of the new elements of RBlank facilitates their injective mapping. The union
construction of the triple set guarantees the satisfaction of the corresponding triple set inclusions,
while the commutativity nBlank ◦ rBlank = r′Blank ◦ cBlank also holds by construction.

For each other graph H∗ with instantiations n∗ : R→ H∗ and r∗ : C→ H∗, such that n∗ ◦ r =
r∗ ◦ c an assignment xBlank : HBlank→ H∗Blank +URI+Lit is uniquely induced by the requirement
that it acts on blank nodes from C as r∗ does (x◦ r′ = r∗) and on blank nodes from R as n∗ does
(x◦n = n∗).

For the deletion we will use the concept of MPOC introduced in Definition 4. In the following
theorem we give sufficient conditions and a construction for MPOCs in RDFInst. Two of these
conditions, namely the identification and the dangling condition, are well-known from the ordi-
nary DPO approach, while the third ensures that deleted blank nodes are not assigned to URIs or
literals, which cannot be deleted.

Theorem 2 (Minimal Pushout Complements in RDFInst) Given an injective RDF graph ho-
momorphism l : K→ L and an RDF graph instantiation m : L→ G, such that the deleted blank
nodes in LBlank \ lBlank(KBlank)

• are not identified by mBlank to preserved blank nodes from lBlank(KBlank) (identification
condition),
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• are not assigned by mBlank to URIs or literals, and

• are not assigned by mBlank to blank nodes, which are used in preserved triples in GTriple \
(mBlank)#(LTriple) (dangling condition),

an MPOC C with an injective RDF graph homomorphism l′ : C→ G and an RDF graph instan-
tiation c : K→C can be constructed by

• the blank node set CBlank := GBlank \mBlank(LBlank \ lBlank(KBlank)) with the inclusion l′Blank
of this set into GBlank and the assignment cBlank, which behaves like mBlank ◦ lBlank, and

• the triple set CTriple := GTriple \ (mBlank)#(LTriple \ (lBlank)#(KTriple)).

Proof sketch. The assignment cBlank is well-defined and the triple inclusion of (cBlank)#(KTriple)
into CTriple is satisfied, because the blank nodes in the range of mBlank ◦ lBlank and the triples from
KTriple are explicitly not removed in C, while the commutativity mBlank ◦ lBlank = l′Blank ◦ cBlank
also holds by this construction.

The blank node set GBlank may be reconstructed from LBlank and CBlank by the pushout con-
struction in Theorem 1, since the removed triples mBlank(LBlank \ lBlank(KBlank)) are exactly the
ones that are added by the pushout. Moreover, the pushout construction also recovers the triple
set GTriple. Hence, the construction in fact leads to a pushout complement.

For each other pushout complement C∗ with instantiations c∗ : K → C∗ and l∗ : C∗ → G the
blank node set C∗Blank has to be isomorphic to CBlank, because otherwise the pushout construction
would also result in a non-isomorphic blank node set. The blank node bijection xBlank : CBlank→
C∗Blank is then already uniquely determined by the requirement l′Blank = l∗Blank ◦ xBlank. The triple
set (xBlank)#(CTriple) has to be included in C∗Triple, since C∗ has to contain all triples, which cannot
be reconstructed from LTriple by the pushout, and all triples contained in KTriple in order to be a
pushout complement.

Remark 5 (Pushouts and MPOCs of proper instantiations) The conditions given in Theorem 1
and Theorem 2 are sufficient, but not necessary, respectively. In fact, it is possible to construct
pushouts of (proper) RDF graph instantiations if the assignments of blank nodes do not contra-
dict. For our application to RDF graph transformation the given constructions over homomor-
phisms are, however, general enough, since we do not want to instantiate blank nodes in the rule
but only in the match.

We now have both constructions that are necessary to define RDF graph transformations as
MPOC-PO transformations. This means that the deletion in the first square of Figure 7 is ob-
tained by an MPOC, while the creation in the second square is done by a pushout.

Definition 5 (RDF Graph Transformation) An RDF graph transformation rule is given by a
span L←K→ R of injective RDF graph homomorphisms. An application of this rule to an RDF
graph G via an RDF graph instantiation m : L→ G is given by the diagram in Figure 7 resulting
in the RDF graph H with the RDF graph instantiation n : R→ H.

Example 4 (RDF graph transformation) In Figure 8 an example of an RDF graph transforma-
tion is depicted, where the rule replaces a sequential occurrence of predicates p1 and p2 by a
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Figure 8: Example of an RDF graph transformation

single occurrence of p3, while deleting the intermediate blank node. Such a rule is not typical
for reasoning in RDF, since inference only yields additional triples, but does not delete anything.
We claim, however, that such deleting transformations are useful for editing RDF data, e. g., if
the predicates p1 and p2 are deprecated and shall be replaced by p3.

The following corollary summarises the existence and uniqueness properties of RDF graph
transformations.

Corollary 1 (Applicability and Uniqueness of RDF Transformations) An RDF graph transfor-
mation rule L← K→ R is applicable via a match instantiation m : L→ G if m does not identify
deleted and non-deleted blank nodes, does not assign deleted blank nodes to URIs or literals and
does not assign deleted blank nodes to blank nodes occuring in triples not in the range of m. In
this case the resulting RDF graph H with comatch n : R→ H is unique up to isomorphism.

Proof. This corollary follows directly from Theorem 2 and Theorem 1 regarding the existence
of the result and from Proposition 3 and the uniqueness of pushouts in any category regarding its
uniqueness.

4.2 Reversible Transformations

While DPO transformations are always reversible due to their symmetric structure, MPOC-PO
transformations are only reversible if the creation pushout is also an MPOC. In RDF graph
transformations this is the case if none of the additional triples in R is already present in C.
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Theorem 3 (Reversibility of RDF Graph Transformations) Given the RDF graph transforma-
tion in Figure 7, the application of the inverse rule R← K → L to the graph H via the match
n : R→ H is possible and leads to a graph G′ isomorphic to G provided that (r′Blank)

#(CTriple)∩
(nBlank)#(RTriple) = (nBlank ◦ rBlank)#(KTriple) = (r′Blank ◦ cBlank)#(KTriple).

Proof sketch. The given condition ensures that the right square is not only a pushout, but that
C is also an MPOC in this square, since all common triples of CTriple and RTriple are also in the
interface KTriple and will therefore not be removed by the MPOC construction.

In order to constrain RDF graph transformations to reversible cases negative application con-
ditions could be used, which disallow all triples added by the rule from being already present in
the host graph. To achieve the same expressibility additional rules could be added, which have
these triples in their left-hand sides and just perform the other changes of the rule. A complete
discussion is, however, outside the scope of this paper.

5 Summary and Future Work

In this contribution we have formalised RDF in a category theoretical framework, provided a
transformation approach for RDF graphs and shown under which circumstances transformations
are applicable and reversible. These results can provide a useful basis for the rule-based modifi-
cation and creation of RDF data.

Future work should enhance the theoretical results for RDF graph transformations by con-
cepts like negative application conditions and analysis techniques for dependencies and conflicts.
Moreover, the relationships to the formal semantics of RDF and its inference mechanisms should
be examined.
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Abstract: We study directed bigraph with negative ports, a bigraphical framework
for representing models for distributed, concurrent and ubiquitous computing. With
respect to previous versions, we add the possibility that components may govern the
access to resources, like (web) servers control requests from clients. This frame-
work encompasses many common computational aspects, such as name or channel
creation, references, client/server connections, localities, etc, still allowing to derive
systematically labelled transition systems whose bisimilarities are congruences.

In order to illustrate the expressivity of this framework, we give the encodings of
client/server communications through firewalls, of (compositional) Petri nets and of
chemical reactions.

Keywords: Bigraphs, reactive systems, Petri nets, graph-based approaches to service-
oriented applications.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical framework proposed by Milner
and others [Mil01, Mil06] as a unifying theory of process models for distributed, concurrent and
ubiquitous computing. A bigraphical reactive system consists of a category of bigraphs (usually
generated over a given signature of controls) and a set of reaction rules. Bigraphs can be seen
as representations of the possible configurations of the system, and the reaction rules specify
how these configuration can evolve, i.e., the reaction relation between bigraphs. Often, bigraphs
represent terms up-to structural congruence and reaction rules represent term rewrite rules.

Many process calculi have successfully represented as bigraphical reactive systems: λ -calculus
[Mil07], CCS [Mil06], π-calculus [BS06, JM04], Mobile Ambients [Jen08], Homer [BH06], Fu-
sion [GM07c], Petri nets [LM06], and context-aware systems [BDE+06]. The advantage of using
bigraphical reactive systems is that they provide powerful general results for deriving a labelled
transition system automatically from the reaction rules, via the so-called IPO construction. No-
tably, the bisimulation on this transition system is always a congruence; thus, bigraphical reactive
systems provide general tools for compositional reasoning about concurrent, distributed systems.

Bigraphs are the key structures supporting these results. A bigraph is a set of nodes (the
controls), endowed with two independent graph structures, the place graph and the link graph
(Figure 1). The place graph is a tree over the nodes, representing the spatial arrangement (i.e.,
nesting) of the various components of the system. The link graph represents the communication
connections between the components, possibly traversing the place structure. A bigraph may
be “not ground”, in the sense that it may have one or more “holes”, or sites (the gray boxes) to
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RESOLVING A BIGRAPH INTO PARTS
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Figure 1: Example of pure bigraph (from [Mil06]).

be instantiated; these holes are specific leaves of the place graph, where other bigraphs can be
grafted, respecting the connection links. This operation gives rise to a notion of composition
between bigraphs, and hence to a categorical structure.

In Milner’s “pure bigraphs” [Mil06], connections are represented by hyper-arcs between nodes
(Figure 1). This model has been successfully used to represent many calculi, such as CCS,
and (with a small variant) λ -calculus, π-calculus. Nevertheless, other calculi, such as Fusion
[PV98], seem to escape this framework. Aiming to a more expressive framework, in previous
work [GM07b, GM07c], we have introduced directed bigraphs. Pure and directed bigraphs differ
only on the link structure: in the directed variant, we distinguish “edges” from “connections”.
Intuitively, edges represent (delocalized) resources, or knowledge tokens, which can be accessed
by controls. Arcs are arrows from ports of controls to edges (possibly through names on the
interfaces of bigraphs); moreover, in the version considered in the present paper, we allow arcs
to point to other control’s ports (Figure 2). Outward ports on a control represent the capability of
the control to access to (external) resources; insted, inward ports represent the capability of the
control to “stop” or “govern” other node’s requests. The presence of both kinds of capabilities is
common in distributed scenarios, such as client/server communications, firewalls, web services
etc; for instance a system may ask to access to some data, but this attempt may be blocked,
checked and possibly redirected by a guarding mechanism. Moreover, controls with inward ports
can represent localized resources, that is, resources with a position within the place hierarchy;
this cannot be represented easily by edges, which do not appear in the place graph.

Notably, these extended have RPO and IPO constructions, there is a notion of normal form, and
a sound a complete axiomatization can be given. Therefore, these bigraphs can be conveniently
used for building wide reaction systems from which we can synthesize labelled transition systems
via the IPO construction, and whose bisimilarity is still a congruence.
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Figure 2: An example of directed bigraph, with negative ports.

Due to lack of space, in this paper we can only skim over these theoretical results; we prefer
to focus on some important applications of this framework. In Section 2 we give the basic
definitions about directed bigraphs. In Sections 3 we present the elementary bigraphs, which
are enough to generate all possible bigraphs. Section 4 is devoted to example applications,
highlighting the expressive power of this framework: we show how distributed services and
protocols can be represented, by describing a three-tier architecture with a firewall; we will
present an encoding of Petri nets, and finally we apply this framework to the representation of
chemical reactions. Conclusions and direction for future work are in Section 6. Constructions of
RPOs and IPOs, a notion of normal form and a complete axiomatization appear in [GM08].

2 Directed bigraphs over polarized signatures

In this section we introduce directed bigraphs, with inward (“negative”) ports on controls, ex-
tending [GM07b]. Following previous developments about pure and directed bigraphs, we work
in supported monoidal precategories; we refer to [JM04, §3] for an introduction.

A polarized signature is a signature of controls, which may have two kind of ports: nega-
tive and positive. Let K be a polarized signature; we denote with arn,arp : K → N the arity
functions of the negative and positive ports, respectively. Thus, for k ∈K , the arity function is
ar(k) , (arn(k),arp(k)). A control k is positive if it has only positive ports (i.e., arn(k) = 0); it
is negative if it has only negative ports (i.e., arp(k) = 0).

Definition 1 A polarized interface X is a pair of sets of names X = (X−,X+); the two compo-
nents are called downward and upward interfaces, respectively.
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A directed link graph A : X → Y is A = (V,E,ctrl, link) where X ,Y are the inner and outer
interfaces, V is the set of nodes, E is the set of edges, ctrl : V →K is the control map, and
link : Pnt(A)→ Lnk(A) is the link map, where ports, points and links of A are defined as follows:

Prt n(A), ∑
v∈V

arn(ctrl(v)) Prt p(A), ∑
v∈V

arp(ctrl(v)) Prt(A),Prt n(A)∪Prt p(A)

Pnt(A) , X+]Y−]Prt p(A) Lnk(A) , X−]Y +]Prt n(A)]E

The link map cannot connect downward and upward names of the same interface, i.e., the fol-
lowing condition must hold: (link(X+)∩X−)∪ (link(Y−)∩Y +) = /0; moreover the link map
cannot connect positive and negative ports of the same node.

Directed link graphs are graphically depicted much like ordinary link graphs, with the differ-
ence that edges are explicit objects, and not hyper-arcs connecting points and names; points and
names are associated to links (that is edges or negative ports) or other names by (simple, non
hyper) directed arcs. An example are given in Figure 2. This notation aims to make explicit the
“resource request flow”: positive ports and names in the interfaces can be associated either to
internal or to external resources. In the first case, positive ports and names are connected to an
edge or a negative port; these names are “inward” because they offer to the context the access
to an internal resource. In the second case, the positive ports and names are connected to an
“outward” name, which is waiting to be plugged by the context into a resource.

In the following, by “signature”, “interface” and “link graphs” we will intend “polarized sig-
nature”, “polarized interface” and “directed link graphs” respectively, unless otherwise noted.

Definition 2 The precategory of directed link graphs has polarized interfaces as objects, and
directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi,Ei,ctrli, linki) : Xi→ Xi+1 (i = 0,1), the composition
A1 ◦A0 : X0→ X2 is defined when the two link graphs have disjoint nodes and edges. In this case,
A1 ◦A0 , (V,E,ctrl, link), where V , V0]V1, ctrl , ctrl0] ctrl1, E , E0]E1 and

link : X+
0 ]X−2 ]Prt p(A0)]Prt p(A1)→ X−0 ]X+

2 ]E ]Prt n(A0)]Prt n(A1)

is defined as follows:

link(p) ,


link0(p) if p ∈ X+

0 ]Prt p(A0) and link0(p) ∈ X−0 ]E0]Prt n(A0)
link1(x) if p ∈ X+

0 ]Prt p(A0) and link0(p) = x ∈ X+
1

link1(p) if p ∈ X−2 ]Prt p(A1) and link1(p) ∈ X+
2 ]E1]Prt n(A1)

link0(x) if p ∈ X−2 ]Prt p(A1) and link1(p) = x ∈ X−1 .

The identity link graph of X is idX , ( /0, /0, /0K , idX− ∪ idX+) : X → X .

It is easy to check that composition is associative, and that given a link graph A : X → Y , the
compositions A◦ idX and idY ◦A are defined and equal to A.

Definition 1 forbids connections between names of the same interface in order to avoid unde-
fined link maps after compositions. Similarly, links between ports on the same node are forbid-
den, because these graphs cannot be obtained by composing an “unlinked” node and a context.
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It is easy to see that the precategory ′DLG is self-dual, that is ′DLG ∼= ′DLGop.
The notions of openness, closeness, leanness, etc. defined in [GM07b] can be easily extended

to the new framework, considering negative ports as a new kind of resources. Moreover, the
definition of tensor product can be derived extending to negative ports the one given in [GM07b],

Finally, we can define the (extended) directed bigraphs as the composition of standard place
graphs (see [JM04, §7] for definitions) and directed link graphs.

Definition 3 A directed bigraph with signature K is G = (V,E,ctrl, prnt, link) : I→ J, where
I = 〈m,X〉 and J = 〈n,Y 〉 are its inner and outer interfaces respectively. An interface is composed
by a width (a finite ordinal) and by a pair of finite sets of names. V and E are the sets of nodes and
edges respectively, and prnt, ctrl and link are the parent, control and link maps, such that GP ,
(V,ctrl, prnt) : m→ n is a place graph and GL , (V,E,ctrl, link) : X→Y is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP,GL〉. In this notation, a place graph
and a (directed) link graph can be put together iff they have the same sets of nodes.

Definition 4 The precategory ′DBIG of directed bigraph with signature K has interfaces I =
〈m,X〉 as objects and directed bigraphs G = 〈GP,GL〉 : I → J as morphisms. If H : J → K is
another directed bigraph with sets of nodes and edges disjoint from the respectively ones of G,
then their composition is defined by composing their components, i.e.:

H ◦G , 〈HP ◦GP,HL ◦GL〉 : I→ K.

The identity directed bigraph of I = 〈m,X〉 is 〈idm, idX〉 : I→ I.

Analogously, the tensor product of two bigraphs can be defined tensoring their components.
It is easy to check that for every signature K , the precategory ′DBIG is wide monoidal; the

origin is ε = 〈0,( /0, /0)〉 and the interface 〈n,X〉 has width n. Hence, ′DBIG can be used for
applying the theory of wide reaction systems and wide transition systems as developed by Jensen
and Milner; [JM04, §4, §5]. To this end, we need to show that ′DBIG has RPOs and IPOs. Since
place graphs are as usual, it suffices to show that directed link graphs have RPOs and IPOs.

Theorem 1 If a pair ~A of link graphs has a bound ~D, there exists an RPO (~B,B) for ~A to ~D.

As a consequence, ′DLG has IPOs too. See [GM08] for the constructions for RPOs and IPOs
in directed bigraphs with negative ports, extending the construction given in [GM07b].

Actually, often we do not want to distinguish bigraphs differing only on the identity of nodes
and edges. To this end, we introduce the category DBIG of abstract directed bigraphs, which
is constructed from ′DBIG forgetting the identity of nodes and edges and any idle edge. More
precisely, abstract bigraphs are bigraphs taken up-to an equivalence m (see [JM04] for details).

Definition 5 Two concrete directed bigraphs G and H are lean-support equivalent, written
G m H, if there exists an iso between their nodes and edges sets after removing any idle edges.

The category DBIG of abstract directed bigraphs has the same objects as ′DBIG, and its arrows
are lean-support equivalence classes of directed bigraphs.
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3 Algebra and Axiomatization

As for directed bigraphs, also in the case of polarized signature it is possible to give a sound and
complete axiomatization. In this section, due to lack of space, we describe only the main classes
of bigraphs and the elementary bigraphs which can generate all bigraphs according to a well-
defined normal form. Due to lack of space, the definition of normal form and the normalization
theorem is given in [GM08]. We refer the reader to [GM07a] for a complete presentation of the
notation used here.

First, we introduce two distinct and complementary subclasses of bigraphs: wirings and dis-
crete bigraphs. that are strongly used in defining the normal form and the axiomatization.

Definition 6 A wiring is a bigraph whose interfaces have zero width (and hence has no nodes).
The wirings ω are generated by the composition or tensor product of three elements: substitu-
tions σ : ( /0,X+)→ ( /0,Y +), fusions δ : (Y−, /0)→ (X−, /0), and closures HN

x
y : ( /0,y)→ (x, /0).

Definition 7 An interface is prime if its width is 1. Often we abbreviate a prime interface
〈1,(X−,X+)〉 with 〈(X−,X+)〉, in particular 1 = 〈( /0, /0)〉. A prime bigraph P : 〈m,(Y−,Y +)〉 →
〈(X−,X+)〉 has a prime outer interface and the names in Y +,X− are linked to negative ports of P.

An important prime bigraph is mergem : m→ 1, it has no nodes and maps m sites to one root.

Definition 8 A bigraph is discrete if it has no edges and every open link has exactly one point.

The discreteness is well-behaved, and preserved by composition and tensor. It is easy to see
that discrete bigraphs form a monoidal sub-precategory of ′DBIG.

Definition 9 Let K be any non atomic control with arity (k−,k+), let~x−,~x+ be two sequences
of distinct names, and let ~Y +,~Y− be two sequences of (possibly empty) sets of distinct names,
such that: |~x−|+ |~x+|= k+ and |~Y−|= |~Y +|= k−. For a K-node v, we define the discrete ion

K(v, l) : 〈(~x−,~Y +)〉 → 〈(~Y−,~x+)〉

as the bigraph with exactly a node v and l is a pair of maps: an iso map lp :~x−∪~x+→ Prt p(v)
describing the linking among positive ports and names in ~x− or ~x+, and another iso map ln :
~Y−∪~Y +→ Prt n(v) describing the linking among negative ports and sets of upward inner names
(in~Y +) and sets of downward outer names (in~Y−). We omit v when it can be understood.

For a prime discrete bigraph P with outer names in (Z−,Z+), we define a discrete molecule as:

(K(l)⊗ id(Z−\~x−,Z+\~Y +))◦P.

If K is atomic, we define the discrete atom, as an ion without sites:

K(l) : (~x−,~Y +)→ 〈(~Y−,~x+)〉.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition of ω ⊗ id1
with a discrete one. Often we omit . . .⊗ idI in the compositions, when there is no ambiguity.
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K(l) : 〈(~x−,~Y +)〉 → 〈(~Y−,~x+)〉
a discrete ion

Figure 3: Elementary Bigraphs over polarized signatures.

Figure 3 shows the algebraic signature, that is a set of elementary bigraphs able to define
any other bigraph using composition and tensor product. The various sharing products are the
intuitive generalization of the ones defined in [GM07a]; see [GM08] for a detailed description.

4 Applications

4.1 Three-tier interaction with access control

As mentioned before, directed bigraphs over polarized signatures allow to represent resource
access control, by means of negative ports. This is particularly useful for representing access
policies between systems, possibly in different locations; the edges can represent access tokens
(or keys), which are global (although known possibly to only some controls). An example and
quite common scenario is a client-server connection, where the access to the server is subject to
authentication; after the request has been accepted, the server can route it to a back-end service
(e.g., a DBMS); see Figure 4. The security policy is implemented by the firewall control, which
allows a query to reach the server only if the client knows the correct key (rule AUTH). The
server routes the query to the correct back-end service using rules like ROUTE; finally the back-
end service provides the data (rule GET). An example computation is shown in Figure 5.

4.2 Compositional Petri Nets

In this section we recall briefly what a Petri net is and we give an encoding of these nets as
directed bigraphs; to this end it is preferable to work with sorted links, as in [LM06]. Notice that
this encoding yields naturally a notion of composition between Petri nets.

Definition 10 A place transition net (P/T net) is a 5-tuple (P,T,F,Mi) (P∩T = /0), where:

• P is the set of places; T is the set of transitions;
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client
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data

x yk k′ . . . k′′
. . .

AUTH
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. . .

z w

ROUTE

z w

u

GET

u

Figure 4: Signatures and rules for three-tier architecture services through a firewall.

u u u u

Figure 5: An example of client-server interaction through a firewall.

• F is the multiset of arcs, linking places to transitions and vice versa: F , 〈(P×T )∪ (T ×
P), f : (P×T )∪(T ×P)→N〉, with the constrain ∀t ∈ T. ∃p,q∈ P. (p, t)∈ F∧(t,q)∈ F ;

• M : P→ N is a marking, giving to each place a number of tokens, a place p is marked by
M if M(p) > 0 and unmarked if M(p) = 0; Mi is the initial marking.

We define •t , {p | (p, t) ∈ F} to be the pre-multiset of the transition t, and t• , {p | (t, p) ∈ F}
the post-multiset of the transition t.

A transition t is enabled by a marking M if M marks every place in •t; a transition fires from a
marking M to a marking M′, written M t→M′, iff for all p ∈ P : M′(p) = M(p)− ](•p)+ ](p•),
where ](•p) and ](p•) are the number of occurrences of p in •t, t•, respectively.

Notice that we allow multiple connections between a place and a transition, that is analogous
to assign a weight to an arc representing the token that have to be consumed to fire the reaction.

Definition 11 Let N = (P,T,F,M) and N′ = (P′,T ′,F ′,M′) be two P/T nets, we say that N and
N′ are isomorphic, if there exist two bijections α : P→ P′ and β : T → T ′, such that:

• (p, t) ∈ F iff (α(p),β (t)) ∈ F ′;
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token
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x : i y : o

i o placex,y
x,y

i
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i
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o
o

o
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trans(|~x|, |~y|)~x,~y

Figure 6: Signature for the encoding of compositional Petri nets.

• (t, p) ∈ F iff (β (t),α(p)) ∈ F ′;

• M = M′ ◦α .

We recall, as defined in [LM06], the definition of link sorting.

Definition 12 A link sorting is a triple Σ = (Θ,K ,Φ), where Φ is a set of sorts, and K
is a sorted signature (that is, a signature enriched with a sort to ports of each control). Fur-
thermore, each name in the interface (X−,X+) is given a sort, so the interfaces take the form
({x−1 : θ

−
1 , . . . ,x−n : θ−n },{x+

1 : θ
+
1 , . . . ,x+

m : θ+
m }). Finally, Φ is a rule on such enriched bigraphs,

that is preserved by identities, composition and tensor product.
We denote the precategory and category of, respectively, concrete and abstract Σ-sorted di-

rected bigraphs with ′DBIG(Σ) and DBIG(Σ).

Definition 13 A positive-negative sorting Σ = (Θ,K ,Φ) has sorts: Θ = {θ1, . . . ,θn}. The
signature K assigns sorts to ports arbitrarily. The unique Φ rule is: a point and a link (except of
edges) can be connected if they are equally sorted.

In order to define an encoding for compositional Petri nets, we introduce a positive-negative
sorting Σpetri, having sort Θpetri , {i,o} and sorted signature:

Kpetri , {token : (0,0), place : ({1 : i,1 : o},0), trans(h,k) : (0,{h : i,k : o})} where h,k > 0

where the controls token and trans are both atomic, while the control place is passive. Finally, the
Φ rule ensures that the linking is allowed only among ports having the same sort. An example of
use of this sorted signature is shown in Figure 6. The encoding function J·K is defined as follows:

J(P,T,F,M)K= merge(|P|+|T |) ◦
(

id|P|� id(P×{i,o}, /0)�
(
�

t∈T
trans(|•t|, |t•|)(•t×{i}, t•×{o})

))
◦(

∑
p∈P

place(p,i), (p,o)
(p,i), (p,o) ◦ (merge(|M(p)|+1) ◦ (M{(p,i), (p,o)}⊗ (

M(p)

∑
i=0

token)⊗1))

)
.

where, with an abuse of notation, trans(|•t|, |t•|)(•t×{i}, t•×{o}) means that if in the multisets there
are some repetitions of places then the ports of trans are linked to the same downward inner name
(i.e., (p, i) or (p,o)), an alternative definition is to link every port of trans to a different downward
inner name and then (eventually) “equate” these names using fusions.
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x:i x:o y:i y:o z:i z:o w:iw:ou:iu:o x:i x:o y:i y:o z:i z:o w:iw:ou:iu:o

Figure 7: Example of reaction rule in the case of 3 input and 2 output places.

x:i x:o y:i y:o z:i z:o x:i x:o y:i y:o z:i z:o

Figure 8: Example of reaction rule in the case of 2 input and 1 output places (with multiple arcs).

Proposition 1 Let N,N′ be two P/T nets, N is isomorphic to N′ iff JNK= JN′K up to iso.

We have a different reaction rule for any pair (h,k) associated to the control trans, in Figure 7
we show the reaction rule for the pair (3,2), that is a transition having 3 inputs and 2 outputs.
Moreover, we allow multiple connections between places and transitions, as in Figure 8, and we
can have transitions using some places as inputs and outputs, see Figure 9.

Now we can show that the given translation is adequate.

Theorem 2 Let (P,T,F,Mi) be a P/T net, M t→M′ iff J(P,T,F,M)K−→ J(P,T,F,M′)K.

Proof. (⇒) Suppose M t→ M′, so M enable the transition t, then there exists a trans-node in
J(P,T,F,M)K encoding the transition t, and the corresponding place-node of •t contain the nec-
essary tokens to fire the transition (by translation of M), then we can apply the appropriate rule
to perform the reaction reaching the configuration J(P,T,F,M′)K.

(⇐) If J(P,T,F,M)K −→ J(P,T,F,M′)K, there exists a matching of a rule with a sub-bigraph
of J(P,T,F,M)K, in particular the matched nodes have a counter part into the P/T net (P,T,F,M),
so the marking M enables a transition t (corresponding to the trans-node), and then M t→M′.

An interesting future work is to study the bisimulation induced by the IPO LTS over these
compositional Petri nets. We remark however, that this notion of composition is different from
that in Open Petri nets, since in the latter the interfaces express also behavioural properties, while
in the bigraphical encoding the interfaces express resource requests and offerings.
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x:i x:o x:i x:o

Figure 9: Example of reaction rule in the case of 1 place used as input and output.
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Figure 10: Example of atom encodings in directed link graphs.

5 Chemical Reactions
A chemical reactions is a process describing the conversions of a chemical compositions. Al-
ways, the chemical changes caused by a reaction involve the motion of electrons in the forming
or breaking of chemical bonds. For example, the octet rule says that atoms tend to gain, lose or
share electrons so as to have eight electrons in their outer electron shell.

In this section, we give an encoding of atoms into directed link graphs, as shown in Figure 10,
inspired by the well-known Lewis structures. We describe the atoms as nodes, and those nodes
have a number of positive ports equal to the number of valence electrons. Each of these ports
are linked to an electron, represented as a node having a negative port (accepting incoming
connections; for sake of simplicity we identify the node representing the electron with its port,
that is, we do not force all incoming connections to be linked to a precise point of the node).
Moreover, some nodes can have extra ports, that are initially linked to edges, hydrogen and
oxygen can be two examples, the idea is that such a configuration describes the aim of the atom to
“capture” electrons to complete its external shell; e.g. an oxygen atom has two missing electrons,
so it tries to share these two electrons with a pair of hydrogen atoms forming the water molecule.

We apply this model describing the forming and breaking of bonds among atoms, here we deal
with strong bonds, that is covalent and ionic bonds.

Some examples of covalent bonds are shown in Figure 11, the first shows how to hydrogen
atoms can share their electron. The second one is well-know and describes the generation of a
water molecule from two hydrogen atoms and an oxygen one: the oxygen shares two electrons:
one with each hydrogen, in this way it gets the two missing electrons in its external orbit, con-
versely each hydrogen atom completes its orbit sharing an electron with the oxygen. The latter
describes a more complicate situation, where the two carbon atoms (each needing four electron
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Figure 11: Example of covalent bonds among atoms.

to complete its orbit) share two electron with the other carbon atom, and the remaining two
missing electrons are provided by a pair of hydrogen.

In Figure 12, we show an example of ionic bond: given an atom of sodium and a chlorine
one, it may happen (by octet rule) that the external electron of sodium is lost by the atom and
“captured” by the chlorine, forming a sodium (positive) ion and a chlorine (negative) ion. These
two ions attract each other by the electrostatic force caused by the electron exchange. Finally the
ions can be composed to form sodium-chloride molecule, that is the common salt.

An interesting future work concern to represent the weak bonds, i.e. hydrogen bonds and van
der Waals bonds, using the same representation as much as possible.

6 Conclusions

In this paper, we have considered directed bigraphs over polarized signatures, a bigraphical
model for concurrent, distributed system with resources and controls. The main difference with
previous versions of bigraphs is the capability of nodes (i.e., systems) to ask for resource access
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Figure 12: Examples of ion bonds among atoms.

(via the “positive ports”) and to control other’s requests, providing access to own resources (via
the negative ports). These bigraphs have RPO and IPO constructions, thus allowing to derive
systematically labelled transition systems from reactive systems, as in [JM03, GM07c]; notably
the bisimilarities induced by these labelled transition systems are always congruences. These
directed bigraphs admit also a notion of normal form, and a complete axiomatization.

We have exhibited the expressive power of this framework, by applying it some interesting
cases: a three-tier interaction between client, server and back-end service through a firewall, the
Petri nets, and chemical reactions. All these cases are faithfully encoded as directed bigraphs
with polarized signatures (possibly with sorting).

An interesting future work is to develop properly the treatment of web service interactions,
extending the ideas shown in Section 4.1. In particular, we would like to give a bigraphical
semantics of some formal calculus for web services, such as SCC or CC-Pi [BBC+06, BM07].

Another future development is to use this kind of bigraphs as a general framework for systems
biology. Some preliminary experiment about the representation of biochemical reactions, not
shown in this paper due to lack of space, are promising: ions, electrons, chemical links can
be represented as controls and arcs, and the place structure can be fruitfully used to represent
nesting of chemical compounds. It would be interesting to encode in directed bigraphs some
important formalism for systems biology, such as the κ-calculus [DL04]. Along this line, also
the possibility of adding quantitative aspects (i.e., reaction rates) sounds very promising.
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Abstract: This paper presents a compiler for interaction nets, which, just like term
rewriting systems, are user-definable rewrite systems which offer the ability to spec-
ify and program. In the same way that the λ -calculus is the foundation for functional
programming, or horn clauses are the foundation for logic programming, we give in
this paper an overview of a substantial software system that is currently under devel-
opment to support interaction based computation, and in particular the compilation
of interaction nets.

Keywords: Interaction Nets, programming languages

1 Introduction

Interaction nets [3] are a graphical—visual—programming language. Programs are expressed
as graphs, and computation is graph reduction. From another perspective, interaction nets are
also a low-level implementation language: we can define systems of interaction nets that are
instructions for the target of compilation schemes of other programming languages (typically
functional languages, based on the λ -calculus). To facilitate both these uses of interaction nets,
we need high quality, robust implementations.

In this paper we focus on using interaction nets as a programming language. Although we can
already program in interaction nets (they are after all Turing complete) they lack what program-
ming languages should offer: features such as input/output, etc. However, more important to
this paper is that they lack the structure that we expect from modern programming languages: a
module system for instance. Thus the first contribution in this paper is a programming language
for interaction nets, which lifts them from the “pure” world to allow them to be used in practice.
To give some analogies as to what we are doing, consider the following where we give for a
particular formalism (or model), some examples of languages that have been created for it:

• λ -calculus: functional programming languages, such as Haskell [8], Standard ML [7],
OCaml, etc.

• Horn clauses: logic programming languages, such as Prolog.

• Term rewriting systems: OBJ, Elan, Maude [1].

• π-calculus: PICT [9]
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The first goal of this paper is to add interaction nets to this list by providing a corresponding
programming language that we call Pin. In the list above, the programming language on the
right is there to provide not only some syntactical sugar, but also to provide features that the
theory does not offer. For instance, if we look in detail at the analogy with the λ -calculus
and functional programming languages, functional languages allow the definition of functions
such as: twice f x = f(f x), which is a significant improvement over λ f x. f ( f x) as a
programming language, as programs can be reused for instance. In addition languages provide a
module system, data-types (built-in and a mechanism for user-defined data-types), input/output,
etc.

In [6] we made a first attempt to build a programming language for interaction nets. Here
we take that language as a starting point, and in addition investigate how to compile it. This
gives the second contribution to this paper: we provide, for the first time, a compilation of
interaction nets. The motivation for this line of compilation is that interaction nets have been
implemented very efficiently, and also in parallel: by providing a compiler to interaction nets we
potentially obtain parallel implementations of programming languages (even sequential ones) for
free. However, this is not reported in the current paper: we are simply setting up the foundations
and the framework for this development.

To summarise, the paper contains three main contributions: we define a programming lan-
guage for interaction nets, we define an abstract machine for interaction nets, and we define a
compiler for interaction nets.

We have implemented this language, and we report on this at the end of the paper. In particular,
we show that the new techniques developed for implementing interaction nets improve upon
existing implementations. We also remark that the ideas used in this paper could be extended to
work with other rewriting systems through translations to interaction nets. Finally, we remark
that this is the first attempt in this area, there is now a need to develop tools and optimisation
techniques for this paradigm.

Related work. There are several implementations of interaction nets in the literature: a graphi-
cal one [4] and a textual, parallel one [11]. The goals of those works was to investigate interaction
nets: our focus is on explicitly extending interaction nets to a rich programming language.

Structure. The rest of this paper is structured as follows. In the next section we recall some
background information about interaction nets. In Section 3 we define a programming language
for interaction nets. In Section 4 we define an abstract machine for interaction nets (IAM) and
give the compilation schemes in Section 5. Section 6 gives some properties of the compilation.
Section 6 gives details of the implementation. Finally, we conclude the paper in Section 7.

2 Background

An interaction net system is a set Σ of symbols, and a set R of interaction rules. Each symbol
α ∈ Σ has an associated (fixed) arity. An occurrence of a symbol α ∈ Σ is called an agent. If
the arity of α is n, then the agent has n + 1 ports: a distinguished one called the principal port
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depicted by an arrow, and n auxiliary ports labelled x1, . . . ,xn corresponding to the arity of the
symbol. We represent an agent graphically in the following way:

����
α

?

@ �
· · ·x1 xn

y

If n = 0 then the agent has no auxiliary ports, but it will always have a principal port. We
represent agents textually as: y∼ α(x1, . . . ,xn), and we omit the brackets if the arity of an agent
is zero.

A net N built on Σ is a graph (not necessarily connected) with agents at the vertices. The
edges of the net connect agents together at the ports such that there is only one edge at every
port, although edges may connect two ports of the same agent. The ports of an agent that are not
connected to another agent are called the free ports of the net. There are two special instances of
a net: a wiring (a net with no agents) and the empty net.

A pair of agents (α,β ) ∈ Σ×Σ connected together on their principal ports is called an active
pair, which is the interaction net analogue of a redex. An interaction rule ((α,β ) =⇒ N) ∈ R
replaces an occurrence of the active pair (α,β ) by a net N. The rule has to satisfy a very strong
condition: all the free ports are preserved during reduction, and moreover there is at most one
rule for each pair of agents. The following diagram illustrates the idea, where N is any net built
from Σ.

����
α ����

β-�
@

�

�

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

An implementation of this rewriting process has to create the right-hand side of the net, and
make all the connections (re-wirings). Although it may not be the most trivial computation step,
it is a known, constant time operation. It is for this reason that interaction nets lend themselves to
the study of cost models of computation. All aspects of a computation are captured by the rewrit-
ing rules—no external machinery such as copying a chunk of memory, or a garbage collector,
are needed. Interaction nets are amongst the few formalisms which model computation where
this is the case, and consequently they can serve as both a low level operational semantics and
an object language for compilation, in addition to being well suited as a basis for a high-level
programming language. We refer the reader to other papers on interaction nets for properties and
additional theory.

An example: encoding the integers. Many simple examples of systems of interaction nets
can be found in the literature, for instance the encoding of arithmetic expressions, etc. However,
interaction nets are well suited for alternative representations of data-structures and algorithms.
Any integer n can be represented (non-uniquely) as a difference of two natural numbers: p−q.
Using this idea, we can represent integers in the following way:
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����
I
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S ����
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����
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6 6

6 6
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q

Here, the agent S (of arity 1) is interpreted as successor. A linear chain of S agents of length
n is used to give a representation of a natural number n. The representation of an integer simply
takes two chains of length p and q, and connects them together as shown, using the agent I (of
arity 2). Although this representation is not unique, we can talk about canonical forms when
p = 0 or q = 0 (or both), and there are interaction rules that can compute this. The integer zero
is a net where p = q, in particular when p = q = 0: we can encode addition, subtraction and
negation, for which we need several interaction rules. We just detail the encoding of addition. If
N1 and N2 are the net representations of z1 = (p1−q1) and z2 = (p2−q2) respectively, then we
can use the following configuration to encode the addition:

����
I
6

����
I∗ ����

I∗

? ?

N1 N2

The interaction rules for the agents are:

����
I

����
I∗
6
?

�

@

@

�

=⇒

����
S

����
S

6
? =⇒

To see how this works, there will be two interactions between the agents I (of nets N1 and N2)
and I∗ which concatenate the two chains. If z1 and z2 are both in canonical form and moreover
both positive (or both negative) then the addition is completed with the two interactions. Other-
wise there will be an additional min{q1, p2} interactions between two S agents to obtain a net in
normal form.
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Figure 1: Example net and rules

3 Programming Language

Following [2], an interaction net system can be described as a configuration c = (Σ,∆,R), where
Σ is a set of symbols, ∆ is a multiset of active pairs, and R is a set of rules. A language for inter-
action nets needs to capture each component of the configuration, and provide ways to structure
and organise the components. Starting from a calculus for interaction nets we build a core lan-
guage. A core language can be seen both as a programming language and as a target language
where we can compile high-level constructs. Drawing an analogy with functional programming,
we can write programs in the pure λ -calculus and can also use it as a target language to map
high-level constructs. In this way, complex high-level languages can be obtained which by their
definition automatically get a formal semantics based on the core language.

Nets are written as a comma separated list of agents, corresponding to a flattening of the graph.
There are many different (equivalent) ways we could do this depending on the order we choose
to enumerate the agents. Using the net on the left-most side of Figure 1 as an example, we can
generate a representation as the following list:

x∼ App(r,a), a∼ Nil, x∼ Nil

This can be simplified by eliminating some names:

App(r,Nil)∼ Nil

In this notation the general form of an active pair is α(. . .)∼ β (. . .). We assume that all variable
names occur at most twice. If a name occurs once, then it corresponds to one of the free ports
of the net (r is free in the above). If a name occurs twice, then this represents an edge between
two ports. In this latter case, we say that a variable is bound. The limitation on at most two
occurrences corresponds to the requirement that it is not possible to have two edges connected
to the same port in the graphical setting.

We represent rules by writing l =⇒ r, where l consists of two agents connected at their princi-
pal ports. Therefore rules can be written as α(..)∼ β (..) =⇒ N, and as such we replace the ‘∼’
by ‘><’ so that we can distinguish an occurrence of a rule from an occurrence of an active pair.
The two rules on the right of Figure 1 (append) can be represented as:

App(r,y) >< Nil =⇒ r∼ y
App(r,y) >< Cons(v,u) =⇒ r∼ Cons(v,z),u∼ App(z,y)
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〈Pin〉 ::= { 〈ruleDef 〉 | 〈netDef 〉 }

〈ruleDef 〉 ::= 〈agent〉 ‘><’ 〈agent〉 [ ‘=>’ 〈netDef 〉 ]

〈netDef 〉 ::= 〈equation〉 { ‘;’ 〈equation〉}

〈equation〉 ::= 〈term〉 ∼ 〈term〉

〈term〉 ::= 〈agent〉 | 〈var〉

〈agent〉 ::= 〈agentName〉 [ 〈ports〉 ]

〈ports〉 ::= ‘(’ 〈term〉 [ ‘,’ 〈term〉 ] ‘)’

〈agentName〉 ::= 〈Name〉

〈var〉 ::= 〈Name〉

Figure 2: Syntax of the core language

The names of the bound variables in the two nets must be disjoint, and the free variables must
coincide, which corresponds to the condition that the free variables must be preserved under
reduction. Under this assumption, these two rules can be simplified to:

App(y,y) >< Nil =⇒
App(Cons(v,z),y) >< Cons(v,App(z,y)) =⇒

In this notation we observe that the right-hand side of the rule can always be empty. In this case
we will omit the ‘=⇒’ symbol. This notation therefore allows sufficient flexibility so that we
can either write nets in a compact way (without any net on the right of the ‘=⇒’) or in a more
intuitive way where the right-hand side of the net is written out in full to the right of the arrow.

In Figure 2, we give the syntax for the core language discussed above.

Language extensions. The core language allows the representation of the three main compo-
nents of an interaction net system: agents, rules and nets. The language is very attractive for
theoretical investigations: it is minimal yet computationally complete. The price for this sim-
plicity is programming comfort. Here, we give an overview of some practical extensions that
enhance the usability of interaction nets. Details and examples of these extensions can be found
at http://www.informatics.sussex.ac.uk/users/ah291/ 1.

Modular construction of nets. We allow nets to be named so that they can be built in a mod-
ular way. Named nets contain as their parameters a list of the net’s free ports. Using this mech-
anism, we can build a new net by instantiating a named net with some argument nets. As an

1 we refer to this url as the project’s web page in this paper.
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example, we can represent the example net in Figure 1 as:

Append x,r,a : App(r,a)∼ x
Applist r : Append Nil,r,Nil

Agent Variables. Some rules have the same structure and only differ in the agent names used.
Agent variables act as a place holder for agents in the rules. An instance of a rule with a set
of agent variables A will create a new rule with elements of A replaced by the actual agents.
In the example below, Templ has agent variables A1,A2. The instance of this rule creates
App(x,x) >< Nil where the agent variables have been replaced with App, Nil appropriately.

Templ A1,A2 : A1(x,x) >< A2
Templ (App,Nil)

Further extensions. We have designed a module system and a set of built-in agents and rules
that perform input/output and arithmetic operations—these are reported on the project’s web
page.

4 The Abstract Machine

Here we describe the interaction net abstract machine (IAM) by giving the instructions operating
on a machine state. We first set up some notation used in the description of the machine.

Definition 1 (Memory model) Let Adr ⊆ N be a set of memory locations. Agents of an in-
teraction net system are agent = name× arity×W , where arity ∈ N, name is an identifier, and
W models connectivity between agent ports: W = {((l, p),(l′, p′)) | l, l′ ∈ Adr, p, p′ ∈ N}. An
element ((l1, p1),(l2, p2)) in the set W is ordered if either l1 < l2 or l1 = l2, p1 < p2. If an agent
stored at location lk has it’s auxiliary port pi connected to the port p j of some agent at location
lm, then ((lk, pi),(lm, p j)) ∈W .

We next define two functions to operate on the machine state:

Definition 2 • La : Adr×N→ Adr returns the location l ∈ Adr pointed to by a given port
of some agent: La(lk, pi) = lm such that ((lk, pi),(lm, p j)) ∈W .

• Lp : Adr×N → N returns a port number that is connected to a port of some agent node:
Lp(lk, pi) = p j such that ((lk, pi),(lm, p j)) ∈W .

We define the function ϒ : name× name → Inst that given a pair of names for an active pair
(α,β ) of a rule (α,β ) =⇒ N, returns a sequence of IAM instructions that will build and rewire
the net N. The mappings in ϒ are constructed during the compilation of a rule.

Machine configuration components. The IAM machine consists of rules that transform con-
figurations. A configuration is given by a 5-tuple 〈C,ς ,F,A,H〉 where C is a sequence of instruc-
tions, ς is a stack of frames. Each frame has an array of local variables and an operand stack. F
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is a set of pointers to the variable agents of the net, A is a stack of active pair agents, and H is the
heap.

An IAM program C is a sequence of instructions that we summarise in Figure 3. We write ‘−’
for the empty sequence and i,v, p,ar ∈ N.

The component ς is a stack of frames. Each frame f = (L,S) where L is a partial function
with a finite domain of definition, mapping memory locations to their contents. If L is defined,
then L[i 7→ l] means that L(i) = l. S is an operand stack produced by the grammar: S := − | v : S
where v is any value representing a constant or a memory location, and − is the empty stack.

The component F is a mapping from identifiers to a pair of natural numbers defined by: F(x) =
(l, p). Intuitively, it is used to hold the interface of the net.

The heap H : Adr → agent returns an agent node given some location l ∈ Adr. The special
token next is used to hold the next free location l ∈ dom(H). Intuitively, H is a memory area
filled with agent nodes. Whenever a new node is put into the heap, the unused area marked by
next is updated.

Figure 4 gives the IAM instructions as a set of transition rules. Each transition rule takes the
form:

ϒ ` 〈C,ς ,F,A,H〉 ⇒ ϒ `
〈
C′,ς ′,F ′,A′,H ′〉

which indicate how the components of the machine are transformed. We abbreviate (L,S) : ς to
(L,S) in a configuration with only one frame in ς .

Initial and final states. The machine initialises the components C and ϒ giving the initial
configuration: ϒ ` 〈C,−, [],−, []〉. The machine stops successfully when the instruction halt
is executed with the configuration ϒ ` 〈−,−,F,−,H〉 or prematurely if a pre-condition of an
instruction is not satisfied. In this case, the final configuration is the one obtained after the last
instruction that has been executed successfully.

The evaluation mechanism. The evaluation of the net is started by executing the eval in-
struction. This instruction is appended at the end of the code sequence for the start active pair or
initial expression. Thus, before the evaluation of the net, there is at least one active pair in the
machine’s active pair stack A. The pair in the stack A is examined and the code sequence of the
rule for the pair is appended to the code component C of the machine (see semantics of eval in
Figure 4).

The code for a rule will load one of the active agents into the stack S using the instruction
loadActive, then start to build and rewire the right hand side net of the rule to the auxiliary
agents connected to the interacting agent in the stack. The instruction pop pops the active agent
from the component A. Evaluation is terminated when A is empty and execution jumps to the
instruction sequence after eval.

We remark that this version of the machine treats only acyclic nets.
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Instruction Description
enter push a new frame into the stack ς

return remove the top frame from ς

dup duplicate the top element on the stack S
pop remove the top element on the active pair stack A
load i push the element at index i of L onto the stack S.
store i remove the top element of S and store it in L at index i.
ldc v push the value v onto the stack S.
fstore x store the top 2 elements at the top of S onto index x in F .
fload x push the elements at index x of F onto the stack S.
mkAgent ar α allocate (unused) memory for an agent node of arity ar

and name α in the heap H.
mkVar x allocate memory for a variable node of arity 2 and

name x in the heap
getConnection p i push the agent a and the port number of a that connects at

the auxiliary port p of the agent stored in local variable i
loadActive α push the active agent α from active pair stack
connectPorts pop two agents and two port numbers and connects the ports of

the agents. If both ports are 0 (active pair) push an agent to A
eval evaluate the active pair on top of the active stack.
halt stop execution.

Figure 3: Summary of IAM instructions

5 Compilation

The compilation of Pin into IAM instructions is governed by the schemes: Cpin compiles a
program, Ca compiles an agent, Ct compiles a term, Cn compiles a net and Cr compiles a rule.
The compilation of a program generates the following code:

CpinJ(Σ,〈u1 ∼ v1, . . .un ∼ vn〉,R)K =
CnJu1 ∼ v1, . . . ,un ∼ vnK;eval;halt;CrJr1K; . . .CrJrnK;

where r1, ...,rn = R are instances of rules. Σ is a set of symbols and each ui ∼ vi is an active pair.
The compilation scheme CnJu ∼ v, . . . ,un ∼ vnK compiles a sequence of active pairs. We use the
scheme CrJriK to compile a rule ri ∈R:

CrJriK = Inst = CrJα(t1, . . . , tn) >< β (u1, . . . ,un)=>u1 ∼ s1, . . . ,un ∼ snK,
ϒ[(α,β ) 7→ Inst,(β ,α) 7→ Inst].

Compilation of a rule creates a mapping from active agent names to the instruction sequence Inst
generated in the rule table ϒ.

Figure 5 collects together the compilation schemes Cn and Cr, that generate code for the
input source text. The schemes use a set N of identifiers to hold all free variables of the net.
Compiling a variable that already exists in N means that the variable is bound. The auxiliary
function ar(α) returns the arity of the agent α ∈ Σ.
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ϒ ` 〈enter : C,ς ,F,A,H〉 ⇒ ϒ ` 〈C,([],−) : ς ,F,A,H〉
ϒ ` 〈return : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,ς ,F,A,H〉
ϒ ` 〈dup : C,(L,v : S),F,A,H〉 ⇒ ϒ ` 〈C,(L,v : v : S),F,A,H〉
ϒ ` 〈pop : C,(L,S),F, l : A,H〉 ⇒ ϒ ` 〈C,(L,S),F,A,H〉
ϒ ` 〈load i : C,(L[i 7→ v],S),F,A,H〉 ⇒ ϒ ` 〈C,(L[i 7→ v],v : S),F,A,H〉
ϒ ` 〈store i : C,(L,v : S),F,A,H〉 ⇒ ϒ ` 〈C,(L[i 7→ v],S),F,A,H〉
ϒ ` 〈ldc v : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L,v : S),F,A,H〉
ϒ ` 〈fstore x : C,(L, p : l : S),F,A,H〉 ⇒ ϒ ` 〈C,(L, p : l : S),F [x 7→ (l, p)],A,H〉
ϒ ` 〈fload x : C,(L,S),F [x 7→ (l, p)],A,H[la 7→ (n,a,{((la, pl),(l, p))}∪w)]〉 ⇒

ϒ ` 〈C,(L, p : l : S),F,A,H[la 7→ (n,a,w)]〉
ϒ ` 〈mkAgent ar α : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L, l : S),F,A,H[l 7→ (α,a, /0)]〉

where l = next
ϒ ` 〈mkVar x : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L,1 : l : S),F,A,H[l 7→ (x,2, /0)]〉

where l = next
ϒ ` 〈getConnection p i : C,(L[i 7→ l],S),F,A,H〉 ⇒

ϒ `
〈
C,(L[i 7→ l],Lp(l, p) : La(l, p) : S),F,A,H

〉
ϒ ` 〈loadActive α : C,(L,S),F, l : A,H[l 7→ (n,a,w)]〉 ⇒

i f (n = α)
ϒ ` 〈C,(L, l : S),F,La(l,0) : A,H[l 7→ (n,a,w)]〉

else
ϒ ` 〈C,(L,La(l,0) : S),F, l : A,H[l 7→ (n,a,w)]〉

ϒ ` 〈connectports : C,(L, p1 : l1 : p2 : l2 : S),F,A,H[l1 7→ (n1,a1,w1),
l2 7→ (n2,a2,w2)]〉 ⇒
i f (p1 + p2 = 0)

ϒ ` 〈C,(L,S),F, l2 : A,
H[l1 7→ (n1,a1,w1∪{((l1,0),(l2,0))}),
l2 7→ (n2,a2,w2∪{((l1,0),(l2,0))})]〉

else
ϒ ` 〈C,(L,S),F,A,

H[l1 7→ (n1,a1,w1∪{((l1, p1),(l2, p2))}),
l2 7→ (n2,a2,w2∪{((l1, p1),(l2, p2))})]〉

ϒ[(α,β ) 7→ c] ` 〈eval : C,(L,S),F, l1 : A,H[l1 7→ (α,a1,w1∪{((l1,0),(l2,0))}),
l2 7→ (β ,a2,w2∪{((l1,0),(l2,0))})]〉 ⇒

ϒ[(α,β ) 7→ c] ` 〈c : eval : C,(L,S),F, l1 : A,H[l1 7→ (α,a1,w1), l2 7→ (β ,a2,w2)]〉
ϒ ` 〈eval : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈C,(L,S),F,A,H〉
ϒ ` 〈halt : C,(L,S),F,A,H〉 ⇒ ϒ ` 〈−,−,F,−,H〉

Figure 4: IAM instructions
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CtJxK =



i f (x ∈N )
fload x;
N \{x}

else
fstore x;
mkVar x;
N ∪{x}

CtJα(t1, . . . , tn)K=


mkAgent ar(α) α;
for 1 ≤ i ≤ n

Cp JtiK i;
ldc 0;

CrJα(t1, . . . , tn)
>< β (v1, . . . ,vk)

=>u1 ∼ s1, . . . ,
um ∼ smK =



enter;
CrtJα(t1, . . . , tn)K;
CrtJβ (v1, . . . ,vk)K;
for 1 ≤ i ≤ m

CeJui ∼ siK;
pop;
return;

CrtJα(t1, . . . , tn)K=


loadActive α;
store 0;
for 1 ≤ i ≤ n

CrrJtiK i 0;

CeJt ∼ sK =

 CtJtK;
CtJsK;
connectPorts;

CrrJtK j i =

 getConnection j i;
CtJtK;
connectPorts;

CnJu ∼ v, . . . ,un∼vnK =


enter;
CeJu∼vK;
...
CeJun∼vnK;

CpJtK j =


dup;
ldc j;
CtJtK;
connectPorts;

Figure 5: Compilation schemes

We end this section with a concrete example of compilation, and give the code generated for
the simple system given below:

Eps >< Eps
Eps∼ Eps

This system contains just one agent and one rule, and the net to be compiled is an instance of
that rule. The output of the compiler is given below.
enter
mkAgent 0 Eps
ldc 0
mkAgent 0 Eps
ldc 0
connectPorts
eval
halt

enter
loadActive Eps
store 0
loadActive Eps
store 0
pop
return

The abstract machine loads the program into memory then sequentially executes the byte
codes for the active pairs. The instruction eval calls the execution of the code block for the
corresponding rule. Below we give a snap shot of the execution trace.
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• represents the active pair stack A of the machine.

•
top

represents the stack S.

•
n0

... represents the local variable array L.

The state after execution of each instruction is shown. Components that do not contain any value
are omitted. Note that this net contains no interface, thus the interface list F does not appear in
the execution trace.

mkAgent 0 E ps

Eps

ldc 0

Eps

0

mkAgent 0 E ps

Eps

Eps

0

ldc 0

Eps

Eps

0

0

connectPorts

Eps Eps

loadActive E ps

Eps Eps

store 0

Eps Eps

n0
...

loadActive E ps

Eps Eps

n0
...

store 0

Eps Eps

n0
...

pop

Eps Eps

n0
...

return

Eps Eps

Observe that after the execution of connectPorts, a pointer to the newly created active
pair is pushed into the stack A. Since the rule for this active pair contains an empty right hand
side net, there is no re-wiring that is performed. After evaluation, the active pair stack becomes
empty. After the last instruction return of the rule, remaining active pair agents in the heap
are unreachable from any of the machine’s components, and can be garbage collected or reused.
We do not address the issues of heap garbage collection or agent reuse in this paper.

6 The implementation

Here we give a brief overview of the pragmatics of the language. We have implemented the
compiler, and here we show example programs, the use of the system, and also some benchmark
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results comparing with other implementations of interaction nets.
The prototype implementation of the compiler and abstract machine can be downloaded from

the project’s web page. The compiler reads a source program and outputs an executable with the
extension ‘.pin’. The pin file can then be executed by the abstract machine. Various examples
and instructions on how to compile and execute a program are provided on the webpage.

The table below shows some benchmark results that we have obtained. We compare the execu-
tion time in seconds of our implementation (Pin) with Amine [10] - an interaction net interpreter,
and SML [7] - a fully developed implementation. The last column gives the number of interac-
tions performed by both Pin and Amine. The first two input programs are applications of church
numerals where n = λ f .λx. f nx and I = λx.x. The encodings of these terms into interaction nets
are given in [5]. The next programs compute the Ackermann function defined by:

A(m,n) =

 n+1 if m = 0
A(m−1,1) if n = 0 and m > 0
A(m−1,A(m,n−1)) if m > 0 and n > 0

The following rules are the interaction net encoding of the Ackermann function:

Pred(Z) >< Z, Dup(Z,Z) >< Z,
Pred(x) >< S(x), Dup(S(a),S(b)) >< S(Dup(a,b)),
A(r,S(r)) >< Z, A1(Pred(A(S(Z),r)),r) >< Z,
A(A1(S(x),r),r) >< S(x), A1(Dup(Pred(A(r1,r)),A(y,r1)),r) >< S(y),

and A(3,8) means computation of A(S(S(S(S(S(S(S(S(Z)))))))),r)∼ S(S(S(Z))).

Input Pin Amine SML Interactions
322II 0.002 0.006 2.09 383
245II 0.016 0.088 1355 20211
A(3,8) 3 16 0.04 8360028
A(3,10) 51 265 0.95 134103148

We can see from the table that the ratio of the average number of interactions/sec of Pin to Amine
is approximately 3 : 1. Interaction nets are by definition very good in sharing computation thus
more efficient than SML in the first two programs. However, interaction nets do not perform
well in computations that benefit from sharing data - interacting agents are consumed. Our short
term goal is to extend interaction nets with data sharing mechanisms.

7 Conclusions

In this paper we have given an overview of a programming language design and compilation
for interaction nets. Experience with the compiler indicates that the system can be used for
small programming activities, and we are investigating building a programming environment
around this language, specifically containing tools for visualising interaction nets and editing
and debugging tools.

Current research in this area is focused on richer programming constructs and higher level
languages of interaction that do not burden the programmer with some of the linearity and pattern
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matching constrains. The compiler presented in this paper is a first attempt to compile interaction
nets, and issues such as compiler optimisations are very much the subject of current research.

There are well-known translations of other rewriting formalisms into interaction nets: the
compiler presented in this paper can consequently be used for these systems. Current work is
investigating the usefulness of this approach.

Bibliography

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. A
Maude Tutorial. SRI International, 2000.

[2] M. Fernández and I. Mackie. A calculus for interaction nets. In G. Nadathur, editor,
Proceedings of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), volume 1702 of Lecture Notes in Computer Science, pages 170–
187. Springer-Verlag, September 1999.

[3] Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of
Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

[4] S. Lippi. in2 : A graphical interpreter for interaction nets. In S. Tison, editor, Rewrit-
ing Techniques and Applications (RTA’02), volume 2378 of Lecture Notes in Computer
Science, pages 380–386. Springer, 2002.

[5] I. Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Proceedings
of the 3rd International Conference on Functional Programming (ICFP’98), pages 117–
128. ACM Press, 1998.

[6] I. Mackie. Towards a programming language for interaction nets. Electronic Notes in
Theoretical Computer Science, 127(5):133–151, May 2005.

[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Re-
vised). MIT Press, 1997.

[8] S. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press, 2003.

[9] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus.
Technical Report 476, Indiana, 1997.

[10] J. S. Pinto. Sequential and concurrent abstract machines for interaction nets. In J. Tiuryn,
editor, Proceedings of Foundations of Software Science and Computation Structures (FOS-
SACS), volume 1784 of Lecture Notes in Computer Science, pages 267–282. Springer-
Verlag, 2000.

[11] J. S. Pinto. Parallel evaluation of interaction nets with mpine. In A. Middeldorp, editor,
RTA, volume 2051 of Lecture Notes in Computer Science, pages 353–356. Springer, 2001.

Proc. GT-VMT 2008 14 / 14



ECEASST

Sufficient Criteria for Applicability and Non-Applicability of Rule
Sequences

Leen Lambers1, Hartmut Ehrig2, Gabriele Taentzer3

1 leen@cs.tu-berlin.de, 2 ehrig@cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
3 taentzer@mathematik.uni-marburg.de
Fachbereich Mathematik und Informatik
Philipps-Universität Marburg, Germany

Abstract: In several rule-based applications using graph transformation as under-
lying modeling technique the following questions arise: How can one be sure that a
specific sequence of rules is applicable (resp. not applicable) on a given graph? Of
course, it is possible to use a trial and error strategy to find out the answer to these
questions. In this paper however, we will formulate suitable sufficient criteria for
applicability and other ones for non-applicability. These criteria can be checked in
a static way i.e. without trying to apply the whole rule sequence explicitly. More-
over if a certain criterion is not satisfied, then this is an indication for reasons why
rule sequences may or may not be applicable. Consequently it is easier to rephrase
critical rule sequences. The results are formulated within the framework of double
pushout (DPO) graph transformations with negative application conditions (NACs).
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1 Introduction

When analyzing integrated specifications of rules with control structures [LEMP07, MMT06]
for consistency, a considerable amount of rule sequences is to be checked for applicability (resp.
non-applicability). Hence, it is not appropriate to check the applicability or non-applicability of
each rule sequence explicitly. Therefore static analysis techniques are desirable. Statically means
that it is not necessary to use a trial and error strategy and therefore backtracking can be avoided.
In the following, we present sufficient criteria for the applicability and for the non-applicability
of a rule sequence to a graph. These criteria can be checked in a static way, since they are
based mainly on the dependency or independency of rules. Moreover the non-satisfaction of
one of the criteria gives a hint to the reason for a rule sequence to be applicable or inapplicable.
Applicability criteria have been studied also in [VL07] for simple digraphs using matrix graph
grammars.

As example we consider a simple Mutual Exclusion Algorithm implemented by graph trans-
formation rules with a start graph G and type graph presented in Fig. 1. The algorithm enables
two processes to access a resource according to the mutual exclusion principle. The purpose
of this algorithm is to control the usage of the resource such that at most one process holds the
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resource at time (safety property). Furthermore, if a process demonstrates a request for the re-
source it should be served eventually (liveness property). In the following, we will check safety
(resp. liveness) by checking if certain rule sequences are not applicable (resp. applicable) on the
start graph.

The paper is structured as follows: Section 2 presents preliminaries. At first we repeat the main
definitions for rule-based transformations with means of double pushout (DPO) graph transfor-
mations [CMR+97] with negative application conditions (NACs) [HHT96]. Then we define
asymmetric dependency and independency on the level of transformations. Therefrom we can
deduce the concept of asymmetric independency for rules. In Section 3 and 4 we define sufficient
criteria for applicability and non-applicability of rule sequences. Section 5 takes up the example
again and shows how to check the criteria presented in Section 3 and 4 with some support of the
graph transformation tool AGG [Tae04].

2 Independency and Dependency of Rules

2.1 Graph Transformation with NACs

We repeat the basic definitions for double pushout graph transformation with negative application
conditions (NACs). A graph rule holding a NAC n can be applied on a graph G only if the
forbidden structure expressed by n is not present in G.

Definition 1 (graph, graph morphism, rule) A graph G = (GE ,GV ,s, t) consists of a set GE of
edges, a set GV of vertices and two mappings s, t : GE → GV , assigning to each edge e ∈ GE a
source q = s(e)∈GV and target z = t(e)∈GV . A graph morphism (short morphism) f : G1→G2
between two graphs Gi = (Gi,E ,Gi,V ,si, ti), (i = 1,2) is a pair f = ( fE : GE,1→GE,2, fV : GV,1→
GV,2) of mappings, such that fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE . A morphism f : G1 → G2
is injective (resp.surjective) if fV and fE are injective (resp. surjective) mappings. A graph
transformation rule p : L l← K r→ R consists of a rule name p and a pair of injective morphisms
l : K→ L and r : K→ R. The graphs L,K and R are called the left-hand side (LHS), the interface,
and the right-hand side (RHS) of p, respectively.

Definition 2 (rule and transformation with NACs, applicability of rule with NACs)

• A negative application condition or NAC(n) on p for a rule p : L l← K r→ R (l,r injective)
is an arbitrary morphism n : L→ N. A morphism g : L→G satisfies NAC(n) on L, written
g |= NAC(n), if and only if 6 ∃ q : N→ G injective such that q◦n = g.

L
g
��

n // N

qX
rrG

A set of NACs on p is denoted by NACp = {NAC(ni)|i ∈ I}. A morphism g : L→ G
satisfies NACp if and only if g satisfies all single NACs on p i.e. g |= NAC(ni) ∀i ∈ I.
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Figure 1: Start graph G, graph H and type graph of Mutual Exclusion - Rules re-
questRes,takeRes,releaseRes,giveRes and nextProc - Dependency and Conflict Matrix in AGG
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• A rule (p,NACp) with NACs is a rule with a set of NACs on p.

• A direct transformation G
p,g⇒H via a rule p : L←K→R with NACp and a match g : L→G

consists of the double pushout [CMR+97] (DPO)

L
g
��

K //

��

oo R

h
��

G D //oo H

where g satisfies NACp, written g |= NACp. Since pushouts along injective morphisms
always exist, the DPO can be constructed if the pushout complement of K → L → G
exists. If so, we say that the match g satisfies the gluing condition of rule p. If there exists
a morphism g : L→G which satisfies the gluing condition and g |= NACp we say that rule
p is applicable on G via the match g.

Example 1 Consider the graph transformation rules of the Mutual Exclusion Algorithm pre-
sented in Fig. 1. Rule requestRes expresses a request of a process to access the resource if this
process has not requested the resource yet or is using the resource already. Rule takeRes enables
a process to start using the resource if this process possesses a token. releaseRes can release
the resource again and giveRes passes the token to the other process after releasing. Finally
rule nextProc can pass a token from one process to the other one as long as the first one has not
expressed a request.

In [LEOP07] it is proven that to each rule p with NACp there exists an inverse rule p−1 with
NACp−1 such that each transformation can be inverted. The following definition shows how to
construct from NACp on rule p equivalent NACs NACp−1 on the inverse rule p−1 [EEHP04]:

Definition 3 (construction of NACs on inverse rule) For each NAC(ni) with ni : L→ Ni on
p = (L← K→ R), the equivalent NAC Rp(NAC(ni)) on p−1 = (R← K→ L) is defined in the
following way:

L

ni

��

Koo //

��
(1) (2)

R

n′i
��

Ni Zoo // N′i

• If the pair (K→ L,L→ Ni) has a pushout complement, we construct (K→ Z,Z→ Ni) as
the pushout complement (1). Then we construct pushout (2) with the morphism n′i : R→
N′i . Now we define Rp(NAC(ni)) = NAC(n′i).

• If the pair (K→L,L→Ni) does not have a pushout complement, we define Rp(NAC(ni))=
true.

For each set of NACs on p, NACp = ∪i∈INAC(ni) we define the following set of NACs on p−1:
NACp−1 = Rp(NACp) = ∪i∈I′Rp(NAC(ni)) with i ∈ I′ if and only if the pair (K→ L,L→ Ni) has
a pushout complement.

Proc. GT-VMT 2008 4 / 14



ECEASST

With means of this construction we can formulate the following fact [EEHP04, LEOP07]:

Fact 1 (inverse direct transformation with NACs) For each direct transformation with NACs
G⇒H via a rule p : L←K→R with NACp a set of NACs on p, H⇒G is a direct transformation
with NACs via the inverse rule p−1 with NACp−1 .

Example 2 Consider rule requestRes. The inverse rule of requestRes deletes the request edge
between a process and the resource if there is no other request edge nor a heldby edge between
this process and the resource.

2.2 Independency and Dependency of Rules

The (non-)applicability of a rule sequence on a graph G is affected by dependencies and inde-
pendencies between the rules in the rule sequence. In particular it is affected by asymmetric
dependencies as explained in this section.

Two direct transformations are in conflict if they are not parallel independent. In [LEO06]
a Conflict Characterization is given in which different reasons for conflicting transformations
become clear. It is possible that one transformation deletes (resp. produces) a structure which is
used (resp. forbidden) by the other one and the other way round. In particular we can deduce that
two direct transformations are in conflict if at least one transformation depends on the other one.
This asymmetric parallel dependency and on the contrary asymmetric parallel independency are
expressed by the following definition.

Definition 4 (asymmetrically parallel dependent and independent transformations) A direct

transformation G
(r2,m2)=⇒ H2 with NACr2 is asymmetrically parallel dependent on G

(r1,m1)=⇒ H1 with
NACr1 if:

1. @h21 : L2→ D1 : d1 ◦h21 = m2 (delete-use-conflict)
OR

2. there exists a unique h21 : L2→ D1 : d1 ◦h21 = m2, but e1 ◦h21 6|= NACr2 (produce-forbid-
conflict).

A direct transformation G
(r2,m2)=⇒ H2 with NACr2 is asymmetrically parallel independent on G

(r1,m1)=⇒
H1 with NACr1 if G

(r2,m2)=⇒ H2 is not asymmetrically parallel dependent on G
(r1,m1)=⇒ H1. This means

in particular that ∃h21 : L2→ D1 : d1 ◦h21 = m2 such that e1 ◦h21 |= NACr2 .

N1 N2

R1

��

K1 //oo

��

L1

n1

OO

m1 ��@
@@

@@
@@

@ L2

h21

ww

n2

OO

m2��~~
~~

~~
~~

K2oo //

��

R2

��
H1 D1 d1

//
e1
oo G D2d2

oo
e2
// H2
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If a sequence of two direct transformations is not sequentially independent this is because
either the second transformation depends on the first one or the other way round. The case in
which the second transformation depends (resp. is independent) on the first one is described
by asymmetric sequential dependency (resp. independency) as in the following definition. This
case occurs in particular when the first transformation produces a structure which is used by the
second one or the first transformation deletes a structure forbidden by the second one. In other
words the first transformation triggers the second one.

Definition 5 (asymmetrically sequential dependent and independent transformations) A direct

transformation H1
(r2,m2)=⇒ H2 with NACr2 is asymmetrically sequential dependent on G

(r1,m1)=⇒ H1
with NACr1 if

1. @h21 : L2→ D1 : e1 ◦h21 = m2 (produce-use-dependency)
OR

2. there exists a unique h21 : L2 → D1 : e1 ◦ h21 = m2, but d1 ◦ h21 6|= NACr2 (delete-forbid-
dependency).

A direct transformation H1
(r2,m2)=⇒ H2 with NACr2 is asymmetrically sequential independent on

G
(r1,m1)=⇒ H1 with NACr1 if H1

(r2,m2)=⇒ H2 with NACr2 is not asymmetrically sequential dependent

on G
(r1,m1)=⇒ H1 with NACr1 . This means in particular that ∃h21 : L2→D1 : e1 ◦h21 = m2 such that

d1 ◦h21 |= NACr2 .

N1 N2

L1

n1

OO

��

K1 //oo

��

R1

m′1   A
AA

AA
AA

A L2

n2

OO

h21

ww
m2~~}}

}}
}}

}}
K2oo //

��

R2

��
G D1 e1

//
d1

oo H1 D2d2

oo
e2
// H2

Now we can define asymmetric parallel (resp. sequential) independency for rules by demand-
ing that the corresponding transformations are asymmetrically independent. Analogously it is
possible to define asymmetric parallel (resp. sequential) dependency for rules.

Definition 6 (asymmetrically parallel independent rules) The rule r2 is asymmetrically paral-

lel independent on r1 if every transformation G
(r2,m2)=⇒ H2 via r2 with NACr2 is asymmetrically

parallel independent on any other transformation G
(r1,m1)=⇒ H1 via r1 with NACr1 .

Definition 7 (asymmetrically sequential independent rules) A rule r2 is asymmetrically sequen-

tial independent on r1 if every transformation H1
(r2,m2)=⇒ H2 via r2 with NACr2 is asymmetrically

sequential independent on any other transformation G
(r1,m1)=⇒ H1 via r1 with NACr1 .
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Example 3 Rule nextProc is asymmetric parallel dependent on requestRes, since rule requestRes
produces a request edge which is forbidden by rule nextProc. On the contrary, rule requestRes is
asymmetric parallel independent on nextProc, since rule nextProc neither deletes anything what
can be used by requestRes nor produces anything forbidden by requestRes. Rule requestRes is
asymmetric sequentially dependent on rule releaseRes, since releaseRes deletes a heldby edge
which is forbidden by requestRes. On the contrary, rule releaseRes is asymmetric sequentially
independent on rule requestRes, since requestRes neither produces anything what can be used
by releaseRes nor deletes anything forbidden by requestRes.

For the criteria defined in the next section we need a special case of asymmetric sequential
dependency for the case without NACs. It is possible namely that a rule r1 produces everything
which is needed by r2 regardless of what is already present in the corresponding transformations.

Definition 8 (purely sequential dependent rules) A rule r2 : L2 ← K2 → R2 is purely sequen-
tial dependent on r1 : L1 ← K1 → R1 if r2 is a rule without NACs and there exists an injective
morphism l21 : L2→ R1.

Remark 1 r2 is asymmetrically sequential dependent on r1, if r2 is purely sequential dependent
on r1 and the following mild assumptions are satisfied: a morphism k21 : L2→ K1 does not exist
such that r1 ◦ k21 = l21, r2 is non-deleting on nodes and id : R1→ R1 |= NACr−1

1
.

Example 4 Rule releaseRes is purely sequential dependent on rule takeRes, because its LHS
can be embedded completely into the RHS of takeRes. Rule takeRes is asymmetric sequentially,
but not purely dependent on rule requestRes, since requestRes does not produce a token edge.

We can analogously derive from the usual definition of sequential (resp. parallel) indepen-
dence of transformations with NACs [LEO06] the definition for sequential (resp. parallel) inde-
pendency on rules by demanding that all existing transformations via these rules are sequentially
(resp. parallel) independent. Recall that for each pair of parallel independent transformations

with NACs H1
r1,m1⇐ G

r2,m2⇒ H2, there are an object G′ and direct transformations H1
r2,m′2⇒ G′ and

H2
r1,m′1⇒ G′ such that G

r1,m1⇒ H1
r2,m′2⇒ G′ and G

r2,m2⇒ H2
r1,m′1⇒ G′ are sequentially independent. The

transformations can thus be performed in any order with the same result (Local Church-Rosser
Theorem with NACs [LEO06]). Note that we have the following relationship between parallel

and sequential independency: G r1⇒ H1
r2⇒ H2 are sequentially independent iff G

r−1
1⇐ H1

r2⇒ H2 are
parallel independent. In the next section we need sequential independency of a rule pair in order
to be able to switch adjacent rules in a rule sequence.

Definition 9 (parallel and sequential independent rules) Rules r1 and r2 are parallel indepen-

dent if each pair of transformations G
(r1,m1)=⇒ H1 via r1 with NACr1 and G

(r2,m2)=⇒ H2 via r2 with
NACr2 is parallel independent. The pair of rules (r1,r2) is sequentially independent if each se-

quence of transformations G
(r1,m1)=⇒ H1 via r1 with NACr1 and H1

(r2,m2)=⇒ G′ via r2 with NACr2 is
sequentially independent.
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Remark 2 Note that the following correspondences between asymmetric parallel (resp. se-
quential) independency and parallel (resp. sequential) independency exists. Rules r1 and r2
are parallel independent if and only if r1 is asymmetrically parallel independent of r2 and r2 is
asymmetrically parallel independent of r1. The rule pair (r1,r2) is sequentially independent if
and only if r2 is asymmetrically sequential independent on r1 and r−1

1 is asymmetrically sequen-
tial independent on r−1

2 .

Example 5 The rule pair ( requestRes,nextProc) is sequentially independent. Note that the NAC
of rule nextProc forbids a process to shift the token if this process expressed a request. Thus
whenever ( requestRes,nextProc) can be applied in this order the request is expressed by the
process to which the token is shifted. This is equivalent to first shifting the token to this process
which then expresses a request.

3 Applicability of Rule Sequences

3.1 Applicability Criteria

Let s : r1r2 . . .rn be a sequence of n rules and G0 a graph on which this sequence should be
applied. The criteria defined in the following definition guarantee this applicability. The initial-
ization criterion is trivial, since it just requires the first rule being applicable to graph G0. The
no node-deleting rules criterion avoids dangling edges. The third criterion ensures that the ap-
plicability of a rule ri is not impeded by one of the predecessor rules r j of ri. Criterion 4a will be
satisfied if rule ri is purely sequential dependent from a rule r j occurring somewhere before ri in
the sequence s. In this case r j triggers the applicability of ri regardless of what is present already
in the start graph G0. As soon as the sequential dependencies are not pure though this criterion
is not satisfiable. Therefore we have also a more general criterion 4b. It ensures the applicability
of a rule ri needing some subgraph of a direct predecessor rule together with parts of the start
graph G0. This is expressed by the fact that a concurrent rule rc of ri−1 and ri exists which is
applicable on the start graph G0. The construction of a concurrent rule with NACs is explained in
[LEOP07]. The correctness of the criteria is described in Theorem 1 which is proven in [LET08].

Definition 10 (applicability criteria) Given a sequence s : r1r2 . . .rn of n rules and a graph G0.
Then we define the following applicability criteria for s on G0:

1. r1 is applicable on G0 via the injective match m1 : L1→ G0 (initialization)

2. each rule occurring in s is non-deleting on nodes (no node-deleting rules)

3. ∀ri,r j in s with 1≤ j < i≤ n, ri is asymmetrically parallel independent on r j (no impeding
predecessors)

4. ∀ri in s with 1 < i≤ n which are not applicable on G0 via an injective match

(a) there exists a rule r j in s which is applicable via an injective match on G0 with
1≤ j < i≤ n and ri is purely sequential dependent on r j (pure enabling predecessor),
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which especially means that ri has no NACs
OR

(b) there exists a concurrent rule rc of ri−1 and ri such that rc is applicable via an injective
match on G0 and rc is asymmetrically parallel independent on r j for all j < (i− 1)
and r j is asymmetrically parallel independent on rc for all i < j≤ n. (direct enabling
predecessor)

Theorem 1 (correctness of applicability criteria) Given s : r1r2 . . .rn a sequence of n rules and
a graph G0. If the criteria in Def. 10 are satisfied for rule sequence s and graph G0, then this
rule sequence is applicable on G0 with injective matching i.e. there exists a graph transformation
G0

r1⇒ G1 . . .Gn−1
rn⇒ Gn with injective matching.

3.2 Applicability of Summarized Rule Sequences

The 4th criterion in Def. 10 will be satisfied only, if the rule ri is purely sequential dependent
from one single rule r j occurring before ri in the sequence or if it is asymmetrically sequential
dependent on the rule ri−1. In some transformations though a rule needs not only a subgraph
from one single predecessor, but from several ones. For these cases the criteria could then be
satisfied by a sequence in which exactly these rules are summarized to a concurrent rule. Note
that the correctness of the following theorem is proven in [LET08].

Theorem 2 (summarized rule sequences) Given s : r1r2 . . .rn a sequence of n rules and a graph
G0. If the criteria in Def. 10 are satisfied for a rule sequence s′ : r′1r′2 . . .r′m with m < n in
which neighbored rules in s can be summarized by a concurrent rule, then the original rule
sequence s is applicable on G0 with injective matching i.e. there exists a graph transformation
G0

r1⇒ G1 . . .Gn−1
rn⇒ Gn with injective matching.

3.3 Applicability of Shift-Equivalent Rule Sequences

If it is not possible to satisfy criterion 4b in Def. 10 for a rule sequence s : r1r2 . . .rn, then it is
still possible to exploit shift-equivalence. This is because criterion 4b could be satisfiable for a
rule sequence s′ in which a normal predecessor is shifted to be a direct one. Note that a rule r j in
s can be switched with a rule r j+1 only if the pairs of rules (r j,r j+1) and (r j+1,r j) is sequentially
independent. If the criteria then hold though for rule sequence s′ in which some rules have been
shifted, they hold also for the original rule sequence s.

Definition 11 (shift-equivalent rule sequences) A rule sequence s′ is shift-equivalent with a
rule sequence s : r1r2 . . .rm if s′ can be obtained by switching rules r j with r j+1 and the switching
is allowed only if (r j,r j+1) and (r j+1,r j) are sequentially independent according to Def. 9.

Theorem 3 (checking shift-equivalent rule sequences) If the criteria in Def. 10 are satisfied for
a rule sequence s : r1r2 . . .rn and a graph G0, then all shift-equivalent rule sequences as defined
in Def. 11 are applicable on G0 with injective matching as well with the same result.

Proof. This follows directly from Def. 11, the Local Church-Rosser Theorem with NACs [LEO06],
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Def. 9 and Theorem 1.

Remark 3 Note that a somewhat weaker version of this theorem holds as well. Namely, suppose
that we want to prove applicability of a rule sequence s : r1r2 . . .rn to a graph G0. Then it is
sufficient to show the satisfaction of the criteria in Def. 10 for a rule sequence s′ which can be
deduced from s by switching forward rule ri+1 with ri only if rule pair (ri+1,ri) is sequentially
independent.

4 Non-Applicability of Rule Sequences

Let s : r1r2 . . .rn be a sequence of n rules and G0 a graph. The satisfaction of the following
criteria for s and G0 guarantee that the sequence s will not be applicable on G0. Criterion 1 is
trivial, since it just requires the first rule being non-applicable to graph G0. Criterion 2 checks if
predecessors for a rule ri which is not applicable already on G0 are present in the sequence such
that they can trigger the applicability of ri. If not, ri will not be applicable and therefore neither
the rule sequence will be applicable. Note that the correctness of the following criteria is proven
in [LET08].

Definition 12 (non-applicability criteria) Given s : r1r2 . . .rn a sequence of n rules and a graph
G0. Then we define the following non-applicability criteria for s on G0:

1. r1 is not applicable on G0 (initialization error)
OR

2. ∃ri in s with 1 < i ≤ n such that ri is not applicable on G0 but for all rules r j in s with
1≤ j < i≤ n, ri is asymmetrically sequential independent on r j no enabling predecessor.

Theorem 4 (correctness of non-applicability criteria) Given a sequence s : r1r2 . . .rn of n rules
and a graph G0. If the criteria in Def. 12 are satisfied for rule sequence s and graph G0,
then this rule sequence is not applicable on G0 i.e. there exists no graph transformation G0

r1⇒
G1 . . .Gn−1

rn⇒ Gn.

Analogously to Theorem 3 we can formulate the following theorem expressing that shift-
equivalent-rule sequences are not applicable to a graph G0 if one of the sequences satisfies the
non-applicability criteria.

Theorem 5 (checking shift-equivalent rule sequences) If the criteria in Def. 12 are satisfied for
a rule sequence s : r1r2 . . .rn and a graph G0, then all shift-equivalent rule sequences as defined
in Def. 11 are not applicable on G0 either.

Proof. This follows directly from Def. 11, the Local Church-Rosser Theorem with NACs [LEO06],
Def. 9 and Theorem 4.

Remark 4 Note that a somewhat weaker version of this theorem holds as well. Namely, suppose
that we want to prove non-applicability of a rule sequence s : r1r2 . . .rn to a graph G0. Then it is

Proc. GT-VMT 2008 10 / 14



ECEASST

sufficient to show the satisfaction of the criteria in Def. 12 for a rule sequence s′ which can be
deduced from s by switching forward rule ri+1 with ri only if rule pair (ri,ri+1) is sequentially
independent.

5 Checking the Criteria

5.1 Checking for Sequential and Parallel Dependency of Rules in AGG

To check asymmetric sequential and parallel dependency of rules, we compute all corresponding
critical pairs by AGG [Tae04]. A critical pair represents the parallel (resp. sequential) depen-
dency of rules in a minimal context. The minimal conflicts (i.e. asymmetric parallel dependen-
cies) are represented in a conflict matrix. The minimal dependencies (i.e. asymmetric sequential
dependencies) are represented in a dependency matrix. The entry numbers within these matrices
indicate how many minimal conflicts and dependencies, resp. have been found. For the example
they are shown in Fig. 1.More precisely, entry (r j,ri) (row, column) in the conflict matrix in AGG

describes all G
(ri,mi)⇒ Hi which are asymmetrically parallel dependent on G

(r j,m j)⇒ H j in a mini-

mal context. Entry (r j,ri) in the dependency matrix in AGG describes all G
(r j,m j)⇒ H j

(ri,mi)⇒ G′

such that the second transformation is asymmetrically sequential dependent on the first one in
a minimal context. Note that it is not possible yet to check with AGG if a pair of rules (r j,ri)
is sequentially independent as defined in Def.9. It is part of current work though to enrich the
dependency matrix with more information and thus enable this possibility.

5.2 Checking Applicability Criteria on Mutual Exclusion

We check applicability (i.e. liveness) of the following rule sequences:

requestRes, takeRes, releaseRes should be applicable to the right process in the graph G shown
in Figure 1. We thus check for this rule sequence and graph G that the applicability criteria
in Def. 10 are satisfied.

1. Rule requestRes is applicable to G.

2. Rule takeRes is asymmetrically parallel independent of rule requestRes. Further-
more, rule releaseRes is asymmetrically parallel independent of requestRes as well
as takeRes.

3. Rules takeRes, releaseRes, giveRes are not applicable to G. Thus, we have to show
that their application is enabled by the rule applications performed before. Rule
takeRes is asymmetrically sequential dependent on requestRes, and the concurrent
rule of takeRes and requestRes is applicable on G. It expresses how a resource can
be requested and taken in one step. requestRes is thus a direct enabling predecessor
for takeRes. Moreover rule releaseRes is purely sequential dependent on rule takeRes
and therefore takeRes is a pure enabling predecessor for releaseRes.

requestRes, takeRes, releaseRes, giveRes is a slightly longer sequence and should still be ap-
plicable to G. It is not possible though to fulfill in particular criterion 4 in Def. 10 for this
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sequence. However, it is still possible to fulfill the applicability criteria for a summarized
sequence as proven in Theorem 2. In this case, it is possible to satisfy the criteria for the
summarized sequence only. It consists of one concurrent rule requestTakeReleaseGiveRes
which is equal to the rule nextProc. nextProc is applicable on G and therefore the original
sequence is applicable on G as well. Thus sometimes an applicable rule sequence as given
in this example might be hard to detect. This is because giveRes needs some subgraph of
the start graph G which is not needed by the other rules and in addition all rules (except
for the first one) are asymmetrically sequential dependent of the previous rule.

5.3 Checking Non-Applicability Criteria on Mutual Exclusion

We check non-applicability (i.e. safety) of the following rule sequences:

requestRes, requestRes, nextProc specifies a request of both processes and then a token trans-
fer. This sequence should not be applicable on the start graph G in Fig. 1, since be-
fore transferring a token one of the requests should be processed. We check the non-
applicability criteria in Def. 12 for this rule sequence on G.

1. requestRes is applicable on the start graph G.

2. nextProc is not applicable on the start graph G and is sequentially independent on
requestRes. Therefore the second criterion is fulfilled and there is no enabling pre-
decessor.

requestRes, giveRes specifies a request and then a token shift because the resource has been
released. This sequence should not be applicable to the start graph G in Fig. 1, since the
resource is still unused. It is easy to verify that the criteria in Def. 12 are fulfilled. More-
over rule pair (requestRes,giveRes) and (giveRes,requestRes) are sequentially independent.
Therefore due to Theorem 5 we can conclude directly that sequence giveRes,requestRes is
not applicable either on G.

takeRes, takeRes specifies a take of the resource by both processes simultaneously. This se-
quence should not be applicable on the graph H in Figure 1 in which both processes request
the resource. Thus we check the non-applicability criteria in Def. 12 for this sequence and
graph H.

1. The first rule takeRes is applicable to graph H on the right process.

2. The second rule is again takeRes and we just mentioned that it is applicable on the
right process in H. We want to check though for safety reasons that it is impossible
to apply the second takeRes on the other (i.e. left) process simultaneously. A match-
ing of takeRes on the left process into H does not exist. For this kind of matching
criterion 2 holds since in addition rule takeRes is asymmetrically sequentially inde-
pendent from itself. This means in particular that the application of the first takeRes
on the right process does not enable the application of the second takeRes on the left
process and hence such a rule application on H is not possible.
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This example demonstrates that sometimes it is necessary to include information about the
matches for the rule sequence to be checked for safety. Note moreover that if we would
have taken a longer sequence consisting of requestRes, requestRes, takeRes and takeRes,
we could not have checked the non-applicability of that sequence on the start graph G by
Def. 12, since rule takeRes is asymmetrically sequentially dependent on rule requestRes.
Thus it is crucial in this case to select the kernel sequence where the problem is conjectured
and in particular this shows us that our criteria are sufficient but not necessary.

6 Conclusion and Future Work

In this paper sufficient criteria are formulated for the applicability and non-applicability of rule
sequences. These criteria can be checked in a static way, i.e. without applying the rule sequences.
Future work is concerned with formulating criteria for rules with attributes, further optimization
of the criteria, efficiently checking the satisfaction of the criteria and implementing applicabil-
ity checks in AGG. Furthermore, we like to evaluate the criteria in larger case studies such as
[LEMP07, MMT06].
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Abstract: Sketching, i.e., drawing diagrams by hand and directly on the screen, is
gaining popularity, as it is a comfortable and natural way to create and edit diagrams.
Hand drawing is inherently imprecise, and often sloppy. As a consequence, when
processing hand drawn diagrams with a computer, ambiguities arise: it is not always
clear what part of the drawing is meant to represent what component. Resolution
of these ambiguities is the main issue of sketching. Ambiguity can only be solved
by exploring the context of ambiguous components. This paper describes ambigu-
ity resolution by syntax analysis in DIAGEN, a generic framework for generating
diagram editors. Such editors support free-hand editing (which is closely related
to sketching), and allow for analyzing the created diagrams based on a hypergraph
grammar. Our approach adds support for sketching to the generated editors. In order
to resolve the ambiguities in sketched diagrams, DIAGEN’s diagram analysis based
on graph parsing is used. The necessary modifications to DIAGEN and its graph
parser in particular are discussed.

Keywords: Sketching, Ambiguity Resolution, Hypergraph, Parser

1 Introduction

Nowadays diagram languages like the UML are very popular, and there is a lot of work going on
to model applications and systems (or, at least, part of them) using diagram languages, instead
of coding them traditionally with textual languages. Diagrams are more expressive in terms of
exposing structure and coherence of the modeled system; the used diagram language can be
domain-dependent, thus better focusing on the problem in question; and diagrams are – for some
problems – much more suited, e.g., for expressing graph-like structures like Petri nets or class
diagrams.

Tool support for processing of diagrams has evolved in the last years, with many approaches
available, e.g., Fujaba [FNTZ00], AToM3 [LV02], DIAMETA [Min06] and DIAGEN [Min02].
Among these, the specification of syntax and semantics of a diagram language is either given by
metamodels or by graph grammars.

However, creating and editing of diagrams using such tools is not very natural. Diagram
components have to be selected from some graphical widget like a list, and placed on the canvas
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? ?

Figure 1: A simple Petri net with two ambiguities, indicated by question marks.

by one or more mouse clicks. Instead, sketching, i.e., drawing diagrams by hand on the screen,
is similar to pen and paper and is much more natural, because it does not require complex user
interfaces.

This paper is concerned with ambiguity resolution, which is the main issue of sketching. Am-
biguities arise because drawing by hand is inherently imprecise and sloppy. Fig. 1 shows a
practical example of a simple Petri net, which is also used as running example in this paper.
Places and tokens are drawn as circles, transitions are drawn as rectangles. The two question
marks indicate ambiguities. On the left it is unclear for the two circles whether they represent
places or tokens. The component on the right could be a circle or a very deformed rectangle;
possible interpretations are place, token, or transition, resp. By looking at the context of the
ambiguous components, it becomes obvious that we have a place containing a token on the left
(a place containing a place is not meaningful, and so is a token containing another component),
and another place on the right (as the arrow connects a transition and a place, but not a transition
and a token or another transition). Apparently, context of an ambiguous component has to be
exploited to decide for the correct interpretation. This requires diagram analysis.

In [BM08] we present a comprehensive approach to sketching enabled diagram editors, in-
cluding user interface, recognition of components in the drawing, support for text, and basic
ideas for diagram analysis. There are many approaches to sketching, but most of them do not
exploit the power of grammar-based approaches for ambiguity resolution. For diagram analysis
we have decided for DIAGEN,

• because it supports free-hand editing, which is the basis of sketching,

• because it uses graph grammars for its visual language parser, which are very powerful for
ambiguity resolution (discussed in this paper),

• and because DIAGEN is generic (it can be customized to any diagram language by a spec-
ification of the language). The approach in [BM08] is designed to be generic as well.

In the present paper we describe in detail how we employ DIAGEN for diagram analysis in
order to resolve ambiguities. The main idea is that for each component it must be decided which
of its possible interpretations fits best to the other components.

This paper is organized as follows. Sec. 2 explains DIAGEN by the example of Petri nets, and
outlines the basic idea to support sketching. Sec. 3 and Sec. 4 describe the necessary modifica-
tions to DIAGEN. Sec. 5 discusses related work. Sec. 6 gives a brief summary and describes
further work.
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2 Hypergraph Grammars and Parsing in DIAGEN

A diagram is a set of diagram components. Each component has one or more attachment areas,
i.e., areas where the component can be related to other components. Relationships between
attachment areas depend on spatial placement. A relation is detected if two attachment areas
overlap or are close to each other (since sketching is imprecise, it is not meaningful to require
precise spatial placement of components). For example, places and transitions in Petri nets have
one attachment area each (their full shape). Arrows have two attachment areas (their head and
their tail), and can be related to places and transitions if its head or tail is close. There may be
relations which are not required for a diagram type, e.g., overlapping arrow heads in Petri nets.

DIAGEN [Min02] is a generic editor generator that generates diagram editors from language-
dependent specifications. Each specification describes one diagram language, and defines aspects
like diagram components and attachments areas, desired relationships, reduction rules, grammar
rules, and attributes for parsing (see below). Hypergraphs are used as internal models required
for diagram processing. Each component is represented as a single hyperedge visiting as many
unique nodes as the component has attachment areas. If a component visits more than one node,
its tentacles (connecting an edge with its visited nodes) are numbered in order to be identifiable.
Hyperedges are labeled; the label depends on the type of the respective diagram component. For
Petri nets, we have four different types of components: places, transitions, arrows and tokens.
Hence, hyperedges are labeled with c_place, c_trans, c_token, or c_arrow, resp. We
call such hyperedges component edges in the following. Additional information about a com-
ponent is stored in attributes of the representing component edge, for example, the position and
radius of a place. Relationships between diagram components are binary hyperedges visiting
the two nodes representing the related attachment areas. For Petri nets, we have a relationship
that relates an arrow head or tail to a transition (at_trans), a relationship that relates an arrow
head or tail to a place (at_place), a relationship that relates overlapping places or transitions
(touch), and a relationship that relates a token to the place it is contained in (inside). Hyper-
edges representing relationships are called relation edges.

The overall system architecture of a diagram editor generated by DIAGEN is shown in Fig. 2.
Rounded boxes depict data structures, rectangles depict processing units. The figure shows an
editor without sketching support, called regular editor in the following. The layouter and the
transformer are not relevant for this paper. Also, we neglect attribute evaluation as the final step
of processing a diagram.

The drawing tool provides the user with a GUI, it is the actual diagram editor. As mentioned
before, a hyperedge is created for each component placed on the canvas by the user. We change
this behavior for sketching and create a hyperedge for each component that can be recognized
in the hand-drawn diagram. Therefore we have replaced the original DIAGEN editor by another
editor that allows for drawing by hand. The process of recognition of components from the
hand drawing is described in [BM08]. Result of the recognition is a set of components. How
these components were drawn is neither relevant nor visible to the approach shown here, but
completely handled by the recognition process.

In the next step of the processing chain, the modeler identifies relationships between compo-
nents and creates respective hyperedges. No user input or user interaction is required for this
process. Relations cannot be restricted, e.g., by a condition, but depend solely on the spatial
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Figure 2: Architecture of a diagram editor generated with DIAGEN.

placement of the components. The result of the modeler is a hypergraph (the hypergraph model,
or HM) containing all component edges and all respective relation edges. In case of ambigu-
ity, a component edge is created for each possible interpretation of the ambiguous component.
Such component edges are independent from each other, although they were recognized from
the same strokes in the hand drawing. No information is stored that these edges actually repre-
sent the same component. For Petri nets, it is clear that only one of these edges can be valid at
the same time, but for other diagram languages the situation may be different. The mechanisms
of the subsequent reducer and parser are employed accordingly to account for such component
edges.

The HM for the Petri net shown in Fig. 1 is depicted in Fig. 3. Relation edges are shown as
arrows. As touch is a symmetric relation, each of the respective arrows has two arrow heads.
The two ambiguities identified in the drawing are highlighted in gray: for each of the two circles
on the left in Fig. 1, two component edges are created (c_place and c_token). For the
single component on the right, three component edges are created. The only non-ambiguous
components are the two arrows and the transition in the center. Because all component edges
are independent of each other, each of the three c_token-edges in Fig. 3 is also related to that
c_place-edge which represents the same circle in the drawing (the two vertically displayed
inside-relations on the left, and the inside-relation on the right).

Even the c_token-edge representing the large circle is identified to be inside the c_place-
edge representing the small circle, because their attachment areas overlap, hence an inside
relationship can be found (the name inside is misleading in this case). Furthermore, all iden-
tified places and tokens in in this example overlap and have their full shapes as attachment areas,
so the distance of the respective attachment areas is always 0. The same is true for the touch-
relation between the c_place and the c_trans on the right.

Both components and relationships are rated by a positive real number. For components, the
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Figure 3: Hypergraph model of the Petri net shown in Fig. 1. Ambiguities are highlighted.

rating depends on the complexity of the component, and on the precision of how it has been
drawn. Components being more complex, or being drawn more precisely, gain a higher rating.
For relationships, the rating depends on the distance of the two respective attachment areas. A
smaller distance means a higher rating. Each component edge and relation edge contains the
rating of the represented component or relation in an attribute. The rating will be used by the
parser.

Next, the reducer applies a set of reduction rules, i.e., graph transformation rules, to the HM.
Such rules consist of an LHS and an RHS, each are hypergraphs. The result of the reducer is the
reduced hypergraph model (RHM). In the first place, the RHM is newly created and therefore
empty. Then, for each match of the LHS of a reduction rule in the HM, a respective match for
the RHS of the matched rule is added to the RHM. The HM is not changed by the reducer.

The reducer serves two tasks: first, the RHM usually contains less hyperedges than the HM; as
the RHM is the input for the parser, a smaller model containing less edges improves processing
time. Second, invalid configurations which may occur in the HM due to misplaced components
are not transformed, i.e., they do not occur in the RHM. Application of reduction rules can be
restricted by conditions, and by negative application conditions (NACs).

The reduction rules for Petri nets are shown in Fig. 4. Corresponding nodes on the LHS and
the RHS are labeled with the same letter. NACs are highlighted in gray and crossed out. The two
upper rules transform places and transitions, as long as these do not overlap with any other place
or transition. The third rule transforms tokens inside places, ignoring tokens not inside places.
Here, a condition is applied: a token is only reduced if its radius is smaller than half the radius
of the containing place. The last two rules transform arrows between places and transitions.
As arrows have two attachment areas (head and tail), the attachment areas are distinguished by
numbers. Note that there are no reduction rules for arrows between two places or between two
transitions, as Petri nets do not allow such arrows.

Fig. 5 shows the RHM created by the modified reducer. The original reducer for regular editors
would not produce the subgraphs highlighted in gray, due to the NACs. Except for the transition
in the center, no transition or place would be reduced, as each of them touches another place or
transition because of ambiguous interpretation of the corresponding components. Of the three
tokens, only one would be reduced (the one that actually is a token), the other two would not,
due to the condition in the third rule.

Obviously, ambiguity cannot be resolved for those components not reduced. In the depicted
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Figure 4: Reduction rules for the language of Petri nets.
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Figure 5: Reduced hypergraph model of the hypergraph model shown in Fig. 3.

case, the original reducer is too strict and discards almost all ambiguous components. We rather
have to postpone ambiguity resolution to the parser, i.e., the RHM must contain complete infor-
mation, even on the ambiguous components. Therefore, the highlighted subgraphs are added to
the RHM in Fig. 5, together with the information about which components exclude each other.
This information is based on the NACs. Note that the conditions (like the one for tokens) are not
affected, and have to be met anyway.

Finally, the parser uses the hyperedges from the RHM as terminal edges and attempts to de-
duce the start symbol in a bottom up fashion. The production rules for Petri nets are shown in
Fig. 6. Terminals from the RHM are depicted as rounded rectangles with a white background,
while nonterminals have a gray background. There are two types of production rules unique in
DIAGEN. The one are set productions and the other are embedding productions.

Set productions are used to collect all edges with the same label, not regarding any order or any
subset, thus improving performance of the parsing process. In Fig. 6, set productions are depicted
with a stack of edges on the RHS (the two productions with Transitions and Places on
the LHS, and a stack of Trans and Place on the RHS). An alternative specification would
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Figure 6: Production rules for the language of Petri nets.

use recursive productions like Places ::= Place | Places Place . However, that
would require the parser to deduce any possible subset of all places, and in any possible order,
which leads to a combinatorial explosion. The two set productions for Petri nets express that
Transitions is a nonterminal edge representing the non-empty set of all Trans edges, and
Places is a nonterminal edge representing the non-empty set of all Place edges. The start
symbol for Petri nets is Net. The shown grammar therefore accepts a diagram as a correct Petri
net if it contains at least one place and one transition (a modified grammar could also accept Petri
nets without places or transitions).

Embedding productions are the other kind of production rule unique to DIAGEN. For effi-
ciency reasons, the used graph grammar is context-free. Embedding productions are used to
embed (nonterminal or terminal) edges into a context which has been derived by context-free
productions. An example are arrows in Petri nets. With embedding productions they can be
added to a derivation tree, resulting in a direct acyclic graph (DAG) as derivation structure. In
the following we will always use the term DAG, not distinguishing between a DAG and a tree.
Embedding productions consist of the same graphs on the LHS and the RHS, but with one addi-
tional edge on the RHS (the edge that is embedded). The two productions at the bottom of Fig. 6
are the two embedding productions required for Petri nets.

The parser must use the exclusion information provided by the reducer in order to deduce only
those start symbols which do not contain terminal edges excluding each other in their DAG. This
is described in Sec. 4, but first, it is explained how the reducer can use the NACs to collect the
necessary information for the exclusion of components.

Note that the modifications to the reducer and the parser do not require the reduction rules
or production rules to be modified. They are left unchanged, but are applied differently, as it is
described next. Also, the architecture shown in Fig. 2 is preserved. The information necessary
for ambiguity resolution is stored in additional attributes of the terminal and nonterminal edges.
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3 Sketching-related Modifications to the Reducer

We require the reducer to apply the reduction rules even if they are prohibited by matched NACs,
and create an exclusion relation exclude for the hyperedges in the RHM, i.e., the terminal edges
for the subsequent parsing step. The simple example of Petri nets discussed in the previous
section only shows terminal edges which mutually exclude each other. The general case is more
sophisticated, as shown in the following. Such complicated situations occur when a NAC consists
of more than only a single component hyperedge.

In the following we call hyperedges simply edges, and edges from the RHM terminal edges or
simply terminals. A match of some pattern graph P in a host graph H is an occurrence of P in H.
We regard a (sub)graph as set of edges. For a terminal t, where t is in the occurrence of the RHS

of some reduction rule r, we denote by model(t) the corresponding occurrence of the LHS of r,
and by nacs(t) a set of all matches for NACs that would have prohibited the creation of t. In the
following, we omit all relation edges in nacs(t) and keep only the component edges, as relation
edges completely depend on component edges. We can then define a relation exclude between a
set of terminals T and a single terminal t:

T exclude t :⇔∃N ∈ nacs(t) : N ⊆
⋃

t ′∈T

model(t ′)

T excludes t if the union of all model(t ′), t ′ ∈ T contains all edges from a NAC N in the NACs
from t, N ∈ nac(t). For example, let mp be a component edge representing a place, and mt be a
component edge representing a transition, and both components overlap, i.e., they exclude each
other (apart from the token, this is the case for the right of Fig. 3). Then, the reducer creates two
terminals, tp and tt , with

model(tp) = {mp},nacs(tp) = {N1},N1 = {mt}
model(tt) = {mt},nacs(tt) = {N2},N2 = {mp}

Now the set with the single terminal tt excludes tp, because model(tt) contains all edges in N1,
which is a NAC in nacs(tp). By analogy, {tp} excludes tt . If we had included the relation edges
in nacs(tp) and nacs(tt), both exclusions would not hold, as the relation edges do not occur in
model(tt) and model(tp).

A slight modification of this example shows that the exclude relation is not symmetric in
general. We change the reduction rule for places, so that a place has no NACs, i.e., it can overlap
with any other component (the rule for transitions is not changed). We get

model(tp) = {mp},nacs(tp) = ∅
model(tt) = {mt},nacs(tt) = {N2},N2 = {mp}

Here, {tt} still excludes tp, but not the other way around. In the following we assume the original
reduction rule for places as shown in Fig. 4.

For the general case, a NAC contains more than one component edge. Let N be a match of a
NAC. By applying several reduction rules, different terminals can be reduced from the edges in
N. Then, not only one, but more terminals are required to exclude a single terminal.
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Based on the ratings for component edges and relation edges, a rating can be computed for a
terminal t by adding up all ratings from all edges in model(t). The next section describes how the
parser exploits the exclude relation when deducing the start symbol, and how ratings are used.

4 Sketching-related Modifications to the Parser

The central data structure for the parser is the derivation DAG. Each DAG has a unique root: it
is the node which has no incoming edges. Leaves of a DAG have no outgoing edges. All leaves
represent terminals, all other nodes represent nonterminals. Unless embedding productions are
used, each node has a unique parent, except for the root. Each parent node is the LHS match
of a production rule, and its children are the respective match for the RHS of that rule. Nodes
representing embedded edges can have more than one parent; all parents of such a node represent
the context of the respective embedded edge.

The general idea for the parser is to avoid deduction of nonterminals from a set of terminals T
where some terminal in T is excluded by other terminals in T . For this purpose we will define a
symmetric relation conflict; if two nonterminals conflict with each other, they must not occur in
the same derivation DAG.

Let nt be a nonterminal. By term(nt) we denote the set of all terminals used to deduce nt,
i.e., the set of all leaves in the DAG with nt as root1. DIAGEN applies a production rule (pro-
duction, for short) if three conditions hold: (i) a match M for the RHS must be found, (ii) for
all nonterminals nt in M all term(nt) must be pairwise disjoint, and (iii) the condition defined
for the production must hold. We leave (i)-(iii) unchanged, but add a fourth condition which
regards the exclude relation created by the reducer. We will see in the following that this fourth
condition depends on the type of the production. A Chomsky Normal Form can be computed
for each hypergraph grammar (apart from the set productions and the embedding productions).
Consequently, four different types of production rules have to be distinguished:

• terminal productions with exactly one terminal on the RHS.

• nonterminal productions with exactly two nonterminals on the RHS.

• embedding productions with nonterminals on both sides.

• set productions with an arbitrary number of nonterminals on the RHS.

Terminal productions may always be applied, no conflicts may arise here. For nonterminal
productions we first consider a set T of terminals. We call T conflicting if there exists a subset
E ⊂ T and a single terminal t ∈ T \E where E excludes t. Then, two nonterminals nt1 and nt2
may be used on the RHS of a production rule if the union of their terminals, term(nt1)∪term(nt2),
is not conflicting. This also implies that both term(nt1) and term(nt2) are not conflicting. We
define the symmetric relation conflict between two nonterminals. (nt1,nt2) ∈ conflict if and only
if term(nt1)∪ term(nt2) is conflicting. Then, nt1 and nt2 can be used on the RHS of a nonterminal
production if they are not conflicting, i.e., (nt1,nt2) /∈ conflict.

1 term(t) is only relevant during construction of the derivation tree, so embedded edges are never in term(t).
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Embedding productions are treated differently than the other types of productions. First, the
DIAGEN parser identifies each match for the context of each embedding production. This is only
possible if no edges of a match conflict with each other. Then, for each derivation DAG with the
start symbol as root, each of the previously identified matches is checked whether all of its edges
are contained in the DAG, i.e., are (direct or indirect) children of the root. Finally, for all such
matches, the additional edge of the RHS of the production is embedded, i.e. added to the DAG.
The edges of a match can only be contained in the DAG if none of these edges conflicts with any
other edge from the DAG. Therefore, the only condition that must be checked before an edge
may be embedded is whether it conflicts with the root of the DAG. If there is no conflict, there
can also be no conflict with any other edge in the DAG.

The fourth type of production rule are the set productions. Basically, set productions can
be seen as nonterminal productions with not exactly two, but one or more edges in the match
of its RHS. However, the production may be applied even if nonterminals in this match are
conflicting. In this case, the problem is to decide which of the conflicting edges should be
omitted, because this decision may have consequences on subsequent applications of production
rules and contexts for embedding productions. The former happens if the nonterminal that has
not been omitted conflicts with another nonterminal in a subsequent production rule. The latter
happens if the omitted nonterminal was part of a match for a context of an embedding production.
Consequently, we must defer the decision, as we cannot make it when applying a set production.
We temporarily ignore all conflicts, and do not omit any of the nonterminals on the RHS match.
When the start symbol is reached, there can be no further productions, and we can finally decide
which nonterminals to omit.

The nonterminal matching the LHS of a set production may be used in the match of a RHS of
another set production itself, either directly, or as a node contained in the DAG of a nonterminal
in this match. This can lead to a complex structure. An example is depicted in Fig. 7, where
the top part of a derivation DAG can be seen. As before, nonterminals are depicted as rounded
rectangles with a gray background. The thin arrows indicate parent-child relationship. The
subtrees of nonterminals with two outgoing arrows not ending in other nonterminals are of no
interest in this example. Embedding productions are not shown. A, B and C are nodes in the DAG
indicating applications of set productions. The fat arrows, marked with crosses, depict conflicts
between nonterminals.

When applying the nonterminal production a3 → BF we can immediately discard b3, as it
conflicts with F . The production cannot be applied otherwise. The same is true for production
D→ EC and c3. The following cases are more difficult. When applying set production A→
a1a2a3a4, we cannot decide for a2 or for b1, as we do not know about possible later consequences.
There is a conflict between a2 and c1. The problem is that we do not know yet that A and C will
be used in the same DAG. Finally, when applying S→ AD, we can decide for a2 or b1, for a2 or
c1, for c1 or c2, and for a4 or c1, as we know that there will be no further productions.

The problem of omitting nonterminals is NP-complete. It is a slight variation of the maximum
clique problem [Kar72]. However, we do not need the best solution; a heuristic is sufficient. In
order to guide the heuristic we use the ratings assigned to each terminal. The rating rating(nt)
of a nonterminal nt is the sum of all ratings from the terminals in term(nt). This way, the
start symbol in a derivation DAG is rated. For set productions, we would like to find the non-
conflicting subset of the conflicting nonterminals with the highest rating of all nonterminals. The
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a1 a2 a3 a4

A

Start symbolS

B

b1 b2 b3

F

D

E C

c1 c2 c3

Figure 7: Top part of an exemplary derivation DAG with three set productions and root S. Con-
flicts between nonterminals are depicted by fat red arrows marked with crosses.

better the result is, i.e., the higher the final rating for the start symbol (which is decreased by
every nonterminal omitted), the better the ambiguity resolution is, because a higher rating means
more components, more complex components and more drawing precision.

The basic idea for the heuristic is to prefer nonterminals (i) with a high rating, (ii) with
few conflicts, (iii) whose conflicting nodes have low ratings, and (iv) which are part of many
matches of contexts for embedding productions. A ratio is calculated for each nonterminal nt.
Let embed(nt) be the set of all embedded edges where nt is one edge of the match of their
context; the ratio r is calculated as

r(nt) =
rating(nt)+∑{rating(e)|e ∈ embed(nt)}

∑{rating(c)|(nt,c) ∈ conflict}

The heuristic then works as follows: as long as there are conflicts, the nonterminal with the
lowest ratio is omitted, and the ratios of its conflicting nonterminals are increased accordingly.
If the start symbol cannot be deduced any more, because the last nonterminal of a set production
is omitted, backtracking is applied and the next nonterminal is tried. We found that this very
simple approach works well in practical cases, producing meaningful results quickly.

Therewith it is explained how the symmetric conflict relation must be exploited to generate
derivation DAGs which are correct, i.e., which do not use terminals that must not occur in the
same DAG due to the exclude relation introduced in the previous section. The ambiguities shown
in the introductory example in Fig. 1 now can be solved in the desired manner. The RHM and
a schematic representation of its DAG is shown in Fig. 8. The thin dashed arrows depict the
matches for the contexts for the two arrows. Note that, due to the CNF, the one nonterminal
Place cannot be the parent of the two terminals t_place and t_token. However, for the
sake of clarity, we do not show the correct representation, which requires artificially generated
nonterminal symbols.

Given that places and transitions in Petri nets are similarly rated, the decision about which
components to omit depends on the embedded arrows. For Fig. 1, the leftmost place and the
rightmost transition will be omitted, which is exactly the result we initially described. In general,
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Net

TransitionsPlaces

Place Place Place

t_token

t_arrow1 2

t_trans

t_arrow1 2

t_place t_place t_place t_trans
exclude exclude

Trans Trans

Reduced hypergraph model with exclusions

Schematic DAG

Figure 8: Reduced hypergraph model as shown in Fig. 5, and a schematic representation of the
corresponding derivation DAG.

there may be a number of correct derivation DAGs. We then choose the one with the highest rated
start symbol.

5 Related Work

Using context allows the machine to automatically decide for an interpretation in case of am-
biguity. The alternative is to have the user explicitly make a choice. This is called media-
tion [MHA00]. Various strategies are conceivable, e.g., providing the user with a list of possible
interpretations and let him decide, or requiring the user to redraw an ambiguous symbol. Espe-
cially the latter is limited in applicability. In our case, places and tokens in Petri nets are both
drawn as a circle (cf. Fig. 1). Redrawing this circle obviously cannot resolve this ambiguity.
Providing a list would help here, but is very uncomfortable for the user.

Some approaches decide for a possible interpretation without explicit user interaction, but
neglect context information for this decision. For example, LADDER compares only the am-
biguous components, not regarding context, and uses simple rules to prune alternatives, at the
risk of preserving a wrong interpretation [HD05].

An approach by [AD06], limited to the domain of mechanical drawings, merges automatic
decisions and user interaction. The system collects evidence from the drawing, based on rules.
Additionally, each component is scored. Based on the evidence and the score, alternatives are
pruned by a greedy algorithm. The algorithm is not able to undo its decisions, thus the result
may not be optimal. In case of a wrong decision, the user can indicate that another possible
interpretation is to be taken.

We are aware of only one other approach to sketching that treats ambiguity resolution with a
grammar-based approach. It is based on so-called sketch grammars [CDPR04, CDR06]. Unlike
our approach, diagram analysis is not separated into a reducer and a parser. Instead, the parser
is directly applied. Parsing is directed by probabilities and rankings (similar to the ratings we
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use) in order to avoid processing of unlikely interpretations. The used grammar is not based
on hypergraphs, but extends positional grammars, which themselves extend traditional string
grammars by more general relations than concatenation. For the actual parse process, only little
detail is published. The concept of NACs is not employed. Result of the parser is a forest of
ranked derivation trees, each representing a valid interpretation of the drawing. The user can
then choose the desired representation.

Both recognition and ambiguity resolution works different for (handwritten) text, which we do
not want to cover with our approach. Various methods are reported for this issue. For example,
characters can be disambiguated by use of vocabularies, words can be disambiguated by statisti-
cal methods like Hidden Markow Models, language models, or specialized statistical grammars
like PCFG (probabilistic context-free grammar) [PS00, ZCB06, HLB00].

6 Conclusion and Future Work

In this paper we explained an approach to ambiguity resolution in sketched diagrams using a
hypergraph-grammar-based approach. Omission of components due to NACs is deferred as long
as possible, until the parser needs a decision to go on. Using Petri nets as example we moti-
vated the basic ideas. Applicability is restricted because of an NP-complete problem. We have
implemented the presented approach as an extension of DIAGEN. Practical results suggest that
the heuristic we apply works well, and quickly computes a result. We will inspect this restric-
tion further, both from a theoretical and practical point of view. Graph grammars without set
productions do not suffer from this issue.

The shown approach is incremental, i.e., modifications to the diagram do not require analysis
from scratch. When components are added to the diagram, respective components edges are
created, and all possible relationships of these components edges are checked. The reducer then
only regards the newly created edges, and so does the parser, which modifies existing derivation
DAGs. When diagram components are removed, the situation is similar.

Although we use the approach for ambiguity resolution in the context of sketching, regular
graph parsers may benefit from the shown approach as well, as feedback in case of misplaced
components (leading to a syntactically incorrect diagram) may be improved. The very strict
behavior of the DIAGEN reducer, as shown in Sec. 2, suggests that feedback is very coarse
and does not aid very much in finding misplaced components. What happens is that maximum
sized subdiagrams with correct syntax are highlighted. Using our approach, the size of these
subdiagrams may be increased.

Metamodel-based approaches have gained popularity in recent years. As future work, we
would like to find out how DIAMETA, as a metamodel-based approach and an extension of
DIAGEN, can benefit from the shown results as well, and how and to what extent they can be
applied. Then we can compare the graph-based and the metamodel-based approaches.
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Abstract: The diagram editor generator framework DIAMETA utilizes meta-model-
based language specifications and supports free-hand as well as structured editing.
In this paper we present a layouting approach that is especially well suited for a static
layout. It is based on the layout algorithm presented in [MM07a] that uses the two
concepts constraint satisfaction and attribute evaluation. This algorithm is combined
with graph transformations and the result is a natural way of describing the layout
of visual languages. As an example we use a simplified version of Sugiyama’s
algorithm, applied to statechart diagrams.

Keywords: Layout Algorithm, Static Layout, Dynamic Layout, Constraints, At-
tribute Evaluation, Graph Transformation

1 Introduction

Each visual editor implements a certain visual language. Several approaches and tools have been
proposed to specify visual languages and to generate editors from such specifications. These
attempts can be characterized by the way the diagram language is specified, and by the way the
user interacts with the editor and creates respectively edits diagrams. Most visual languages as
of today have a model as (abstract) syntax specification. Models are essentially class diagrams
of the data structures that are visualized as diagrams.

When considering user interaction and the way how the user can create and edit diagrams,
structured editing is usually distinguished from free-hand editing. Structured editors offer the
user some operations that transform correct diagrams into (other) correct diagrams. Free-hand
editors, on the other hand, allow to arrange diagram components from a language-specific set on
the screen without any restrictions, thus giving the user more freedom. The editor has to check
whether the drawing is correct and what its meaning is.

One weak point of such editors is, as always, layout. When talking about layout, we need to
distinguish two terms: Layout, the general term, and layout refinement. Layout refinement starts
with an initial layout and performs minor changes to improve it while still preserving the “feel”
(or “mental map” [PHG07]) of the original layout. Especially user interaction is considered
in this context. Layout may also position components of the diagram from scratch without an
initial layout. For structured editing, layout is required, as newly created components need to
be positioned from scratch. For free-hand editing, either layout or layout refinement may be
applied. We also need to distinguish the two terms static layout and dynamic layout. When
applying a static layout algorithm to a diagram, it always returns the same visual representation
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of the diagram. When applying a dynamic layout algorithm, the result is influenced by the
”layout” of the initial diagram and by the user input.

In [MM07a] we presented a dynamic layout algorithm usable for model-based visual lan-
guages. It meets the demands of structured as well as free-hand editing. The algorithm combines
the concepts constraints and attribute evaluation to an algorithm that is fast, flexible and behav-
ing the desired way. This approach provides us with all we need for layout refinement. But we
have recognized that constraints and attribute evaluation rules for such a specification quickly
get long and complicated, especially when using a ”real world” layouting strategy.

In this paper, we extend our approach, improving this aspect. We combine graph transfor-
mation and the dynamic layout algorithm presented in [MM07a]. Graph transformations are
applied, with the goal that the complexity of the constraints and attribute evaluation rules used
to specify the dynamic layout algorithm is reduced. The approach also has the benefit that the
layout algorithm is separated into phases, each of them treated independently. The reduction of
complexity as well as the separation into phases simplifies the creation process of a new layout-
ing strategy. The modularity of the algorithm additionally offers us perfect conditions for setting
up a ”testing environment” for layout strategies.

Figure 1: Sugiyama’s Algorithm applied to Statecharts

We demonstrate our approach by specifying Sugiyama’s algorithm (a simplified version), a
standard layouting strategy for graphs.

We have integrated and tested our approach in DIAMETA [Min06]. DIAMETA follows the
model-driven approach to specify diagram languages. From such a specification, an editor, of-
fering structured as well as free-hand editing, can be generated. Figure 1 shows a statechart
diagram before and after applying the Sugiyama’s algorithm. The diagram was created via a
DIAMETA editor. The layout algorithm was implemented using the approach presented in this
paper.

Section 2 introduces the model of statecharts, the visual language that is used as a running
example. Section 3 gives an overview of DIAMETA, the environment in which the algorithm has
been tested. Section 4 explains the proposed algorithm, and Section 5 gives a detailed example.
Section 6 contains related work, and Section 7 concludes the paper.
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Figure 2: Statechart Diagram

2 Running Example

As a running example we use statecharts. In Figure 2 we see a layouted statechart diagram.
Figure 3 shows the meta model of simplified statecharts presented in this paper. We have

”states” (class State) and ”transitions” (class Transitions). A ”state” can either be a ”transition
source” (class TransSource) or a ”transition target” (class TransTraget). A ”transition” connects
one ”transition source” with one ”transition target” (roles from and to). A ”transition source” or
”transition target” may be connected with an arbitray number of ”transitions” (roles inv from and
inv to). A ”transition source” can either be an ”initial state” (class InitState) or a ”labeled state”
(class LabeledState). A ”transition target” can either be a ”labeled state” or a ”final state” (class
FinalState). A ”labeled state” can be an ”or state” (class OrState), an ”and state” (class AndState)
or a ”plain state” (class PlainState). An ”and state” must contain at least two ”and compartments”
(class AndCompartment). A ”state container” (class StateContainer) may contain one or more
”states”. A ”state container” can either be an ”or state” or an ”and compartment”.

State

TransTargetTransitionTransSource

InitState FinalState

StateContainer AndState PlainState

OrState AndCompartment

LabeledState
label : EString

from inv_from inv_to to

1 10..* 0..*

inv_tAnd

tAnd

2..*

1

nestedState

inv_nestedState

1..*

0..1

prevX, prevY, init

Figure 3: Meta Model of Statecharts
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For the layout specification, we added three associations with the roles prevX, prevY and init
to the meta model. Their usage will be explained in Section 5.

V_Transition

xStart

yStart

xEnd

yEnd

flipped

V_State

xPos

yPos

layerX

layerY

layerWidth

layerHeight

layerWidthComp

layerHeightComp

flipped

Figure 4: Visual Components

Visual components are created for ”states” and ”transitions”
(Figure 4). For the visual representation, we distinguish between
”initial states”, ”labeled states” and ”final states”. A ”transition”
is visualized by an arrow with the start point (xStart,yStart) and
the end point (xEnd,yEnd). It also has the attribute flipped, that
will be described later. ”Initial states” are visualized by a filled
circle, ”final states” by two circles, and ”labeled states” by a
rounded rectangle. Its position is described by its top left corner
(xPos,yPos) and its size by its width (width) and height (height).
A state also has the attributes layerX, layerY, layerWidth, lay-
erHeight, layerWidthComp, layerHeightComp and flipped, that
will be described later.

3 DIAMETA

In this section, we are going to introduce DIAMETA, the environment the algorithm was im-
plemented in. It is needed to understand the context in which graph transformations and the
dynamic layout algorithm are used. In particular it generates an overview of the implementation
of graph transformations and the implementation of the dynamic layout algorithm, and how they
were combined. The most important fact that is introduced is that graph transformations operate
on an internal graph model, whereas the dynamic layout algorithm operates on the object model.

3.1 DIAMETA Architecture

The editor generator framework DIAMETA provides an environment for rapidly developing

Editor user

selects

operation

5

reads

reads

adds/rem
oves

modifies reads

Highlights syntactically correct sub-diagrams

Dynamic Layout

Algorithm

Modeler Reducer
Model

analyzer

Graph

transformer
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Drawing

tool

Diagram
Graph

model

Instance

graph

Java

objects

Layouter

Control
selects
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Figure 5: Architecture of DIAMETA

diagram editors based
on meta-modeling. Each
DIAMETA editor is based
on the same editor ar-
chitecture which is ad-
justed to the specific di-
agram language. This
architecture is described
in this paragraph.
DIAMETA’s tool sup-
port for specification and
code generation, pri-
marily the DIAMETA

Designer are postponed
to the next paragraph.
Figure 5 shows the struc-
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ture which is common to all DIAMETA editors - editors generated and based on DIAMETA. The
editor supports free-hand editing by means of the included drawing tool which is part of the
editor framework, but which has been adjusted by the DIAMETA Designer. With this drawing
tool, the user is able to create, arrange and modify the diagram components of the particular
diagram language. Editor specific program code, specified by the editor developer and generated
by the DIAMETA Designer, is responsible for the visual representation of the language specific
components. The drawing tool creates the data structure of the diagram as a set of diagram com-
ponents together with their attributes (e.g., position, size). The sequence of processing steps,
necessary for free-hand editing, starts with the modeler and ends with the model analyzer; the
modeler first transforms the diagram into an internal model, the graph model. The reducer then
creates the diagram’s instance graph that is analyzed by the model analyzer. This last processing
step identifies the maximal subdiagram which is (syntactically) correct and provides visual feed-
back to the user by drawing those diagram components in a certain color. However, the model
analyzer not only checks the diagram’s abstract syntax, but also creates the object structure of
the diagram’s correct subdiagram. The layouter modifies attributes of diagram components and
thus the diagram layout is based on the object structure, which allows to access the represented
diagram components.
The layouter is optional for free-hand editing, but necessary for structured editing. Structured
editing operations modify the graph model by the means of the graph transformer (Sect. 3.3)
and add or remove components to respectively from the diagram. The visual representation of
the diagram and its layout is then computed by the layouter. For our approach, we introduced an
additional component that controls the layout, which will be explained in Sect. 3.5.

3.2 DIAMETA Framework

Editor developer

Diagram editor

DiaMeta

editor

framework

DiaMeta

DesignerDiaMeta

Layouter

program

code

EMF

Compiler

operates ECore 

Modeller

ECore

Specificationoperates

Generated 

Program

code

Editor 

Specification

3

Generated

program

code

Figure 6: DIAMETA Framework

This paragraph outlines DIAMETA’s
environment supporting specifica-
tion and code generation of diagram
editors that are tailored to specific
diagram languages. The DIAMETA

environment shown in Figure 6 con-
sists of an editor framework and the
DIAMETA Designer.

The framework is basically a col-
lection of Java classes and pro-
vides the dynamic editor function-
ality, which is necessary for edit-
ing and analyzing diagrams. In or-
der to create an editor for a specific
diagram language, the editor devel-
oper has to enter two specifications:

First, the abstract syntax of the diagram language in terms of its model and second, the visual
appearance of diagram components, the concrete syntax of the diagram language, the reducer
rules and the interaction specification. Besides that, he may provide a layout specification, if he
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wants to define a specific layouter. A language’s class diagram is specified as an EMF model
(ECore specification), created by using the ECore modeller. The EMF compiler is used to create
Java code that represents this model. Figure 3 shows the class diagram of statecharts as an EMF
model. The editor developer uses the DIAMETA Designer for specifying the concrete syntax
and the visual appearance of diagram components, e.g., initial states are drawn as circles. The
DIAMETA Designer generates Java code from this specification. In addition, the editor developer
can provide a layouter. This Java code, together with the Java code generated by the DIAMETA

Designer, the Java code created by the EMF compiler, and the editor framework, implement an
editor for the specified diagram language.

3.3 Graph Transformer

DIAMETA offers the possibility to specify structured editing operations via graph transforma-
tions. These transformations operate on an internal graph model that is freely modifiable. They
are defined in the Designer Specification, by a textual language. A graph transformation is either
called by the editor user, or by the Layouter Control, which is described in Subsection 3.5.

3.4 Dynamic Layout Algorithm

In Figure 7 we can see a birds-eye view of the dynamic layout algorithm that has been presented
in [MM07a]: The algorithm is based on the idea that a set of declarative constraints is given,
assuring the characteristics of the layout. If all constraints are satisfied, the layouter terminates.
If one or more constraints are not satisfied, the layouter needs to change some attributes to satisfy
the constraints. Therefore it switches on one or more attribute evaluation rules. These rules are
responsible for updating the attributes, i.e., to satisfy the constraints. The layouter is either called

4

Diagram
[updated]

Diagram
[modified] Layout Algorithm

calculate
new values

switch on
rules

check
constraints

update
diagram

[otherwise]

[all satisfied]

check
semantics

[otherwise]

undo
changes

[semantics 
 maintained]

user
interaction

update
attribute
values

Figure 7: Dynamic Layout Algorithm

directly by the user or by the Lay-
outer Control. All potentially vio-
lated layout constraints are checked,
and the rules that were switched on
are collected. Thereafter the new
values for the attributes are calcu-
lated via attribute evaluation. Now,
the constraints are checked again,
since new constraints may have be-
come unsatisfied due to changes
performed by the layouter. If all
constraints are satisfied, the lay-
outer succeeds and reports the new
attribute values. Otherwise, the lay-
outer has to evaluate the rules again.
If the layouter does not succeed af-
ter a certain number of iterations,
the layouter stops and returns the
old values as result.
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3.5 Layouter Control

We offer the editor user two possibilities to apply a layouting strategy. Either the user can choose
a layouting strategy, and all phases are applied automatically. This is the ”normal” operating
mode. Alternatively, the editor user may apply each phase manually by clicking a button. This
is the ”test” operating mode, that turned out to be very helpful during layouter creation.

When applying a strategy automatically, as shown in Figure 5, the editor user has to select
the desired layouting strategy (layouter control). The layouter control then ”controls” the graph
transformer and the dynamic layout algorithm. For each phase, the layouter control inserts the
”right” graph transformation or dynamic layout algorithm, and initiates the process shown in
Figure 5.

When applying a strategy manually, the editor user has to select the desired graph transforma-
tion or dynamic layout algorithm. The layouter control then inserts this graph transformation or
dynamic layout algorithm, and initiates the process shown in Figure 5.

Graph transformations operate on the internal graph model and change this model. After-
wards, the processing steps that are required after a graph transformation are executed, and the
diagram as well as the object model are updated. The dynamic layout algorithm operates on the
object model and updates the attributes of the object model. Afterwards, the necessary steps are
processed and the diagram is updated.

4 Layout Algorithm

The idea of the algorithm is combining graph transformation and the dynamic layout algorithm
described in [MM07a]. Therefore, the layouting strategy is separated into different phases. In
each phase, either a graph transformation or the dynamic layout algorithm is applied.

The general idea is the following: A graph transformation changes the model. Then the dy-
namic layout algorithm updates attribute values. Afterwards, a graph transformation undoes
intermediate changes in the model. The purpose of intermediate changes in the model is re-
ducing the complexity of the constraints and attribute evaluation rules specified in the dynamic
layout algorithm. The separation into different phases splits up the dynamic layout algorithm
into small pieces, and again reduces the complexity.

In Section 5 we are going to examine a concrete example, providing the reader with a better
understanding of how to separate an algorithm into different phases.

5 Layout Algorithm for Statecharts

The layout algorithm we are going to specify is a simplified version of Sugiyama’s algorithm
[STT81]. It has been defined by a combination of graph transformations and the dynamic layout
algorithm presented in [MM07a].

Sugiyama’s algorithm is split up into different phases. We have refined this sequence of phases
and specify each phase either by graph transformation (GT) or the dynamic layout algorithm
(LA) to update the diagram. In the following section we are going to describe these phases in
more detail.
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01 (GT) Cycle Removal 07 (LA) Calculation of Layer
02 (LA) Horizontal Layering Height and Width
03 (GT) Dummy Node Insertion 08 (LA) Update Position of States
04 (GT) Connecting of States in Vertical Layer 09 (LA) Update Position of Arrows
05 (LA) Vertical Layering 10 (GT) Dummy Node Replacement
06 (GT) Connecting of States in Horizontal Layer 11 (GT) Undo Cycle Removal

5.1 Phases

01 (GT) Cycle Removal A statechart diagram - when ignoring hierarchical states - is a directed
graph that may contain cycles. In the first phase, these cycles are removed by flipping one or
more edges.

Figure 8: Cycle Removal

forall [arrow]=getArrow_() (markUnvisitedArrow_(arrow))
forall [state]=getState_() (markUnvisitedState_(state))
( (

forall [state]=getStateWithNoOutgoing_()
(unmarkIngoing_(state)! unmarkState_(state))

getStateWithNoOutgoing_()
)!
flipOutgoing_()
getStateUnvisited_()

)!

We use the following algorithm
to do this. First, all states and tran-
sitions are marked with a unary hy-
peredge in the graph model. The
mark is removed at all states with-
out any marked outgoing transition
arrows. Their ingoing transitions
are also unmarked. If all marks are
removed, we are done. Otherwise,

we know that the diagram contains one or more cycles. If this is the case, the algorithm ar-
bitrarily chooses one marked state, and flips all outgoing edges by changing the value of the
attribute flipped. Now, the algorithm continues with the first steps and proceeds till all marks
were removed.

We implemented this algorithm by the graph transformation shown above, using the hyper-
graph transformation approach provided by DIAMETA. A statement of the form
forall [a] = getA() (do(a)) calls the rule getA() and stores return values in the
list [a]. Then the rule do(a) is applied to all elements a of the list. The statement (do())!
calls the rule do() as many times as applicable. Figure 8 shows a statechart before and after
cycle removal. In this example, the black arrow (indicated by the ellipse) has been flipped.
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Figure 9: Statechart with Layers

02 (LA) Horizontal Layering The
attribute evaluation rule that is asso-
ciated with the transition trans takes
care of computing the attribute lay-
erX. If a state has no incoming edges,
layerX has the value 1. Otherwise,
layerX is the maximal distance of a
state from the initial state. Figure 9
shows a statechart with the values of
the attributes layerX and layerY1.

trans.to.layerX := max(trans.to.layerX, trans.from.layerX + 1)

03 (GT) Dummy Node Insertion As a next step, dummy nodes are inserted, such that arrows
only connect states in one layer with states in the next layer (layerX).

The algorithm works as follows: For each arrow, it is checked if it connects a state in one layer
with a state in the next layer. When this is not the case, e.g., if it connects a state in layer n with
a state in layer n+2, one or more dummy nodes are inserted.

We have implemented this algorithm by a graph transformation. The inserted dummy nodes
are plain states that are marked as dummy (by changing the value of the attribute dummy). These
dummy nodes also have layer attributes. Figure 10 shows a sample dummy node insertion. Here,
three nodes had to be inserted.2

Figure 10: Dummy Node Insertion

04 (GT) Connecting of States in Vertical Layer All states in one vertical layer are connected
by the link prevY. The elements of a layer can be identified by the attribute layerX that was
previously set. The sorting of the elements is arbitrary. This connection is realized by a simple
graph transformation. The transformation inserts for each link required in the object model an
edge in the graph model, which is then translated into the link in the object model. The arbitrary
sorting could be replaced by a more sophisticated strategy, e.g., by a strategy that minimizes
the number of edge crossings, or by a dynamic layout algorithm enabling the user to change the
sorting.

1 The attribute layerY is updated in phase 05.
2 The diagram in Figure 10 was already layouted. Otherwise, the dummy nodes would appear at the point (0,0).

9 / 14 Volume X (2008)



Static Layout Algorithm

05 (LA) Vertical Layering All states in one layer are connected by a link (prevY). The com-
putation of layerY is done by the following attribute evaluation rule, that is associated with the
state state. If state.prevY does not exist, layerY is set to 1.

state.layerY := state.prevY.layerY + 1

06 (GT) Connecting of States in Horizontal Layer After updating the attribute layerY, the
states in each horizontal layer are connected via the link prevX. The elements of a layer are
identified by the attribute layerY. The sorting of the elements is similar to the value of the attribute
layerX.3 This connection is again realized by a graph transformation.

07 (LA) Calculation of Layer Width and Height As stated in the last paragraph, all states in
one horizontal layer are connected via the link prevX, and all states in one vertical layer

Figure 11: Variable Size

are connected by the link prevY. The height of a
horizontal layer is the height of the highest com-
ponent in the layer. The width of a vertical layer
is the width of the widest component in the layer.
The computation is done by a pairwise comparison,
i.e., by the following rules, associated with the state
state. Initially, state.layerWidth is set to state.width
and state.layerHeight is set to state.height. Fig-
ure 11 shows a diagram with states of variable size.

state.layerWidth := state.width
state.layerWidth := max(state.prevY.layerWidth, state.layerWidth)

state.layerHeight := state.height
state.layerHeight := max(state.prevX.layerHeight, state.layerHeight)

08 (LA) Update Position of States Firstly, the states are layouted. The position of initial states
is not updated. This has the consequence that the position of initial states is variable. Labeled
states and final states are updated via the following attribute evaluation rules, associated with the
state state.

state.layerWidthComp := state.prevX.layerWidthComp + state.prevX.layerWidth
state.layerHeightComp := state.prevY.layerHeightComp + state.prevY.layerHeight

state.xPos := state.init.xPos + state.layerWidthComp + state.layerX*80
state.yPos := state.init.yPos + state.layerHeightComp + state.layerY*40

+ state.layerHeight/2 - state.height/2

state.layerWidthComp and state.layerHeightComp is the complete width respectively height of
all previous states. state.init is the corresponding initial state. state.layerX*80 and state.layerY*40
insert spacing between the layers. Components are horizontally centered by adding + state.layerHeight/2
- state.height/2.4

3 It might be the case that one or more numbers are missing, due to the structure of the statechart.
4 Initial states are not layouted, and hence they are not centered, e.g., as can been seen in Figure 11.
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09 (LA) Update Position of Arrows Arrows are also layouted. Attribute updating is per-
formed via the following attribute evaluation rules, associated with the transition trans. The
transition starts in the middle right of a state, and ends in the middle left of the next state.

trans.xStart := trans.from.xPos + trans.from.width
trans.yStart := trans.from.yPos + trans.from.height / 2

trans.xEnd := trans.to.xPos
trans.yEnd := trans.to.yPos + trans.to.height / 2

Figure 12: Dummy Node Replacement

10 (GT) Dummy Node Replacement In this
step, all dummy nodes are replaced by bends.
This is done by a simple graph transformation.
For each dummy node, the incoming and the
outgoing arrow5 are merged, and a new arrow
is created. The dummy node is removed. Fig-
ure 12 shows the diagram of Figure 10 after re-
placing dummy nodes by bends. Here, three
dummy nodes were replaced.

11 (GT) Undo Cycle Removal As a last step, the previously flipped edges need to be turned
around again. E.g., in Figure 8 (left diagram) we can see the result of undoing the cycle removal
as it was done in Figure 8 (right diagram). In this case, the result is the initial diagram. This is
not always the case, as there could have been changes in the last steps of the algorithm.

Figure 13: Nested States

Statecharts with Nested States It is also pos-
sible to include nested states. Therefore, the
two statecharts are layouted and the size of the
containing state is computed from the size of the
layouted contained statechart. Figure 13 shows
a sample statechart with nested states. Right
now, the size of the containing state and the po-
sition of the contained initial must be changed
by the user, but may be specified via the layout
algorithm, e.g., an additional phase.

General Remarks Besides automatic layouting of nested states, many other enhancements,
like space saturation by floor planning, are imaginable. In our example we only used attribute
evaluation rules, not the whole functionality of the dynamic layout algorithm presented in [MM07a].
Using this, a static layout algorithm is defined. A dynamic layout is also possible when using the
whole functionality of the dynamic layout algorithm. E.g., one could offer the user the possibility
to change the order of elements in a layer (layerY).

5 A dummy node has exactly one incoming and one outgoing edge, due to the way it had been created.
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6 Related Work

Many comparable tools, like AToM3, GMF, or Tiger, offer the possibility to use a standard layout
algorithm, such as FlowLayout. Besides that, some tools, like DiaGen, offer the possibility to
use constraints for layout specification. Most tools also allow the developer to write the layouter
by hand, as only a small subset of layouter’s can be realized by the mechanisms provided. With
the approach presented we try to extend this subset.

Many tools support graph transformation, e.g., Fujaba, AToM3 or Tiger, but only rarely use
them in the context of layout specification. Guerra et al. presented Event Driven Grammars
[GL07]. Rules in these grammars may be triggered by user actions, and are combined with triple
graph transformation systems. Rules may be defined especially for layout. If a rule is applicable,
it is executed and attribute values are updated. In this approach, attributes are updated through
graph transformations. In our approach, the graph model is changed via graph transformations,
and then the attributes are updated via the dynamic layout algorithm. This gives us more freedom
and reduces the size of a layout specification, especially when considering dynamic layout.

UML diagrams, such as activity and statechart diagrams are basically directed graphs. Most
approaches for drawing directed graphs used in practice are based on Sugiyama’s algorithm
[STT81], e.g., an efficient implementation is presented in [ESK05]. Visual language specific
layout algorithms based on Sugiyama’s algorithm are for example described in [SK06] (activity
diagrams) or in [CMT02] (statechart diagrams). Also some work had been performed to take
user interaction into account, and to preserve the ”mental map”. When we take a look at these
algorithms, we examine that they are always hand coded. With our approach, this is done by
visual programming. In order to create a new layout algorithm, you have to provide graph
transformation rules, constraints and attribute evaluation rules instead of plain Java code. This
has the consequence that we can benefit from the advantages of visual programming: the creation
and adaption of layouting strategies is easier, and hence experiments in this context are made
possible.

Ware et al. state in [WPCM02] that (graph) aesthetics are taken as axiomatic, and have not
been empirically tested. They argue that human pattern perception can tell us much that is
relevant to the study of graph aesthetics. With our approach we created a platform for performing
this kind of studies easily, not only for graphs but for all kinds of visual languages.

Purchase et al. state in [PHG07] that dynamic graph layout algorithms have only recently
been developed. They anticipated that maintaining the ”mental map” between time slices assists
with the comprehension of the evolving graph. In DIAMETA, we do not only have automatic
time-slices, but also time-slices triggered by user interaction. Besides that, freehand editing
provides an initial layout that needs to be considered. In DIAMETA, many degrees of freedom
are available, that may be considered when creating a new layout algorithm.
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7 Conclusions and Future Work

In this paper we presented a layouting approach, that is especially well suited for a static layout.
It is based on the layout algorithm described in [MM07a] that uses the two concepts constraint
satisfaction and attribute evaluation. This algorithm is combined with graph transformations, and
the result is a natural way of describing the layout of visual languages. As an example a simpli-
fied version of Sugiyama’s algorithm is used, applied to statechart diagrams. We integrated and
tested our approach in DIAMETA. The possibility to define a static layout with our algorithm
was shown, and it turned out to be the very elegant and intuitive. When Sugiyama’s algorithm
is explained in literature, it is described step by step. We translated each of these steps into one
or more phases. It was then possible to specify the phases independently, each of them either
by a simple graph transformation or a simple dynamic layout algorithm. In contrast to other
approaches, our layout specification is similar to the initial idea of the algorithm and, and hence
the creation is more convenient for the developer.

In the current implementation, graph transformation operates on the graph model and attribute
evaluation on the instance of the meta model. For future implementations, we will investigate
the possibility to offer ”graph transformation” that operates on the instance of the meta model.
E.g., we will investigate the EMF Transformer presented in [BEK+06]. This would reduce the
complexity of the approach presented. In the current implementation, this is not possible, as
DiaMeta is based on a hypergraph approach: Java objects can be created from a diagram, but a
diagram cannot be created from Java objects directly.

Right now, only the parts of the diagram that are recognized as correct, are layouted. Other
parts are not changed. Consequently, it might happen that visual components are moved by the
layouter on top of other components, not recognized as correct. In future implementations we
will need to consider parts of the diagram not recognized as correct in our layouting strategy.

For DIAMETA, an enhanced language for graph transformations and the dynamic layout al-
gorithm is planned. For the dynamic layout algorithm, has been introduced already a pattern
concept [MM07b] that simplifies the specification.

Future work has to investigate how layouters interfere with user interactions. When creating a
diagram, we recognized that users create (one or more) states first. Then they create the transi-
tions between them. The layouter has complicated the process of diagram creation, as it moves
components away. In consequence, users turned off the layouter during creation, and turned it
on again afterwards. During user interaction, a dynamic layouting strategy that only performs
minor changes would be more adequate. Providing users with more freedom, e.g., offering the
possibility of rearranging layers, would be an enhancement. These requirements can be realized
by using the whole functionality the dynamic layout algorithm offers.

In [MM07b] we focused on dynamic layout, in this paper we focused on static layout. The
most important next step will be experiments about the combination of static and dynamic layout
in the context of structured and freehand editing. To identify the ”best” layouting strategy, we
will need to perform empirical studies. With the algorithm presented, a testing environment was
created to conduct these studies easier.
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Abstract

Modelling and simulation are becoming increasingly important enablers in the analysis and de-
sign of complex systems. In application domains such as automotive design, the notion of a
“virtual experiment” is taken to the limit and complex designs are model-checked, simulated,
and optimized extensively before a single realization is ever made. This “doing it right the first
time” leads to tremendous cost savings and improved quality. Furthermore, with appropriate
models, it is often possible to automatically synthesize (parts of) the system-to-be-built.

As a starting point, the basic concepts of modelling and simulation will be introduced. These
concepts are based on general systems theory and start from the idea of a model as an abstract
representation of knowledge about structure and behaviour of some system, either to be under-
stood (in analysis) or built (in design) in a particular context (experimental frame). Typically,
different formalisms are used such as Ordinary Differential Equations, Queueing Networks, and
State Automata. It will be shown how these different formalisms all share a common structure
and differ in the choice of time base, state space, and description of temporal evolution. This al-
lows one to classify formalisms on the one hand and to find a common ground for implementing
simulators on the other hand.

Building on these general modelling and simulation foundations, it will be shown how graph-
based language engineering techniques such as meta-modelling and graph transformation can
assist in the rapid development of (visual) modelling and simulation environments. This, in par-
ticular for formalisms where model structure may vary over time.

Complexity of systems is often due, not only to a large number of components, but also to the
heterogeneity of these components. This leads quite naturally to the notion of multi-formalism
modelling. To support the simulation of such models, both co-simulation and formalism trans-
formation will be presented.
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Dynamic Software Architectures Verification using DynAlloy
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Abstract: Graph Grammars have been often used for modeling dynamic changes in
software architectures. In particular, we have previously characterized some classes
of dynamicity in terms of particular aspects of graph grammars. Moreover we have
identified classes of properties that can be naturally associated to any of such kinds
of dynamicities. In this paper we approach the problem of verifying such prop-
erties over graph grammars specifications. In particular, we use DYNALLOY for
attempting this task and we have concentrated on proving properties associated to a
particular programmable dynamic software architecture.

Keywords: Dynamic Software Architectures, Typed Graph Grammars, Verification
and DynAlloy

1 Introduction

Modern software systems have changed from isolated static devices to highly interconnected
machines that execute their tasks in a cooperative and coordinate manner. Therefore, the struc-
ture and the behavior of these systems is dynamic with continuously changes. These systems
are known as Global Computing Systems (GCS), and have to deal with frequent changes of the
network environment. The principal characteristics that these systems have are summarized in
the following: Globality: each GCS is composed of autonomous computational entities where
activities are not centrally controlled, either because global control is impossible of impractical,
or because the entities are created or controlled by different owners (i.e., Global Services). Het-
erogeneity: GCSs are composed of heterogeneous devices (i.e., PDAs, laptops, mobile phones,
etc..). that provide different configurations and functionalities. Mobility: each computational
entity is mobile, due to the movement of the physical platforms or by movement of entities from
one platform to another. User-Dependent: the end-user of a GCS is always the source of each
change and a GCS must be able to adapt itself to make the user’s task easier. Fault-Tolerance:
GCSs provide mechanisms to guarantee that faults in the system do not interrupt a service deliv-
ery. The runtime behavior of the system is monitored to determine whether a change is needed.
In such case, a reconfiguration is automatically performed without compromise the current sys-
tem execution. Scalability: GCSs are able to start small and then expand over time in terms of
size (i.e. more number of users, devices and connections) and functionalities (i.e., new service
request) insuring the system availability.
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Software architectural models are intented to describe the structure of a system in terms of
computational components, their interactions, and its composition patterns [SG96], so to reason
about systems at a more abstract level, disregarding implementation details. Since GCSs may
change at run-time [Ore96], software architecture models for GCSs should be able to describe
the changes of the system structure and to enact the modifications during the system execution.
Such models are generally referred to as Dynamic Software Architecture(DSA), to emphasize that
the system architecture evolves during runtime. In this paper we select graph grammars [Roz97]
as a formal framework to model DSA [BBGM07] and we approach the problem of verifying such
properties over graph grammars specifications. In particular, we use DYNALLOY [FGLA05] for
attempting this task proving properties associated to a particular programmable dynamic soft-
ware architecture. We use graph grammars to model programmed DSA because they provide
several advantages, these include: (i) a graphical representation of architectural styles and con-
figurations that is in line with the usual way architectures are represented, (ii) independence from
any particular solution technique, (iii) a formal basis based on the theory of formal languages
[Roz97]. From the verification point of view, we might like to guarantee that a set of architectural
structure changes (e.g., adding or removing components or connectors) will preserve some ar-
chitectural invariants or, in other words, that a specific sequence of structural changes will result
in a new Software Architecture that satisfies a particular property of interest. For this aspect we
show how to use the ALLOY language to model our DSA based on graph grammars formalism
and how to use DYNALLOY [FGLA05], an extension of the ALLOY language [Jac02, Jac06], to
specify operations over architectures. Finally, we show how to use the ALLOY ANALYZER to
check properties of interest for DSA . In Section 2 we introduce a running example that we use to
introduce our idea. In Section 3 we summarize the principal elements of our formal framework
that is used to represent DSA using hypergraphs. Then, in section 4, we show the way in which,
using DYNALLOY structural properties of programmed dynamic SA are verified. Finally, related
works are presented in Section 5, conclusions and future directions are shown in Section 6.

2 Running Example

We use as running example a simple scenario (see [BLMT07]) inspired by the automotive case
study of Sensoria Project [Sen]. A road assistance service platform is supported by a wireless
network of ad hoc stations that are situated along a road. Bikes equipped with electronic devices
can access the service as they move along the road, e.g. to request a taxi in case of breakdowns.
The graph in Figure 1 depicts a simple configuration of such a system. Each bike (®) is con-
nected to the service access point (◦) of a station (H) which is possibly shared with other bikes.
A station and its accessing bikes form a cell. Stations, in addition to the service access point, use
two other communication points that we call chaining point (•). Such points are used to link cells
in larger cell-chains. Bikes can move away from the range of the station of their current cell and
enter the range of another cell. A handover protocol supports the migration of bikes to adjacent
cells as in standard cellular networks. Stations can shut down, in which case their orphan bikes
call for a repairing reconfiguration.
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Figure 1: The road assistance scenario.
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Figure 2: Type Graph T of the running example

3 Formal Model: A Typed Graph Grammar Approach

We model Software Architecture (SA) configurations using typed graph grammars [BBGM07].
Each SA is represented by an hypergraph where components (connectors) are modeled using
hyperedges and their ports (roles) by the outgoing tentacles (i.e., labels). Moreover components
and connectors are attached together connecting the respective tentacles to the same node. In the
following we introduce the fundamental definitions that we will use in this formalization.

Definition 1 (Hypergraph) A (hyper)graph is a triple H = (NH ,EH ,φH), where NH is the set of
nodes, EH is the set of (hyper)edges, and φH : EH → N+

H describes the connections of the graph,
where N+

H stands for the set of non-empty strings of elements of NH . We call |φH(e)| the rank of
e, with |φH(e)|> 0 for any e ∈ EH .

The connection function φH associates each hyperedge e to the ordered, non empty sequence
of nodes n is attached to. An architectural style is just a hypergraph T that describes only the
types of ports, connectors, components and the allowed connections. A configuration compliant
to such style is then described by the notion of a T -typed hypergraph.

Definition 2 (Typed Hypergraph) Given a hypergraph T (called the style), a T -typed hyper-
graph or configuration is a pair 〈|G|,τG〉, where |G| is the underlying graph and τG : |G| → T is
a total hypergraph morphism.

The graph |G| defines the configuration of the system, while τG defines the (static) typing of
the resources. We recall that a total hypergraph morphism f : G→ G′ is a couple f = 〈 fN :
N → N′, fE : E → E ′〉 such that: fN(φG(e)) = φG′( fE(e)) (we overload fN to denote also the
homomorphic extension of fN over strings).

Figure 2 depicts the type graph of our running example. It describes the types of components,
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Figure 3: Reconfiguration rule that migrates a bike to the rightward station.

ports and their allowed connections. The typing morphism is defined using the τG that maps each
element of the configuration in only one element of the type graph T.

Finally, an architecture is described by a T -typed graph grammar.

Definition 3 ((T -typed) graph grammar) A (T -typed) graph grammar G is a tuple 〈T,Gin,Pr〉,
where Gin is the initial (T -typed) graph and Pr is a set of productions.

Notation. Let G = 〈T,Gin,Pr〉 be a (T -typed) graph grammar, and G and H (T -typed) hyper-
graphs. We write G⇒p G′ to denote that G is rewritten in one step to G′ by using the production
p∈ Pr. We abbreviate the reduction sequence G0⇒p1 G1⇒p2 . . .⇒pn Gn with G0⇒p1 p2...pn Gn.
We write G⇒∗ G′ to denote that there exists a possible empty sequence s ∈ Pr∗ of derivation
steps such that G⇒s G′.

3.1 Software Architecture Reconfiguration

The reconfiguration of a software architecture is described by a set of rewriting productions
that state the possible ways in which a SA configuration may change. Each rule is defined as
a partial, injective graph morphism p : L→ R, where L and R are graphs, called the left- and
right-hand side. Give a graph G and a production p, a rewriting of G using p is realised using a
single-pushout graph transformation approach [EHK+97]. An application of p to a host graph
G requires a partial graph morphism m from L to G called a match. A rewriting step leads to
a target graph G′.For each node or edge x in L there exists a corresponding node or edge in G,
namely m(x). We have another morphism named r that maps all items from L to R, which are to
remain in G during the rewriting application. Elements that are considered in the match m and
that have no image under r are to be deleted. The other are preserved. Elements in R which have
no pre-image under r are added to G′. r′ is a partial morphism, since that elements from G may
be deleted and introduced to get G′. New nodes are not in the image of r′ but in the image of
m′. An example of production is shown in Figure 3, it specifies the migration of a bike from one
station to the right station in a chain.

3.2 Programmed Dynamism

In this section we formalize programmed DSA in terms of graph grammars that will be used later
to specify our running example. Given a grammar G = 〈T,Gin,Pr〉, we will use the following
notions:
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• The set R(G ) of reachable configurations, i.e., all configurations to which the initial con-
figuration Gin can evolve. Formally, R(G ) = {G|Gin⇒∗ G}.

• The set DP(G ) of acceptable configurations of an architecture are defined as the graphs
that have type T and satisfies a suitable property P.
Formally, DP(G ) = {G | G is a T−typed graph∧P holds in G}.

Programmed dynamism assumes that all architectural changes are identified at design time and
triggered by the program itself [End94]. A programmed DSA A is associated with a grammar
GA = 〈T,Gin,Pr〉, where T stands for the style of the architecture, Gin is the initial configuration,
and the set of productions Pr gives the evolution of the architecture. The grammar fixes the types
of all elements in the architecture, and their possible connections, where the productions state
the possible ways in which a configuration may change.

Programmed dynamism enables for the formulation of several verification questions. Consider
the set of desirable configurations DP(G ), then it should be possible (at least) to know whether:

• the specification is correct, in the sense that any reachable configuration is desirable. This
reduces to prove that R(G )⊆DP(G ), or equivalently that ∀G ∈R(G ) : P holds in G.

• the specification is complete, in the sense that any desirable configuration can be reached.
This corresponds to prove DP(G ) ⊆R(G ), or equivalently that if P holds in G then G ∈
R(G ).

Hence, programmed dynamism provides an implicit definition of desirable configurations.
That is, the sets of desirable and reachable configurations should coincide, i.e., Dp(G ) = R(G ).

4 DSA Structural Verification

4.1 DynAlloy

DYNALLOY [FGLA05] is an extension of the ALLOYmodeling language. It allows us to define
atomic actions that modify the state and build more complex actions (programs) from the atomic
actions. Atomic actions are defined by means of preconditions and postconditions given as
ALLOY formulas. DYNALLOY formulas extend ALLOY formulas with the addition of a construct
for building partial correctness assertions. From atomic actions we can build more complex
programs as follows. If α is an ALLOY formula, then α? is a test action. Operation + denotes
the nondeterministic choice between two programs, and “;” denotes their sequential composition.
Finally, ∗ iterates a program. A partial correctness assertion of the form {α}p{β} is satisfied
when no state that does not satisfy β . is reachable from {α} through program p.

One of the important features of ALLOY is the automatic analysis possibilities it provides. In
effect, the ALLOY ANALYZER allows us to automatically verify if a given assertion holds in an
ALLOY model. Similarly, in [FGLA05] it is showed how to translate DYNALLOY specifications
to ALLOY specifications in order to achieve analyzability. This is due to imposing a bound to
the depth of iterations (this is equivalent to fixing a maximum length of traces) and efficiently
generating the weakest liberal precondition of the partial correctness assertion.
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4.2 Designing Software Architectures and Styles with Alloy.

The approach described in this section follows [BBGM07] and models dynamic software ar-
chitectures using typed graph grammars (TGG). The implementation of the approach is based
on ALLOY [Jac06, Jac02]. ALLOY provides a logic, based on an extension of first-order logic
with relational operators, to represent properties or constraints on the models. We have used this
logic to implement concepts like architectural styles, graph transformation rules and architectural
properties.

Each software architecture is represented by an hypergraph where components (or connectors)
are modeled using hyperedges and their ports (or roles) by the outgoing tentacles (i.e. labels).
Moreover, components and connectors are attached together connecting their respective tentacles
to the same node. All basic elements (nodes, hyperedges and labels) are implemented in ALLOY

using signatures. Instead, tentacles are defined as ternary relations between hyperedges, labels
and nodes. All these elements are part of a graph signature definition that represents an architec-
ture. Below we show an excerpt of the module TGG implementing the model of graphs. First we
see the declaration of the basic signatures Node and Label which stand for nodes and labels.
Signature Edge models hyperedges and includes a relation conn between signature labels and
node. Note that in ALLOY syntax→ indicates a binary relation. The keyword lone preceding
Node constraints conn to relate each label to at most one element in Node. Thus, for each
element of signature Edge, conn is partial function mapping labels to nodes. The signature
Graph is used to define as a graph as structure composed of nodes, hyperedges and labels.

sig Node {}
sig Label {}
sig Edge { conn: Label -> lone Node }
sig Graph { n: set Node, he: set Edge, l: set Label }

After the definition of the signatures, we define a predicate (a property to be checked) to
determine whether a graph g is well-formed and consistently typed over a type graph h by typing
morphism t.

sig Tau {
tauN: set Node -> set Node,
tauE: set Edge -> set Edge,
tauL: set Label -> set Label

}
pred isTG [g: Graph, h: Graph, t: Tau]{...}

The signature Tau is used to define mapping functions between each SA configuration and
the architectural style. Architectural styles consist of a set of elements (components, connectors,
ports and roles) that can constitute an architecture (e.g., Bike Vocabulary) plus a set of invari-
ant rules indicating how these elements can be legally connected [SG96]. A SA configuration
compliant to such style is then described by the notion of a T-TYPED hypergraph [BBGM07].
We define an ALLOY module called BIKE-STYLE that contains all these elements. The type
graph and its items are modeled as instances which we represent by using singleton extensions
of signatures.

one sig access_Point, chain_point extends Node{}
...
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one sig bike_typegraph extends Graph{}
fact Bike_Vocabulary {

bike_typegraph.n= access_point + chain_point
bike_typegraph.he = bike + station + bikestation
bike_typegraph.l = access + left + right
bike.conn = access -> access_point
...

}
pred topology_linear[g: Graph, t: Tau]{ no e:g.he | e in e.ˆnext ... }

For instance, the node access point that stands for an access point is declared as a single-
ton (one) signature extending extends signature Node. The type graph depicted in Figure 2
is defined by a fact, i.e. a predicate assumed to hold in every considered model. For instance,
the type graph definition states that the set of nodes of the type graph is the union (denoted
by +) of access point and chain point, the signatures that stand for the access and
the chain point nodes. Further properties of the style are defined via predicates. For instance,
topology linear is used to make sure that stations form an acyclic connected chain. The
predicate make use of a negative form of quantification (no) and transitive closure ˆof the rela-
tion of right-neighborhood next. We see the first line of the predicate below where we express
that no edge e of a graph g belongs to the set of edges is reachable from e by moving to the
rightward adjacent edge.

4.3 Programmed Dynamism with Alloy

We have defined a set of rewrite rules that state the possible ways in which a software architecture
configuration may change. Each rule is defined as a partial, injective graph morphism p : L→ R,
where L and R are graphs, called the left- and right-hand side. Give a graph G and a production
p, a rewriting of G using p is realised using a single-pushout graph transformation [EHK+97]. A
signature Prod implements productions as composed of graphs lhs and rhs, standing for the
left- and right-hand side graphs. A reconfiguration is implemented using two distinct predicates
(i.e. rwStepPre and rwStepPost) that are used to verify conditions that must hold in target
and the destination graph. For instance, below we see the code of RwStepPre that makes use
of auxiliar predicates to check the well formedness of graph G1 being rewritten, the left- and
right-hand side graphs of production R and R itself. In addition, it checks whether there is a
match of the left-hand side in G1.

pred rwStepPre[G1:Graph, R: Prod, style: Graph, t1:Tau, t2:Tau, t3: Tau, M1: Fun, P:Fun]{
isTG[G1,style,t1]
isTG[R.lhs,style,t2]
isTG[R.rhs,style,t3]
isProd[R,style,t2,t3,P]
isMatch[R.lhs,G1,style,t2,t1,M1] }

An example of a production is shown in Figure 3, it specifies the migration of a bike from
one station to the right station in a chain. Textually, we declare the signature of the production
as a singleton extension of Prod and define facts that characterize the left- and right-hand side
graphs:

one sig migrate_right extends Prod{}
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fact migrate_right_lhs{
migrate_right.lhs.n = cp1 + cp2 + cp3 + ap1 + ap2
migrate_right.lhs.he = s1 + s2 + b1
migrate_right.lhs.l = l1 + l2 + l3 + l4 + l5 + l6 + l7 }

4.4 Verification using DynAlloy

In the Alloy language, the assertions are used to check specifications. Using the Alloy analyzer,
it is possible to validate assertions, by searching for possible (finite) counterexamples for them,
under the constraints imposed in the specification of the system. DynAlloy, instead, has pro-
posed the use of actions to model state change. An action is how it transforms the system state
after its execution and moreover actions can be sequentially composed, iterated or composed
by nondeterministic choice [FGLA05]. We want to specify that a given property P is invariant
under sequences of applications of some operations. In our case this operation is the rewriting
step that from an initial graph G and a Production P generates a new graph G’. A technique
useful for stating the invariance of a property P consists of specifying that P holds in the initial
Graph, and that for every non initial graph and every rewriting operation, the following holds:
P(G) and rwStep(G,G′)→ P(G′). For this objective we have defined a set o properties that each
SA configuration, after a rewriting step must satisfy. In the following we describe each of them
with the Alloy code related.

1. Property 1: Each bike can be connected to only one access point using one port of type
Access

pred Property1 [tgg: TGG]{
all g: tgg.graphs |all e1: g.he

|Type[e1,Bike] => one l1: g.l, n1:g.n
|(Type[n1,Access_Point] and Type[l1,Access]) and
e1.conn = l1->n1

}

2. Property 2: The system can not have bikes disconnected and each bike has at most one
connection.

pred Property2[tgg:TGG]{
all g: tgg.graphs |
all e1: g.he |
Type[e1,Bike] => #(e1.conn)=1

}

3. Property 3: If one bike is connected to an access point then must exist a unique station
that is connected to the same access point.

pred connected [e1: HE, e2:HE]{
univ.(e1.conn) = univ.(e2.conn)

}
pred Property3[tgg:TGG]{

all g:tgg.graphs|
all e1:g.he |
Type[e1,Bike]=> one e2:g.he |
Type[e2,Station] && connected [e1, e2]

}
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In order to have programmed dynamism and check that at each reconfiguration step a property P
is valid, we proceed as follows. For example we want to provide that in each SA configuration
”if one bike is connected to an access point then must exist a unique station that is connected
to the same access point”. This means to provide the predicate Property3. For this, we have
described in DynAlloy the action rwStep that from an initial configuration G1 and a production
Pr execute a single rewriting step, generating a new set of typed graphs tgg’ with the new SA
configuration G2. The corresponding DYNALLOY specification is:

act rwStep [tgg: TGG, Pr: Prod]{
pre { rwStepPre[G1, Pr, style_bike, t1, t2, t3, M1, P]}
post { rwStepPost[G1,G2,Pr,style_bike,t1,t2,t3,t4,P,M1,
M2,F,tgg,tgg’]}

}

Moreover, by using partial correctness statements on the set of regular programs generated
by the set of atomic actions rwStep[tgg,Pr1],rwStep[tgg,Pr2], we can assert the
invariance of the Property3 under finite applications of functions rwStep in a simple way,
as follows:

assert Property3InvAssertion {
assertCorrectness[tgg:TGG]{

pre={Property3[tgg]}
program={(rwStep[tgg,Pr1] + rwStep[tgg,Pr2])*}
post={Property3[tgg’]}

}}

The DynAlloy translator allows us to produce an ALLOY model ready to be analyzed using
the ALLOY ANALYZER. In order to do so, we need to provide a fixed length to bound the
closure operator. In this example, if we set the bound to ”n”, we will analyze the following finite
counterpart:

skip+(rwStep[tgg,Pr1]+rwStep[tgg,Pr2])+
(rwStep[tgg,Pr1]+rwStep[tgg,Pr2]);
(rwStep[tgg,Pr1]+rwStep[tgg,Pr2])+
...
(rwStep[tgg,Pr1]+rwStep[tgg,Pr2]);...;
(rwStep[tgg,Pr1]+rwStep[tgg,Pr2])
/ ------------- n-times ----------------------/

4.5 Example of Analysis

In this section we show two examples of the analysis that we have performed using the AL-
LOY ANALYZER. Model finding is the main analysis capability offered by ALLOY. The ALLOY

ANALYZER basically explores (a bounded fragment) of the state space of all possible mod-
els. For instance, we can easily use the ALLOY ANALYZER to construct initial configurations:
we need to ask for a graph instance satisfying the style facts and having a certain number of
bikes, stations and bikestations. In order to test this ALLOY potentiality we have created a mod-
ule called MODEL-FINDING in which only defining elements of our initial configuration (i.e.,
edges, nodes and labels) we can generate the set of possible software architectures composed of
a precise number of components, ports and attachments.
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module MODEL-FINDING
...
one sig G1 extends Graph{}
fact{

G1.he=b1+s1+bs1
G1.n=cp1+cp2+cp3+ap1
G1.l=a1+a2+l1+r1+l2+r2}

pred show[]{}
run show for 1 Graph, 3 Edge, 4 Node, 6 Label

When we run the predicate show the ALLOY ANALYZER generates two different SA con-
figurations that are showed in figure 4. The difference between them is the attachments of the
bikestation component (i.e., bs1 in figure 4). In the first case it is attached in the left-side of the
station, in the second in the right-side.

Figure 4: Software Architecture Configurations.

The second kind of analysis that we performed is called Invariant Analysis; its the objective
to check if a property P is invariant under sequences of applications of reconfigurations. In other
words we have executed the analysis described in 4.4. To do this we have chosen the property3
defined before and one initial configuration generated from the previous analysis. We have de-
fined three different modules, PRODUCTIONS defines the set of admissible SA reconfiguration
(i.e., Connect Bike, Disconnect bike, etc.), PROPERTIES defines the set of possible properties
that we want to check and EXECUTION is the responsible of the invariant analysis. In the last
module we have defined the rewriting step action and the assert that we execute. The code below
enables us to automatically elicit a reconfiguration trace taking the system from one configuration
presented in Fig. 4 to the configuration presented in Fig. 5. Moreover, target SA configuration
satisfies Property3.
module EXECUTION
....
assert Property3InvAssertion {

assertCorrectness[tgg:TGG]
{

pre={Property3[tgg]}
program={(rwStep[tgg,Disconnect_Bike])*}
post={Property3[tgg’]}

}}

check Property3InvAssertion
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Figure 5: Reconfiguration Result.

5 Related Work

Many research works are focusing on Dynamic Software Architecture specification and valida-
tion, they can be sub-divided into three categories. The first, uses formal techniques [BCDW04]
such as graph based techniques [Mét98, HIM99, BHTV04, TGM98, WLF01], logic based [End94,
AM02] and process algebra based [MK96, ADG, CPT99a]. We use graph grammars and this
representation is borrowed from Le Métayer approach [Mét98]. Our scope of this paper are the
programmed DSA but different kind of dynamisms as Self-repairing, Ad-Hoc and Constructible
have been proposed in [ADG, GS02, GMK02, SG02, Ore96, BCDW04]. The main difference
w.r.t. our work is that they are aimed at providing real specification languages while we are
aimed at giving an abstract representation of programmed DSA.

The second uses Architectural Description Languages (ADLs) to model adaptive SA with con-
nection and disconnection of components and connectors [OGT+99, MT00, MK96, CPT99b,
ADG] by textual or a graphical notation and using also some specific tools to verify them. On
one hand, some of the mentioned ADL like Darwin [MK96], and Dynamic Wright [ADG] mod-
els DSA and verifies the models with formal techniques. However, these latter did not offer
any graphical tools to display these models. On the other hand, some others such as ACME
[GMW97], AADL1,DAOP-ADL2 and Fractal3 provides graphical tools for modeling DSA but
do not give mechanisms for validating these models. The third focuses on UML architecture
modeling extending UML metamodels [KMJ+05, KKJD06] to ensure dynamic architecture and
also providing UML diagram translation into formal notation in order to be analyzed[BA05]. An
other analysis formal technique that we are thinking to use is Model-Checking. More research
works have been done in this direction in the last few years. For example Heckel at al. in [Hec98]
proposed an approach where graphs transformations systems are verified using model checking
where graphs are interpreted as states and transformation rules as transitions. Rensink in [Ren03]
presents a model-checking approach (i.e., GROOVE), based on a graph-specific model checking
algorithm, for object-oriented systems. Our idea is to integrate the ”Model Finding” aspect of
Alloy with Model-Checking in order to have a complete analysis framework for DSA.

1 http://www.aadl.info/
2 http://caosd.lcc.uma.es/CAM-DAOP/DAOP-ADL.htm
3 http://fractal.objectweb.org/
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6 Conclusion and Future Work

We have presented an approach to verify Dynamic Software Architectures modeled using Typed
Graph Grammars. We have considered the programmed dynamicity of a SA in which all admissi-
ble changes (e.g., adding and removing of components, connectors and connections) are defined
prior to run-time and are triggered by the system itself. The verification consists of representing
this formalism in the ALLOY relational language and since that this kind of dynamicity requires
the analysis of situations in which architectural state changes at run-time, we have considered
the use of DYNALLOY language, an extension of ALLOY with actions, in order to represent
state changes via actions and programs. This work represents our first step towards analysis of
DSA. Three important future directions are needed. The first is to extend the approach, proving
properties associated to each kind of DSA formalized in [BBGM07]. The second is to consider
the verification of behavioral properties, using model-checking, of SAs that change not only the
structure at run-time. Finally, in order to have an automatic and extensible framework to model
and analyze DSA we are developing an Eclipse-based framework named ARMADA (Automated
ReMorphing Ambient for Dynamic Architectures) with the objective to facilitate DSA modeling
and analysis within the software development life cycle.
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problem. This work has been partly supported by EU within the FET-GC2 IST-2005-16004
Integrated Project SENSORIA (Software Engineering for Service-Oriented Overlay Computers)
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Reconfiguration of Reo Connectors Triggered by Dataflow

Christian Koehler, David Costa, Jośe Proença, Farhad Arbab

CWI, Amsterdam

Abstract: Reo is a language for coordinating autonomous components in dis-
tributed environments. Coordination in Reo is performed by circuit-like connectors,
which are constructed from primitive, mobile channels with well-defined behaviour.
While the structure of a connector can be modeled as a graph, its behaviour is com-
positionally defined using that of its primitive constituents. In previous work, we
showed that graph transformation techniques are well-suited to model reconfigu-
rations of connectors. In this paper, we investigate how the connector colouring
semantics can be used to perform dynamic reconfigurations. Dynamic reconfigu-
rations are triggered by dataflow in the connector at runtime, when certain struc-
tural patterns enriched with dataflow annotations occur. For instance we are able to
elegantly model dynamic Reo circuits, such as just-in-time augmentation of single-
buffered channels to a circuit that models a channel with an unbounded buffer. Addi-
tionally we extend Reo’s visual notation and the Reo animation language to describe
and animate dynamically reconfiguring connectors.

Keywords: Coordination, reconfiguration, graph transformation, animation.

1 Introduction

The coordination paradigm provides models for describing the communication among the com-
ponents in a composed system. Coordination languages, such as Reo [Arb04], describe the ‘glu-
ing’ of loosely coupled components, such that a desired system behaviour emerges. The achieved
separation of business logic and coordination of the active entities leads to a much cleaner design
and helps to handle the greater complexity of large applications. Reo can be applied in various
distributed scenarios—from service-oriented to grid computing—as the coordination model is
exogenous and independent from the actual component implementation and infrastructure.

In a Reo network, software components are autonomous, self-contained entities that commu-
nicate with the outside world via a published interface. To avoid dependencies and to achieve
a truly modular, distributed system, Reo proposes the notion of connectors which are used to
coordinate the components without their knowledge. By this, the system is divided into two or-
thogonal aspects: 1) the computation, performed by the components and 2) the coordination of
these independent components, performed by the connectors. A major advantage of this design
is the ability of changing the topology of the connector, and thereby the behaviour of the system.

The configuration of a Reo connector consists on the interconnection between the structural
elements of the connector, together with their states. Communication with the components may
change the state of the connector, but not its topology. In this paper, we considerreconfigurations
of a connector as high-level transformations of its underlying graph structure. Using the theory
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of typed, attributed graph transformation, we can directly apply many useful results, such as
termination and confluence theorems [KLA07].

In this paper, we explore the interplay between the data flow in a connector and its reconfigura-
tions. For this, we include the connector colouring semantics into the patterns of transformation
rules. Transformations are automatically applied depending on the structure, the state and the
context of a connector. Connectors are reconfigured at run-time based on this information. This
leads to a powerful notion of dynamic connectors. We illustrate the principles through the exam-
ple of a dynamically growing buffer.

Related Work The logicReCTL*was introduced in [Cla08] to reason about connector recon-
figuration in Reo. The reconfigurations are performed using the basic primitive operations of the
Reo API, e.g. channel creation or node splitting. Up to now we have not provided a technique
to reason about our dynamic high-level reconfigurations. However, we plan to look at model
checking techniques for graph transformation as proposed in [Ren03a].

Architectural Design Rewriting(ADR) [BLMT07] is a framework for general reconfigurable
software architectures. As in our approach, reconfigurations are modeled using graph transfor-
mation rules. Reconfigurations occur at run-time whenever the system evolves to a configuration
that violates the architectural style of the system. In our case we do not fix the use of the recon-
figuration to any particular purpose. The dynamicFIFO introduced in this paper can be seen as
an example of the use of reconfiguration to guarantee dataflow. If a write operation is performed
while the buffer is full, the buffer is reconfigured to allow data to be stored and dataflow to occur.
ADR is not tied to any architectural style (e.g. client-server, peer-to-peer) while in our case, Reo
determines the architecture.

A systematic introduction to animations based on graph transformation concepts was given in
[Erm06]. The animation language for Reo that we use in this paper was introduced in [CP07].
It is important to note that the animation language for Reo is not based on graph transforma-
tion. Instead the authors introduce an abstract animation language that can be used to compute
animation descriptions for a connector compositionally out of the descriptions of its constituent
primitives.

Structure of the paper This paper is organised as follows. Section2 gives a general introduc-
tion to Reo by introducing the notions of channels, nodes and connectors. An overview of the
colouring semantics for Reo is given in Section3. We recall the concepts of graph-based recon-
figurations and provide our contributions to dynamic reconfigurations in Section4. We discuss
the proposed model in Section5. The status of the current implementation and plans for future
work are given in Sections6 and7, respectively.

2 Reo Overview

Reo is an exogenous coordination language where complex connectors are compositionally built
out of simpler ones. The simplest (atomic) connectors in Reo consist of a user defined set of
channels, each of which with its particular constraint policy.
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A channel is a medium of communication with exactly two directed ends. There are two types
of channel ends:sourceandsink. A source channel end accepts data into its channel. A sink
channel end dispenses data out of its channel.

A channel can connect two components or be composed with other channels using Reo nodes
to build more complex connectors. Reo nodes are logical places where channel ends coincide.
A node with only source channel ends is a source node; a node with only sink channel ends is a
sink node; and finally a node with both source and sink channel ends is a mixed node. We use
the termboundary nodesto refer indistinguishably to source and sink nodes. Boundary nodes
define the interface of a connector. Components connect to and interact anonymously with each
other through the interface of the connector by performing I/O operations on its boundary nodes:
takeandreadoperations on sink nodes, andwrite operations on source nodes.

Reo fixes the constraint policy for the dataflow in Reo nodes. Data flows through a node only
if at least one sink channel end is pushing data and all the source channel ends canaccepta
copy of the data. In case more than one sink channel end is pushing data, one is picked non-
deterministically and all the others are excluded. Data cannot be stored in a node, hence its
constraints on dataflow and exclusion must propagate through the connector.

Resolving the composition of the constraint policies of a connector consisting of several chan-
nels and nodes is a non-trivial task. In Figure1 we present two examples of Reo connectors
that illustrate how non-trivial dataflow behaviour emerges from composing channels using Reo
nodes. The constraints propagate through the (synchronous regions of the) connector to the
boundary nodes. The propagation enables a certain context-awareness in connectors. A detailed
discussion of this can be found in [CCA07].

(a) (b)

Figure 1: (a) exclusive router, (b) ordering connector.

The two connectors in Figure1 involve, in total, four different types of channels. We represent
mixed nodes as filled circles (), and boundary nodes as empty circles (). TheSyncchannel
( ) synchronously takes a data item from its source end and makes it available at its sink
end. This transfer can succeed only if both ends are ready to communicate. TheLossySync
( ) has the same behavior, except that it does not block if the receiver cannot accept data.
In this case, the written data item is accepted and destroyed by the channel. TheFIFO1 ( )
is an asynchronous channel that has a buffer of size one. Unlike the prior channels,FIFO1 is
a stateful channel. TheSyncDrainchannel ( ) has two source ends through which it can
only consume data, and no sink ends. Its behavior can be described as follows: if there are data
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items available at both ends, it consumes (and looses) both of them atomically.
The exclusive router, shown in Figure1a, routes data fromA to eitherB or C. The connector

can accept data only if there is a write operation at the source node A, and there is at least one
component attached to the sink nodes B or C, which is performing a take operation. If both
B andC have a take operation, the choice of whether data is routed to B or C is made non-
deterministically by the mixed nodeI . NodeI can accept data only from one of its sink ends. To
the other end it gives an exclusion reason for data not to flow, which forces theLossySyncto lose
the data.

The second connector, shown in Figure1b, imposes an ordering on the flow of the data from
the input nodesA andB to the output nodeC. TheSyncDrainenforces that data flows throughA
andB synchronously. The empty buffer together with theSyncDrainguarantee that the data item
obtained fromA is delivered toC whereas the data item obtained fromB is stored in theFIFO1

buffer. At this moment the buffer of theFIFO1 is full and data cannot flow in through eitherA
or B, butC can obtain the data stored in the buffer. The buffer is then empty again.

These informal descriptions of the behavior of connectors can be formalised using the con-
nector colouring semantics, introduced in [CCA07]. The colouring semantics is used to generate
animations and to implement Reo, and we discuss it in Section3.

Reo offers a number of operations to reconfigure and change the topology of a connector
at run-time. Operations that enable the dynamic creation of channels, splitting and joining of
nodes, hiding internal nodes and more. The hiding of internal nodes is important concerning
reconfiguration, because it allows to fix permanently the topology of a connector, such that only
its boundary nodes are visible and available. The resulting connector can be viewed as a new
primitive connector, or primitive for short, since its internal structure is hidden and its behaviour
is fixed. Reconfiguration is impossible on a primitive. We have the basic primitives that include
the user defined channels, the Reo nodes, and the I/O operations. Plus the non-basic primitives
constructed through the use of the hiding operation.

3 Connector Colouring Semantics

Connector Colouring semantics is based on the idea of colouring a connector using a set of
coloursColour. We consider a setColour with three colours as in Clarke et al. [CCA07]. One
dataflow colour ( ) to mark places in the connector where data flows and two colours for
no-dataflow ( , ) to mark the absence of dataflow. The reason for having two distinct no-
dataflow colours is to be able to trace the exclusion constraints responsible for the no-flow back
to their origins. Graphically, the arrow indicates the direction of exclusion, i.e. it points away
from the exclusion reason and in the direction that the exclusion propagates.

Colouring a Reo connector in a specific state with given boundary conditions (I/O operations)
provides a means to determine the route alternatives for dataflow. Each colouring of a connector
is a solution to the synchronization and exclusion constraints imposed by its channels and nodes.

The dataflow allowed by a connector is collected in acolouring tablewhose elements—
colourings—are functions mapping each node of the connector to acolour. The different colour-
ings present in a colouring table of a connector correspond to the alternative ways that the con-
nector can behave in the different contexts where it can be used.
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We recall some essential definitions from [CCA07] that formalise the notion of a colouring
and of a colouring table. LetNodebe a finite set of node names.

Definition 1 (colouring) A colouring c: N→ Colour for N⊆Nodeis a function that assigns
a colour to every node of a connector.

Definition 2 (colouring table) A colouring table Tover nodesN⊆Nodeis a set of colourings
with domainN.

To give semantics to a Reo connector using connector colouring one must provide the colour-
ing tables for the user defined primitives, the channels, used in the construction of that connector.
Table1 shows the channels we use in this paper and their respective colouring tables. We high-
light a few points of interest in this table, focusing only on reasons to exclude dataflow. No
dataflow at one end of aSyncor SyncDrain, is enough to prevent dataflow in the all channel. The
reason is propagated to the other end. An emptyFIFO1 buffer does not enable data flow on its
output end, giving a reason for no dataflow. Dually, a fullFIFO1 buffer gives a reason for having
no dataflow on its input end. The second entry of the table for aLossySyncstates that it will lose
the data only when a reason for no dataflow is propagated into its output end, which amounts to
saying that the channel is unable to transfer the data.

Reo fixes the colouring tables for the other primitives: nodes and the I/O operations. The
Table 2 gives a brief account of the connector colouring semantics for these primitives. To
comply with the page limit we omit the general colouring table of Reo mixed nodes. We give an
example of one possible colouring for a Reo mixed node with 3 source ends and 2 sink ends. For
the purpose of this paper that should suffice without compromising the understanding of what
follows. For a full description we refer to [CCA07].

Definition 3 (primitive) A labelled tuple(n j1
1 , . . . ,n jk

k )c represents a primitive connector,c,
where for 0< ` ≤ k, n` ∈Node, j` ∈ {i,o}, k≥ 1 is the arity of the primitive, and the labelsi
ando indicate a source node or a sink node respectively, such that a noden appears at most asni

and/orno in (n j1
1 , · · · ,n jk

k )c. A primitive with colouring is a pair of a primitive with a colouring
tableT whose domain ranges over the nodes of the primitive.

(ni
1,n

o
2)Sync (ni

1,n
i
2)SyncDrain (ni

1,n
o
2)LossySync (ni

1,n
o
2)FIFO1 (ni

1,n
o
2)FIFO1[x]

Table 1: User defined channels, and their colouring tables.

A connector is a collection of primitives composed together, satisfying some well-formedness
conditions. As such, the colouring table of a connector is computed from the colouring tables of
its constituents.
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(ni
1,n

i
2,n

i
3,n

o
4,n

o
5)Node (ni)Write (no)Take

Table 2: Reo primitives, and their colouring tables.

Definition 4 (connector) A connectorC is a tuple〈N,B,E,T〉 where,N is the set of nodes that
appear inE; B⊆ N is the set of boundary nodes;E is a set of primitives;T is a colouring table
overN; such that (1)n∈ B if and only if n appears exactly once inE, and (2)n∈ N \B if and
only if n occurs exactly once asno and asni in E.

A primitive with a colouring table can straightforwardly be considered as a connector. A
connector’s semantics is computed by joining the tables of its constituents. Two colourings can
only be composed if the common nodes in their domains are coloured with the same colour.

Definition 5 (join) LetCk = 〈Nk,Bk,Ek,Tk〉 with k∈ {1,2} be connectors such that(N1\B1)∩
(N2\B2) = /0, and for eachn∈ B1∩B2, ni appears inE1 andno appears inE2, or vice versa. The
join of C1 andC2, is given by:C1�C2

.= 〈N1∪N2,(B1∪B2)\ (B1∩B2),E1∪E2,T1 ·T2〉, where
· is the join operator for two colouring tables defined as:

T1 ·T2
.= {c1∪c2 | c1 ∈ T1,c2 ∈ T2,n∈ (dom(c1)∩dom(c2))⇒ c1(n) = c2(n)}.

Figure2 depicts two colourings of the ordering connector of Figure1(b). In both colourings,
a component is connected to each boundary node and performs an I/O operation:Write on both
source nodes andTakeon the sink node. The colouring in (a) describes the dataflow behaviour

(a) (b)

Figure 2: (a) and (b) are two possible colourings of the ordering connector.

of the connector when the buffer is empty, indicating that data flows through the entire connector
except for the sink end of theFIFO1 channel, data is stored in the buffer, and all three I/O
operations succeed. This dataflow changes the state of theFIFO1 channel, changing also its
colouring table. The colouring in (b) describes the dataflow behaviour of the connector when the
buffer is full. This colouring states that data flows in the connector only at the sink end of the
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FIFO1[x] channel, the buffer is emptied, the take operation on nodeC succeeds, and the write
operations on nodesA andB are delayed.

Figure3 depicts the two colourings of the exclusive router that are the valid behaviour alter-
natives when a component is connected to each boundary node and performs an I/O operation:
Write on the source node andTakeon both the sink nodes. The colouring in (a) describes the

(a) (b)

Figure 3: (a) and (b) are two possible colourings of the exclusive router.

dataflow behaviour of the connector when the mixed nodeI picks, non-deterministically, node
B to route the data to. Alternatively the colouring in (b) describes the dataflow behaviour of the
connector when the mixed nodeI picks, non-deterministically, nodeA to route the data to.

4 Connector Reconfiguration

It has been shown in [KLA07] that the theory of graph transformation can be applied to model
connector reconfigurations as high-level transformations of their underlying graph structures.
The approach allows to define reconfigurations at a high level of abstraction and therefore can
be used to model complex reconfigurations, e.g. refactorings. While in the previous work, we
considered these techniques in the context of business process customisation, we combine now
these transformations with the connector colouring semantics, described in Section3.

4.1 Reconfiguration Triggered by Dataflow

Dynamic reconfigurations are transformations of connectors at run-time. In the following, we
present a framework that allows to define such dynamic reconfigurations by annotating transfor-
mation rules with colourings, which leads to a notion of dynamic connectors.

To use graph transformation for connector reconfiguration we make the following assump-
tions. Connectors are considered as typed, attributed graphs in the following way: i) Reo nodes
are vertices of the graph and ii) channels are its edges. The typegraph in this scenario consists
of a single node and one edge for each channel type. Edge attributes are used to model channel
properties, e.g. the content of a fullFIFO1. Since channels in Reo are not necessarily directed
(cf. theSyncDrainchannel) we simply assert an underlying direction of the channel to fit the
formal model of directed graphs that is usually assumed. Note also that we have given a formal
definition of connectors in [KLA07] and showed that it indeed forms an adhesive High-Level
Replacement category [EEPT06].
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We use the Double-Pushout (DPO) approach [EEPT06] for our connector reconfigurations.
Our transformation rules are an extended version of the usual spans of morphisms in the DPO
approach. We write a connector reconfiguration rule as

p = (Colour
c←− L

l←− K
r−→ R)

whereL,K andR are connectors (typed, attributed graphs),l , r are connector (typed, attributed
graph) homomorphisms andc is a (potentially partial) colouring for the left-hand side of the
rule. The rationale behind this extension is that we do not just want to match the structure
of a particular connector part, but also its state and the current execution strategy. Note that
this introduces a certain asymmetry to the rules, caused by the fact that only the left-hand side
is coloured. This is also the reason why we do not model the colouring as attributes of the
graphs. Such an extended rule can be applied with respect to a given matchL

m→M and a current

colouringM
k→ Colour iff

1. the gluing condition holds (see [EEPT06] for more details); and

2. the rule colouring matches the current colouring:c = k◦m.

With the latter constraint we extend the pattern of a rule, in the way that a specific colouring has
to be matched as well. A transformation rule can and will be applied only if the structure can
be matched and a specific behaviour occurs. The extended version of the DPO approach can be
summarised as shown in the diagram

Colour L K R

M C N

(PO) (PO)=

loo r //

m

�� �� ��
oo //

coo

k

ddIIIIIIIIII

whereColour is a fixed set of possible flow-colours andc andk are colourings. Including the
colourings of a connector part makes the pattern matching much more restrictive. In fact, it is
so restrictive now that the reconfiguration rules can be invoked by the Reo engine without ‘su-
pervision’. The transformation system becomes in some respect autonomous. The connector is
transformed when necessary, without the need for an external party to trigger the reconfiguration.

Figure 4: reconfiguration rule for a dynamicFIFO.

Figure4 shows a reconfiguration rule for a dynamic (unbounded)FIFO. The matches from
the LHS to the RHS are indicated by using the same node labels. The reconfiguration rule
gives rise to a dynamic connector, which we callFIFO∞. TheFIFO∞ consists of a sequence
of FIFO1 channels and a reconfiguration rule. The reconfiguration adds a newFIFO1 in the
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beginning whenever theFIFO∞ is full and someone tries to write to it assuring that way that the
write can succeed and the data can flow and be stored in the buffer. The left-hand side matches an
arbitrary full FIFO1 with contentx where someone tries to write to. The reason for the no-flow
is the fact that theFIFO1 is full already, not that there is no data available. If this pattern can be
matched, the rule states that the original channel is destroyed and two newFIFO1 channels are
created in its place. The secondFIFO1 is filled with the original contentx.

However, the rule as it is now does not reflect our initial requirement that only the firstFIFO1

in the sequence is replaced by two new ones. This can achieved by adding negative application
conditions [EEPT06] as shown in Figure5. We need two extra NACs for the dynamicFIFO∞

Figure 5: negative application conditions for theFIFO∞.

that restrictwherethe rule can be applied. An emptyFIFO1 should always be added at the very
beginning of the sequence. Expressed as negative application conditions, this means that there
must not be an empty or a fullFIFO1 in front of the one where the original rule (Figure4)
applies.

These additional restrictions allow us to apply the transformation rule automatically at runtime
when the colouring occurs. For completeness we would have to define also an inverse rule that
shrinks the connector again. We omit this here.

4.2 Run of a connector

Connectors are executed in an abstract Reo engine. The Reo engine includes two independent
components, one to compute colouring tables and to perform the dataflow, and one for computing
reconfiguration matches and executing the transformations. We refer to these components asDf
and Tr respectively. Reconfiguration rules are applied locally only in specific regions of the
connector. These regions can be formally viewed as disjoint sub-graphs that restrict the domain
of the transformations. These regions are the reconfigurable parts of the connector. Each of these
regions has a number of reconfiguration rules attached to it, such as the one in Figure4.

The Reo engine utilisesDf andTr to execute dynamic connectors. In this scenario a run of
the engine consists of performing the following actions:

1. Invoke Df to compute the colouring tableCT of the connector for the actual boundary
conditions.

2. Choose non-deterministically a colouringk from the colouring tableCT.

3. For each reconfiguration region, invokeTr to find pattern matchesm1, . . . ,mn for the
colouringk.

4. InvokeDf to execute the dataflow according tok. The state of the connector is updated.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: run of theFIFO∞.

5. For each pattern match inm1, . . . ,mn, invokeTr to perform the transformations.

Since the steps3 and4 are independent from each other, they can be performed in parallel. Note
also that in general, multiple transformation policies could be supported, e.g. apply at most once
or until it is not applicable anymore.

Figure6 depicts a run according to the descriptions above, for theFIFO∞. Part (a) shows
the basic connector that we want to reconfigure. It consists of a single emptyFIFO1 with a
Write operation. The region where the transformation rule from Figure4 should be applied is
delimited by the dashed box. Part (b) shows the colouringk1 and the corresponding dataflow. The
transformation engine is invoked with a snapshot of the reconfiguration region and the colouring
k1. Since the rule does not match colouringk1 no transformation is performed. In part (c) we see
how the dataflow has changed the state of theFIFO1 and that the write operation disappeared
after succeeding. In part (d) a new write operation is attached to the connector. At this point
a new run of the engine starts. Figure6e shows that the new write operation cannot succeed
because theFIFO1 is already full. This event is formally observed by the no-flow colouring
k2. The transformation engine is invoked again and returns a matchm this time, becausek2

matches the colouring of the reconfiguration rule. Since no dataflow has to be performed, the
transformation can immediately be applied, as shown in Figure6f. The reconfigured connector
is shown in part (g). At this point, the write operation succeeds, and the corresponding colouring
k3 is depicted in part (h). There is no rule that matchesk3, since the only possible match with
the full FIFO1 is restricted by NAC 1, defined in Figure5. In Figure6i we show the state of the
connector after the dataflow, whereas the write operation is removed and the leftFIFO1 becomes
full.

The visual representation we use is based on an extension of the animation language intro-
duced in [CP07]. We use the colour green to highlight the part of the connector that matches
the left-hand side of the rule, as depicted in the region inside the dashed box in Figure6f, and
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the connector that appears below corresponds to the right-hand side of the rule. The dashed blue
arrows in Figure6f, pointing from the match to the substitute connector, indicate that the nodes
A andB are preserved by the transformation. Furthermore, the colour of the new data token
matches the colour of the data token in the matched part of the connector, expressing that the
argument of the fullFIFO1 channel is the same as the argument of the new fullFIFO1.

5 Discussion

Up to now we have shown that by applying graph transformation techniques to Reo, we are
able to describe complex connector reconfigurations using a very compact notation. Transfor-
mation rules are extended with colouring information so that they can be applied when a certain
behaviour occurs. External invocation of the transformation is not required.

In the current setup, the transformation engine is invoked in each run of the execution of
the connector. Even if the required colouring is not present, the engine first tries to match the
structural pattern of the current connector and then validates its colouring. If the reconfiguration
regions become larger, the pattern matching can cause a significant degradation of performance.
Note that general pattern matching for graphs is a problem that is known to be NP-complete.

Figure 7: rule for aFIFO∞ with an evolving reconfiguration region.

To improve the performance of dynamically reconfiguring connectors, we suggest the follow-
ing optimisation. We augment the transformation rules with information about the reconfigura-
tion regions. For our example of the dynamicFIFO we extend the rule as shown in Figure7.
The dashed boxes mark the reconfiguration regions. With this extension we can state that the
rule is always applied to the firstFIFO1. While before the reconfiguration region was growing
with each application of the rule, it will now remain as consisting of exactly two nodes and one
FIFO1 only, all the time. This way, the pattern matching is much faster and (in the ideal case)
always uniquely determined.

6 Implementation

Reo as a modelling framework The Reo modelling framework [ECT] consists of a set of
plug-ins for the Eclipse1 development environment such as: a graphical editor, a model checker
and a Flash-based animation tool.

Executable instances of connectors can be derived by generating code from Reo specifications
or by interpreting these specifications. We generate code from abstract animation descriptions

1 http://www.eclipse.org
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when producing the Flash animations [CP07]. We have implemented an interpreter2, based on
the colouring semantics, for the application domain of web services. Currently we are integrating
the dynamic reconfiguration scheme into the interpreter.

Reo as a runtime architecture We are also developing a distributed Reo engine [Pro07],
where each primitive is deployed and executed as an independent block running in parallel with
the other primitives. There is no centralized entity computing the colouring table of the compos-
ite connector at each step, but instead the colouring table is obtained by distributed agreement.
The engine has a mechanism to pause regions of the connector, making them suitable to be re-
configured. However, since the development is still in an early stage we are not able to integrate
the dynamic reconfiguration yet.

7 Future work

The example of the dynamicFIFO is certainly very basic. In general, there may be more than
one reconfiguration rule (a graph grammar) attached to a region of a connector. The role that
the colouring extension in our rules plays in these more complex scenarios must be investigated.
Furthermore, we need to make the notion of the evolving reconfiguration regions, as suggested
in Section5, more specific. Additional partial mappings from the LHS to RHS may be a possible
approach to model this.

We are interested in preservation of behavioural properties by transformations. Two different
classes of transformations are interesting in this setting: transformations that preserve the be-
haviour and transformations that change it. On the one hand, reconfigurations that do not change
the behaviour are interesting in the area of automated refactoring and optimisation. On the other,
reconfigurations that change the behaviour can be used to implement new sub-circuits that adapt
the behaviour of a circuit based on dataflow. In this context, it will be interesting to do static
analysis of reconfiguration rules to reason about behaviour preservation.

Finally, we want to integrate the dynamic reconfiguration triggered by dataflow into the Reo
tools. For this purpose, we will extend both the Eclipse based development tools and the Reo
runtime engine for web services. Since we model reconfiguration through graph transformation,
and due to the fact that our implementation of the Reo development tools is based on the Eclipse
Modeling Framework (EMF)3, we plan to implement the reconfiguration extensions using the
Tiger EMF Transformation tools [EMT].
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Negative Application Conditions for
Reconfigurable Place/Transition Systems

A. Rein, U. Prange, L. Lambers, K. Hoffmann, J. Padberg

Technische Universität Berlin
Institut für Softwaretechnik und Theoretische Informatik

Abstract: This paper introduces negative application conditions for reconfigurable
place/transition nets. These are Petri nets together with a set of rules that allow
changing the net and its marking dynamically. Negative application conditions are
a control structure that prohibits the application of a rule if certain structures are
already existent. We motivate the use of negative application conditions in a short
example. Subsequently the underlying theory is sketched and the results – con-
cerning parallelism, concurrency and confluence – are presented. Then we resume
the example and explicitly discuss the main results and their usefulness within the
example.

Keywords: Petri net, net transformation, control structure, negative application con-
dition

1 Introduction

As the adaptation of a system to a changing environment gets more and more important, Petri
nets that can be transformed during runtime have become a significant topic in recent years. Ap-
plication areas cover, among others, computer supported cooperative work, multi-agent systems,
dynamic process mining and mobile networks. Moreover, this approach increases the expressive-
ness of Petri nets and allows a formal description of dynamic changes. In [HEM05], this concept
of reconfigurable place/transition (P/T) systems has been introduced where the main idea is the
stepwise development of P/T systems by rules where the left-hand side is replaced by the right-
hand side preserving a context. We use rules and transformations for place/transition systems in
the sense of the double pushout approach for graph transformation (see [EP04]). More precisely,
adhesive high-level replacement (HLR) systems – a suitable categorical framework for double
pushout transformations [EEPT06] – have been instantiated to P/T systems.

For the suitable application of such rules specific control structures are needed, especially
the possibility to forbid certain rule applications. These are known from graph transformation
systems as negative application conditions (NACs). These conditions restrict the application of
a rule forbidding a certain structure to be present before or after applying a rule in a certain
context. Such a constraint influences thus each rule application or transformation and therefore
changes significantly the properties of the replacement system.

By proving that P/T systems are weak adhesive HLR categories with negative application
conditions we can transfer well-known and important results to this case: Local Church-Rosser
Theorem, Completeness Theorem for Critical Pairs, Concurrency Theorem, Embedding and Ex-
tension Theorem and Local Confluence Theorem or Critical Pair Lemma.
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This paper is organized as follows: first we introduce our example and discuss the need of
additional control structures for the application of rules in Section 2. Then we review the formal
notions for reconfigurable P/T systems in Section 3. Based on these notions we define nega-
tive application conditions and present the main results concerning parallelism, concurrency and
confluence in Section 4. We discuss some of the general results with respect to the example in
Section 2. Concluding remarks concern future and related work.

2 Example: Airport

In this section, we present an example for a reconfigurable P/T system with NACs. We model an
airport control system (AirCS) that organizes the starting and landing runways of an airport. The
P/T system has to ensure that certain safety properties of an airport are fulfilled, for example that
some areas of the airport like the actual runways are secure, i.e. exclusively used by one airplane
at the time. The AirCS is able to adapt to various changes of the airport. Changes at runtime may
concern the opening or closing of a runway or its kind of use, i.e. for starting or landing. As a
basic condition we require that there has to be at least one landing runway to ensure the landing
of arriving airplanes, especially in emergency situations.

In addition, the use of the starting runways depends on the weather. Under fair weather con-
ditions, no limitations occur. But it is possible for the system to receive a storm warning from a
weather information channel. In this case, no more starting runways shall be opened and when
the storm arrives it shall be forbidden for airplanes to depart.

In the top of Fig. 1, the standard AirCS with one starting and one landing runway is depicted.
Each runway consists of two places of type Runway and Tower, with exactly one token on either
the one or the other place. A token on Runway represents an airplane on this runway, while
a token on Tower means that this runway is currently not in use. In addition, a landing runway
consists of transitions landing and arrived, and a starting runway of transitions depart and takeoff,
respectively. By firing the transition approach an airplane appears in the airspace of the AirCS.
The transition landing may fire if the runway is currently not used leading to a token representing
an airplane on the runway. In the lower part of the P/T system, the gates area is modeled. The
place Gates is a counter for the available gates. If a gate is available, the airplane may proceed
to a gate by firing the transition arrived. If the deboarding process is completed, the firing of
the transition continueFlight initiates the boarding process, and using the transitions depart and
takeoff an airplane may depart over an available starting runway. Analogously to approach, the
firing of the transition quitting models that the airplane leaves the airspace of the AirCS.

In the following, we describe the rules for changes of the airport. The rules openStartingRun-
way and openLandingRunway in the top of Fig. 2 are used to open a new runway. The places
and transitions of the runway are inserted and connected with the already existing part of the
airport. For the rule openStartingRunway, an additional NAC is needed to prevent the opening of
a starting runway in case of a storm warning. To apply a rule to our P/T system, we first have to
find a match of the left-hand side L to the P/T system. In case of the rule openStartingRunway,
this match is unique and consists of the four places in L. If we have a NAC for the rule, we have
to check if this NAC is valid, which means that we are not allowed to find a morphism from the
NAC to our P/T system via the match. For the match of openStartingRunway, the NAC is ful-
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AirCS :DepBoarding

st:Tower

:Gates

:ArrBoarding

lt:Tower

lr:Runway

:ArrField :DepField

:FairWeather

sr:Runway

arrived

landingapproach

continueFlight

depart

takeoff quitting

⇓ openStartingRunway

AirCS1 :DepBoarding

st:Tower

:Gates

:ArrBoarding

lt:Tower

lr:Runway

:ArrField :DepField

:FairWeather

sr:Runway
st2:Tower

sr2:Runway

arrived

landingapproach

depart

takeoff

continueFlight

depart

takeoff

quitting

⇓ incomingWarning

AirCS2 :DepBoarding

st:Tower

:Gates

:ArrBoarding

lt:Tower

lr:Runway

:ArrField :DepField

:FairWeather

sr:Runway
st2:Tower

sr2:Runway

Storm

arrived

landingapproach

depart

takeoff

continueFlight

forbidTakeoff

depart

takeoff

quitting

allowTakeoff

⇓ closeStartingRunway

AirCS3 :DepBoarding

st:Tower

:Gates

:ArrBoarding

lt:Tower

lr:Runway

:ArrField :DepField

:FairWeather

sr:Runway Storm

arrived

landingapproach

continueFlight

forbidTakeoff
depart

takeoff

quitting

allowTakeoff

Figure 1: The standard AirCS and a transformation sequence
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filled as long as no place of type Storm exists. In addition, a gluing condition has to be fulfilled
to make sure the rule is applicable (see Def. 2 in Section 3). Then, we first delete those elements
that are no longer needed and insert those elements that shall be created. They are glued to the
already existing elements, for example when applying openStartingRunway the new transitions
are connected to the places in the match. The application of the rule openStartingRunway to the
AirCS from Fig. 1 is the P/T system AirCS1 in the upper middle of Fig. 1.

The rules closeStartingRunway and closeLandingRunway in the upper middle of Fig. 2 are
used to close a runway. closeStartingRunway is the inverse rule of openStartingRunway without
a NAC, since closing a starting runway is always allowed. For closeLandingRunway, we have to
make sure that we do not delete the last landing runway, thus another landing runway has to be
present in the match.

In the lower middle of Fig. 2, the rules changeLandingToStartingRunway and changeStart-
ingToLandingRunway for changing the kind of a runway are shown. For both rules, we have a
NAC that forbids that the runway is currently used by an airplane, represented by a token on the
runway which is not present in the left-hand side. This ensures that the type of the runway is not
changed during its use causing strange behaviour for incoming or outgoing flights. In addition,
there is a second NAC that forbids the application of changeLandingToStartingRunway in case
of a storm. In the NACs, the place types are omitted if they are obvious from the left-hand side.

The arriving of a storm warning is also modeled by a rule as shown in the bottom of Fig.
2. A new place of type Storm is created and two transitions between this place and the place
FairWeather. As soon as the storm warning has arrived, no starting runways can be opened. But
it is still possible to take off for waiting airplanes using the already existing starting runways.
The airport system itself can decide when the weather situation is that bad that no airplan shall
depart. Then the transition forbidTakeoff is fired and since there is no longer a token on the
place FairWeather, no more takeoffs are possible. As soon as the weather gets better, by firing
the transition allowTakeoff airplanes may depart. Then the rule clearWarning deletes the storm
warning and the normal airport operations may continue.

Altogether, in Fig. 1 a transformation sequence is depicted which first opens a starting runway,
then receives a storm warning and afterwards, the starting runway is closed again.

3 Reconfigurable Place/Transition Nets

In this section, we formalize reconfigurable P/T systems based on our results in [HEM05]. As
net formalism we use the algebraic notation of “Petri nets are Monoids” in [MM90], but extend
this notation by a label function for places. So, a P/T net is given by PN = (P,T, pre, post, label)
with pre- and post domain functions pre, post : T → P⊕ and a label function label : P→ L, where
L is a fixed alphabet for places and P⊕ is the free commutative monoid over the set P of places,
and a P/T system is given by (PN,M) with marking M ∈ P⊕.

In order to define rules and transformations of P/T systems we introduce P/T morphisms which
preserve firing steps by Condition (1) and labels by Condition (2) below. Additionally, they
require that the initial marking at corresponding places is increasing (Condition (3)). For strict
morphisms, in addition injectivity and the preservation of markings is required (Condition (4)).
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Rule openStartingRunway

db:DepBoarding

g:Gates
:Storm

df:DepField

w:FairWeather

NAC

←−

db:DepBoarding

g:Gates
df:DepField

w:FairWeather

L

=⇒

db:DepBoarding

:Tower

g:Gates

df:DepField

w:FairWeather

:Runway
depart

takeoff

R

Rule openLandingRunway

g:Gates

ab:ArrBoarding

af:ArrField

L

=⇒
g:Gates

ab:ArrBoarding

:Tower

:Runway

af:ArrField

arrived

landing

R

Rule closeStartingRunway

db:DepBoarding

:Tower

g:Gates

df:DepField

w:FairWeather

:Runway
depart

takeoff

L

=⇒

db:DepBoarding

g:Gates
df:DepField

w:FairWeather

R

Rule closeLandingRunway

lt:Tower

lr:Runway

g:Gates

ab:ArrBoarding

:Tower

:Runway

af:ArrField

arrived

landing

arrived L

=⇒
lt:Tower

lr:Runway

g:Gates

ab:ArrBoarding

af:ArrField

arrived R

Rule changeLandingToStartingRunway

db

t

g

lrltab

af df

wr
:Storm

NAC1 db

t

g

lrltab

af df

wr

NAC2

←−
db:DepBoarding

t:Tower

g:Gates

lr:Runwaylt:Towerab:ArrBoarding

af:ArrField df:DepField

w:FairWeather
r:Runway

arrived

arrived

landing

L

=⇒
db:DepBoarding

t:Tower

g:Gates

lr:Runwaylt:Towerab:ArrBoarding

af:ArrField df:DepField

w:FairWeather

r:Runway

arrived

depart

takeoff

R

Rule changeStartingToLandingRunway

db

t

g

ab

af

df

w

r

NAC

←−

db:DepBoarding

t:Tower

g:Gates

ab:ArrBoarding

af:ArrField df:DepField

w:FairWeather

r:Runway
depart

takeoff

L

=⇒

db:DepBoarding

t:Tower

g:Gates

ab:ArrBoarding

af:ArrField df:DepField

w:FairWeather

r:Runway
arrived

landing

R

Rule incomingWarning

NAC=R←−
:FairWeather

:Storm:FairWeather

allowTakeoff

forbidTakeoff

L

=⇒
:FairWeather

:Storm:FairWeather

allowTakeoff

forbidTakeoff

R

Rule clearWarning

:FairWeather
:Storm:FairWeather

allowTakeoff

forbidTakeoff

L

=⇒
:FairWeather

:Storm:FairWeather

allowTakeoff

forbidTakeoff

R

Figure 2: The rules for changing the AirCS
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Definition 1 (P/T Morphism) Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for i =
1,2, a P/T morphism f : PS1 → PS2 is given by f = ( fP, fT ) with functions fP : P1 → P2 and
fT : T1→ T2 satisfying

(1) f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT ,
(2) fP ◦ label1 = label2 ◦ fP and
(3) M1(p)≤M2( fP(p)) for all p ∈ P1.

Moreover, the P/T morphism f is called strict if (4) fP and fT are injective and M1(p) =
M2( fP(p)) for all p ∈ P1 .
The category defined by P/T systems and P/T morphisms is denoted by PTS where the compo-
sition of P/T morphisms is defined component-wise for places and transitions. The class of all
strict P/T morphisms is denoted by M .

Next we define the gluing condition which has to be satisfied in order to apply a rule at a
given match. The characterization of specific points is a sufficient condition for the existence
and uniqueness of the so-called pushout complement which is needed for the first step in a
transformation.

Definition 2 (Gluing Condition) Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for

i ∈ {L,K,1}, and let PSL
m−→ PS1 be a P/T morphism and PSK

l−→ PSL a strict morphism,
then the gluing points GP, the dangling points DP and the identification points IP of PSL are
defined by

GP = l(PK ∪TK)
DP = {p ∈ PL|∃t ∈ (T1 \mT (TL)) : mP(p) ∈ pre1(t)⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′∧mP(p) = mP(p′)}

∪{t ∈ TL|∃t ′ ∈ TL : t 6= t ′∧mT (t) = mT (t ′)}

The P/T morphisms m and l with l strict satisfy the gluing condition, if all dangling and
identification points are gluing points, i.e DP∪ IP⊆ GP, and m is strict on places to be deleted,
i.e. ∀p ∈ PL \ l(PK) : ML(p) = M1(m(p)).

Next we present rule-based transformations of P/T systems following the double-pushout
(DPO) approach of graph transformations in the sense of [Roz97, EEPT06].

Definition 3 (P/T System Rule) Given P/T systems PSi = (Pi,Ti, prei, posti, labeli,Mi) for i ∈
{L,K,R,1}, then a rule rule = (PSL

l←− PSK
r−→ PSR) consists of P/T systems PSL, PSK , and

PSR, called the left-hand side, interface, and right-hand side of rule, respectively, and two strict
P/T morphisms PSK

l−→ PSL and PSK
r−→ PSR.

The rule rule is applicable at the match PSL
m−→ PS1 if the gluing condition is satisfied for l

and m. In this case, we obtain a P/T system PS0 leading to a transformation step PS1
rule,m
=⇒ PS2

consisting of the following pushout diagrams (1) and (2). The P/T morphism n : PSR→ PS2 is
called comatch of the transformation step.
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PSL

m
��

(1)

PSK
loo r //

c
��

(2)

PSR

n
��

PS1 PS0l∗
oo

r∗
// PS2

Now we are able to define reconfigurable P/T systems, which allow the modification of the net
structure using rules and transformations of P/T systems.

Definition 4 (Reconfigurable P/T Systems) Given a P/T system PS and a set of rules RULES,
a reconfigurable P/T system is defined by (PS,RULES).

In the example in Section 2 the reconfigurable P/T system consists of the P/T system in the
top of Fig. 1 and the set of rules depicted in Fig. 2. Note, that the application of some of these
rules is restricted by NACs and we will present the notion of reconfigurable P/T systems with
NACs in Section 4.

4 Negative Application Conditions

In this section, we first state the main technical result that P/T systems are a weak adhesive
HLR category with NACs. As a consequence we can define NACs for P/T system rules and
transformations. Afterwards we summarize the main results available for reconfigurable P/T
systems with NACs.

In addition to the class M in Section 3 we need two other classes of morphisms. The class Q
denotes those morphisms that connect the NAC to the source net, which is the class of injective
P/T system morphisms. Note that morphisms in this class do not need to be marking strict. The
class E is a class of minimal jointly surjective morphism pairs, where minimal means that the
markings in the codomain are as small as possible, i.e. for e1 : PS1 → PS3, e2 : PS2 → PS3
with (e1,e2) ∈ E we have that e1,e2 are jointly surjective and M3(p) = max({M1(p′) | p′ ∈
e−1

1 (p)}∪{M2(p′)‖ p′ ∈ e−1
2 (p)}). This class is mainly used for constructions and proofs.

Definition 5 (Morphism classes in PTS) Given the category PTS of P/T systems and P/T
morphisms, then the following morphism classes are defined:

M : strict PTS morphisms (injective and marking strict PTS morphisms)
Q : injective PTS morphisms (monomorphisms in the category PTS)
E : minimal jointly surjective PTS morphisms

Theorem 1 (PTS is weak adhesive HLR category with NACs) Given the weak adhesive HLR
category PTS and the morphism classes M , Q and E as defined above then we have

1. unique E -Q pair factorization,

2. unique epi-M factorization,

3. M -Q pushout-pullback decomposition property,

7 / 14 Volume X (2008)



NACs for Reconfigurable P/T Systems

4. initial pushouts over Q-morphisms,

5. Q is closed under pushouts and pullbacks along M -morphisms,

6. induced pullback-pushout property for M and Q and

7. Q is closed under composition and decomposition.

Altogether, (PTS,M ,E ,Q) is a weak adhesive HLR category with NACs .

Proof. In [EEH+07], it has been shown that (PTS,M ) is a weak adhesive HLR category.
According to [LEOP08], for a weak adhesive HLR category with NACs Items 1–7 have to be

proven additionally. Note, that in [LEOP08] an additional morphism class M ′ is used and some
more properties have to be checked. In the case of PTS, Q and M ′ coincide, which reduces the
effort for the proof. Here we only explain the properties and give proof ideas, the detailed proof
can be found in [Rei08].

1. unique E -Q pair factorization: For a morphism pair f1 : L1→ P, f2 : L2→ P, an E -Q pair
factorization is a pair e1 : L1→ K, e2 : L2→ K with (e1,e2) ∈ E and m : K→ P ∈Q such
that m◦e1 = f1 and m◦e2 = f2. Uniqueness means that two E -Q pair factorizations of f1
and f2 are isomorphic.

For the construction of this E -Q pair factorization in PTS, we first construct the coproduct
L of L1 and L2 with coproduct inclusions i1 and i2, obtain a morphism f : L→ P and
construct an epi-mono factorization (e : L→ K,m : K → P) of f in P/T nets. Defining
MK(p) = max({ML(p′) | p′ ∈ e−1(p)}) and e1 = e ◦ i1,e2 = e ◦ i2 leads to a unique E -Q
pair factorization. This property is needed mainly for the embedding and extension of
transformation pairs.

2. unique epi-M factorization: For a morphism f : L→ P, an epi-M factorization is an
epimorphism e : L→ K and a morphism m : K→ P ∈M such that m◦ e = f . Uniqueness
means that two epi-M factorizations of f are isomorphic.

For the construction, we use the epi-mono factorization of f in P/T nets, and obtain the
marking from the marking of P leading to a strict morphism m ∈M . Uniqueness follows
directly from uniqueness of the epi-mono factorization in P/T nets and strictness of M .
This property is needed for the translation of NACs over a morphism.

3. M -Q pushout-pullback decomposition property: Given the following commutative dia-
gram with l ∈M and w ∈Q, where (1 + 2) is a pushout and (2) is a pullback, then (1)
and (2) are both pushouts.

In P/T nets, this property holds for injective l and w, thus we obtain pushouts (1) and (2)
in P/T nets. It remains to show the additional pushout properties in PTS, which can be
verified. This property is needed for the embedding and extension of transformation pairs
and for the equivalence of left and right NACs.

4. initial pushouts over Q-morphisms: An initial pushout over a morphism f ∈Q represents
the boundary and context of f . The construction is similar to that in P/T nets, but also
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includes all places where f is not marking-strict. This property is needed for the extension
of transformations.

5. Q is closed under pushouts and pullbacks along M -morphisms: In a pushout or pullback
square along M , if the other given morphism is in Q then the opposite morphism is also
a Q-morphism.

This property follows directly from the corresponding properties in P/T nets and is used
for the translation of NACs as well as for the embedding and extension of transformations.

6. induced pullback-pushout property for M and Q: Given the following pushout (PO) and
the pullback (PB) then the induced morphism x : PS3→ PS4 is a Q-morphism.

This property can be shown using the fact that f ′ and g′ are jointly surjective, which can
be shown for the pushout construction. It is needed for the translation of NACs over a
morphism.

7. Q is closed under composition and decomposition: This is a standard result for monomor-
phisms from category theory. This property is needed for the translation of NACs and for
the completeness of critical pairs.

A B E

(1) (2)

C D F

k

l s

u

r

v

w

PS0 PS1

(PB)

PS2 PS4

f

g

h′

h

PS0 PS1

(PO)

PS2 PS3

f

g

f ′

g′

Now, we can state negative application conditions for P/T system transformation in the fol-
lowing sense:

Definition 6 ((Left) Negative Application Condition) A (left) negative application condition of
a rule rule = (PSL

l← PSK
r→ PSR) in the weak adhesive HLR category with NACs (C,M ,E ,Q)

is of the form NAC(n), where n : PSL→ PSN is a P/T morphism.
A morphism m : PSL → PS1 satisfies NAC(n), written m |= NAC(n), if there does not exist a
morphism q : PSN → PS1 ∈Q with q◦n = m.

Definition 7 (Rule with NACs) A rule in a weak adhesive HLR category with NACs (C,M ,E ,
Q) with a set of negative application conditions NACS is called rule with NACs.

Remark 1 Analogously to left NACs we can define right NACs on the right-hand side of a rule
which have to be satisfied by the comatch of the transformation. In this paper, we only consider
rules with an empty set of right NACs. This is without loss of generality since each right NAC
can be translated into an equivalent left NAC as shown in [EEPT06, LEOP08].

Definition 8 (Applicability of a Rule with NACs) Given a rule rule = (PSL
l← PSK

r→ PSR)
with a set of negative application conditions NACS and a match m : PSL → PS1 such that rule
without NACs is applicable at m, then the rule rule with NACs is applicable if and only if m
satisfies all NACs of the set NACS.
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For these new rules and their restricted application we obtain the same results as known for net
transformations in general. These results have been shown for NACs at the level of weak adhe-
sive HLR categories in [LEOP08, LEO06, Lam07]. Their instantiation to P/T systems requires
Theorem 1 above.

Results (For Reconfigurable P/T Systems with NACs)

1. Local Church-Rosser and Parallelism: The local Church-Rosser property for transfor-
mations with NACs states that for two rules with two matches, the application of the rules
at the matches to the same P/T system in any order (sequentially independence) yields
the same result if and only if the transformations are parallel independent. For parallel
independence of two transformations with NACs it has to be checked in particular if one
transformation does not delete anything the other transformation needs, and, in addition,
that one transformation does not produce any structure that is forbidden by the other one.
For such independent transformations a parallel transformation with NACs can be built
obtaining the same result in one transformation step.

In our airport example it makes e.g. no difference if a starting or a landing runway is
opened first. After opening a starting runway it is still possible to open a landing runway,
since nothing is deleted and there is no NAC on the rule openLandingRunway. After
opening a landing runway a starting one can be opened: Nothing is deleted and the NAC
of the rule openStartingRunway that forbids the existence of a place of type Storm remains
satisfied. Moreover now both runways can be constructed in parallel. This construction
leads to the same result consisting of an airport with one more starting and one more
landing runway.

2. Conflicts and Critical Pairs: If two transformations are not parallel independent as
described in Item 1 then they are in conflict. This means in particular that one of the
transformations deletes some structure which is needed by the other one, or it produces a
structure which is forbidden by the other one. A critical pair describes such a conflict be-
tween two transformations in a minimal context. Critical pairs are proven to be complete
[LEO06], i.e. each conflict occurring in the system between two transformations is repre-
sented by a critical pair expressing the same conflict in a minimal context. The morphism
class E is required to express this minimal context.

In our example a transformation adding a warning (i.e. applying the rule incomingWarning)
is in conflict with a transformation which opens a starting runway (i.e. applying rule
openStartingRunway). This conflict is caused by the NAC of the rule openStartingRunway
as it cannot be applied if a place of type Storm is present. This conflict occurs regardless of
the number of runways already present in the airport and is expressed in a minimal context
by the critical pair shown in Figure 3.

3. Concurrency: As explained in Item 1 sequentially independent transformations can be
put into one parallel transformation step having the same effect. But if sequential depen-
dencies occur between direct transformations in a transformation sequence the Parallelism
Theorem cannot be applied. In this case a so-called concurrent rule with NACs can be con-
structed establishing the same effect in one transformation step with NACs as the whole
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db:DepBoarding

g:Gates

Stormdf:DepField

w:FairWeather

forbidTakeoff

allowTakeoff incomingWarning⇐=
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g:Gates
df:DepField

w:FairWeather

openStartingRunway=⇒

db:DepBoarding
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g:Gates

df:DepField

w:FairWeather

:Runway
depart

takeoff

Figure 3: The critical pair for the rules incomingWarning and openStartingRunway

db:g:

:Storm

df: w:

db:g: :Storm

df: w:

allowTakeoff

forbidTakeoff ←−

db:DepBoarding

g:Gates
df:DepField

w:FairWeather

=⇒

db:DepBoarding

g:Gates

Stormdf:DepField

w:FairWeather

forbidTakeoff

allowTakeoff

Figure 4: The concurrent rule with NACs

transformation sequence. The Concurrency Theorem states that a concurrent rule with
NACs equivalent to a sequence of rules with NACs is applicable with the same result if
and only if the rule sequence with NACs is applicable. The construction of the concurrent
rule is analogous to the case without NACs. Additionally, all NACs occurring in the rule
sequence need to be translated into equivalent NACs for the concurrent rule. The con-
struction of such a concurrent rule with NACs is explained in [LEOP08]. A concurrent
rule summarizes in one rule which parts of the net should be present, preserved, deleted
and produced when applying the corresponding rule sequence to this net. Moreover we
have a summarized set of NACs on the concurrent rule expressing which net parts are
forbidden when applying the corresponding rule sequence with NACs to the net.

Consider for our example the transformation sequence in Fig. 1. First, a starting runway is
opened followed by an incoming warning after which the starting runway is closed again.
This transformation sequence can be summarized to one transformation step via a new
concurrent rule with concurrent NACs as depicted in Fig. 4. Note that this concurrent
rule now holds two single NACs, one originating from the first rule openStartingRunway
and the other one originating from the second rule incomingWarning in the sequence. Note,
moreover, that this rule adds no new behavior to our system, but merely adds the possibility
of performing these three transformations in one step with the same result.

4. Embedding and Extension: Consider a transformation t : N0
∗⇒ Nn and a morphism

k0 : N0→ N′0, then the transformation t can be embedded into the larger context N′0 if and
only if the extension morphism k0 : N0→ N′0 satisfies two consistency conditions. First, it
has to be boundary consistent. This means intuitively that the extension morphism cannot
embed places which are deleted by the transformation t into places connected with new
transitions in the bigger P/T system N′0. Otherwise, dangling edges will occur during
the embedding. Moreover, the extension morphism k0 should satisfy NAC-consistency
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[LEO06]. Intuitively, the transformation t can be summarized into one step tc : N0⇒ Nn

using the new concurrent rule with concurrent NACs. Now the extension morphism k0
may not map to a larger P/T system N′0 with added structures which are forbidden by
this concurrent NAC. Note that boundary consistency and NAC-consistency are not only
sufficient, but also necessary conditions for the construction of extended transformations
with NACs. So, whenever it is possible to repeat a transformation t into a bigger context
N′0 the extension morphism was boundary and NAC-consistent.

In our example, we can embed the transformation described in the last item into the P/T
system AirCS1 from Fig. 1 which is not the initial one, but already contains two starting
and one landing runway. On the contrary, this transformation cannot be embedded into the
airport AirCS2 from Fig. 1 which already contains a storm warning. This is because the
extension morphism k0 adds a place of type Storm which is forbidden by the concurrent
NACs as depicted in Fig. 4.

5. Confluence: Critical pairs as described in Item 2 are not only complete, their confluence
behavior has an impact on the confluence behavior of the whole system. Intuitively this
means that if a conflict can be resolved in a certain way in its minimal context, the same
conflict is resolvable as well if it occurs in a larger context. A solution of a conflict in a
minimal context (or critical pair) P1←K→ P2 is a pair of transformation sequences t1 and
t2 such that t1 transforms P1 into a certain net X and t2 transforms it into the same net X .
Thus the same system state can be reached again if a conflict occurred. The solution of the
critical pair needs to be strict. Intuitively speaking, this means that t1 and t2 preserve ev-
erything which is preserved in common by the critical pair itself. Moreover, whenever it is
possible to embed the critical pair into some larger context the extension morphism should
be NAC-consistent with respect to the critical pair solution (NAC-confluence [Lam07] ).
This means in particular that all NACs occurring in the solution of the critical pair are still
satisfied by the embedding into the larger context. Under these conditions, this conflict can
be resolved in the same way also in a larger context. Otherwise, the solution of the critical
pair is no solution for the larger context, and no prediction for confluence can be infered.
In particular, if all critical pairs of the reconfiguration system are strictly NAC-confluent
then the system is locally confluent.

Consider in our example the critical pair depicted in Fig. 3. The solution of the critical
pair is depicted in Fig. 5 for the right-hand side of the critical pair. Whenever a starting
runway has been opened, a warning can come in and the starting runway can be closed
again. The result is a P/T system containing no runway, but a storm warning. This is
already our solution because this P/T system is identical to the the first P/T system in the
critical pair. This solution is moreover strictly confluent because the places g, df, fw and
db are preserved by both the critical pair and our solution. Moreover, the solution is NAC-
confluent because the satisfaction of the concurrent NACs as depicted in Fig. 4 is implied
already by the satisfaction of the first NAC of the critical pair. This means in effect that
if the critical pair can be embedded and thus the NACs of the critical pair are satisfied
by this embedding then they will also be satisfied when embedding the solution into the
same bigger context. Therefore it is possible to resolve the conflict between an incoming
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closeStartingRunway=⇒
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w:FairWeather

forbidTakeoff

allowTakeoff

Figure 5: The solution for the critical pair

warning and opening a starting runway by having an incoming warning and closing the
runway in each bigger airport as well.

5 Conclusion

We conclude with a short discussion of related and future work:
Related Work Reconfigurable nets have been defined based on net transformations that aim
directly at changing the net in arbitrary ways. This approach can be restricted to transformations
that preserve specific properties as safety or liveness (see [PU03]). Dynamic nets [BS01] are
based on the join calculus and allow the dynamic adaption of the network configuration and are
considered to be a special case of zero-safe nets [BMM04]. In a series of papers [LO04, LO06a,
LO06b] rewriting of Petri nets in terms of graph grammars is used for the reconfiguration of nets
as well. There marked-controlled reconfigurable nets (MCRN) are extended by some control
technique that allows changes of the net for specific markings. The enabling of a rule is not only
dependent on the net topology, but also dependent on the marking of specific control places.
MCReNet [LO06a] is the corresponding tool for the modeling and verification of MCRNs.
Future Work One ongoing research tasks is the extension of this paper’s results to algebraic
high-level nets, a Petri net variant with additional data types in terms of algebraic specifications.
Therefore, the same conditions have to be proved considering additionally the specification and
algebra morphisms. Another one are algebraic higher order (AHO) nets that can be used as a
controlling mechanism for reconfigurable Petri nets. There P/T systems as well as rules are the
tokens of the underlying AHO net. This specification technique has been targeted at modeling
workflows of mobile ad-hoc networks. Up to now we have not made use of the new feature of
NACs in AHO nets. To do so we have to integrate the NACs into the algebra underlying the
AHO net.
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Abstract: The main idea behind Reconfigurable Object Nets (RONs) is to support
the visual specification of controlled rule-based net transformations of place/transition
nets (P/T nets). RONs are high-level nets with two types of tokens: object nets
(place/transition nets) and net transformation rules (a dedicated type of graph trans-
formation rules). Firing of high-level transitions may involve firing of object net
transitions, transporting object net tokens through the high-level net, and applying
net transformation rules to object nets, e.g. to model net reconfigurations. A visual
editor and simulator for RONs has been developed as a plug-in for ECLIPSE using
the ECLIPSE Modeling Framework (EMF) and Graphical Editor Framework (GEF)
plug-ins.

The problem in this context is to analyze under which conditions net transformations
and token firing can be executed in arbitrary order. This problem has been solved
formally in a previous paper. In this contribution we present an extension of our
RON tool which implements the analysis of conflicts between parallel enabled tran-
sitions, between parallel applicable net transformation rules (Church-Rosser prop-
erty), and between transition firing and net transformation steps. The conflict anal-
ysis is applied to a RON simulating a distributed producer-consumer system.

Keywords: Petri nets, net transformation, graph transformation, visual editor, re-
configurable object nets, conflict analysis, independence analysis, Eclipse, GEF

1 Introduction

Modelling the adaption of a system to a changing environment has become a significant topic
in recent years. Application areas cover e.g. computer supported cooperative work, multi agent
systems, dynamic process mining or mobile ad-hoc networks (MANETs). Especially in the con-
text of our project Formal modeling and analysis of flexible processes in mobile ad-hoc networks
[PEH07, For06] we aim to develop a formal technique which on the one hand enables the mod-
eling of flexible processes in MANETs and on the other hand supports changes of the network
topology and the transformation of processes. This can be achieved by an appropriate integration
of graph transformation, nets and processes in high-level net classes.

The main idea behind Reconfigurable Object Nets (RONs) is the integration of transition firing
and rule-based net structure transformation of place/transition nets (P/T nets) during system sim-
ulation. This approach increases the expressiveness of Petri nets and allows a formal description
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of dynamic system changes.
RONs are high-level nets with two types of tokens: object nets (which are P/T nets) and net

transformation rules (a dedicated type of graph transformation rules). Thus, on the one hand,
RONs follow the paradigm “nets as tokens”, introduced by Valk in [Val98], and, on the other
hand, extend this paradigm to “nets and rules as tokens” in order to allow for modelling net
structure changes (reconfigurations) of object nets. The high-level net constitutes the control
frame for object net behavior and rule-based reconfiguration of object nets. Firing of high-level
transitions may involve firing of object net transitions, transporting object net tokens through
the high-level net, and applying net transformation rules to object nets. Net transformation rules
model net reconfigurations such as merging or splitting of object nets, and net refinements.

The formal basis for RONs is given in [HME05], where high-level nets with nets and rules
as tokens are defined algebraically, based on algebraic high-level nets [PER95]. The basic idea
behind net transformation is the stepwise development of P/T systems by given rules consisting
of a left-hand side LHS related to a right-hand side RHS. Think of these rules as replacement
systems where the LHS is replaced by the RHS preserving a context. Similar to the concept of
graph transformations [EEPT06], each application of a rule r = (LHS→ RHS) to a source net N1
leads to a net reconfiguration step N1

r=⇒N2, where in the source net N1 the subnet corresponding
to the LHS is replaced by the subnet corresponding to the RHS, yielding the target net N2. Rule-
based Petri net transformations have been treated in depth in e.g. [EP04, PU03].

The visual editor and simulator for RONs has been realized as a plug-in for ECLIPSE using
the ECLIPSE Modeling Framework (EMF) [EMF06] and Graphical Editor Framework (GEF)
[GEF06] plug-ins. In RONs, the algebraic operations defined for rule applications and transition
firing are modeled as special RON-transition types which have a fixed firing semantics. It turned
out that four RON-transition types for composition, decomposition, firing and rule-based recon-
figuration are sufficient to model various interesting examples (Case studies and downloads of
the RON tool are available on our RON homepage [RON07]).

Recently, work has been done to formalize independence conditions for reconfigurable P/T
systems (i.e. P/T systems together with reconfiguration rules) [EHP+07, EEH+07]. While inde-
pendence conditions for two firing steps of P/T-systems are well-known (transitions in conflict),
independence of net reconfiguration steps is closely related to local Church-Rosser properties
for graph transformations that are valid in the case of parallel and sequential independence of
rule-based transformations. In [EEPT06], conditions for two transformation steps are given in
the framework of high-level replacement systems with application to net transformations, so that
these transformation steps applied to the same P/T-system can be executed in arbitrary order,
leading to the same result. In [EHP+07] we state under which conditions a net transformation
step and a firing step are independent of each other. The subject of this paper is the implementa-
tion of the different formal notions of conflict and independence analysis in the RON tool.

The paper is structured as follows: A running example (a distributed producer-consumer sys-
tem) is introduced in Section 2. Section 3 introduces the RON tool, and Section 4 describes the
extension of our tool with conflict and independence analysis based on the theoretical results
from [EHP+07, EEH+07]. These new features of the tool are used to analyze the producer-
consumer system. Section 5 concludes the paper with an outlook on future work.

Proc. GT-VMT 2008 2 / 13



ECEASST

2 Example: A Producer-Consumer System

In our example, RONs are applied to model a distributed system of producers and consumers
where several producers and consumers may interact with each other. In the initial state of the
sample RON in Fig. 1 potential producers and consumers are distributed on different Net places
as independent object nets without interaction. Producer nets may fire, e.g. they can produce

Figure 1: Distributed Producers/Consumers modelled as RON

items and place them on the buffer place. Firing in object nets is triggered by firing a RON high-
level (HL) transition of type FIRE, which takes one object net with marking M from the Net place
in its pre-domain and puts the same object net, now marked by one of the possible successor
markings of M, into all of its post-domain places. Producer nets can also be refined by firing
the RON HL-transition AdaptProduction of type APPLYRULE. A transition of this type takes an
object net from each of the pre-domain Net places, a rule from the pre-domain Rule place, applies
this rule to the disjoint union of all the taken object nets and puts the resulting net to all post-
domain Net places. Note that a transition is preserved by a rule only if its pre- and postdomains
are preserved as well.

Rule refineProd, depicted in Fig. 2, refines the transition produce by two transitions prepare
production and a new transition produce. Transition produce is deleted by rule refineProd and
generated again with a different predomain place. Rule refineProd can be applied only once
to the same object net since the NAC forbids its application if there is already a place called
production prepared in the net. Rule addResources (also Fig. 2) replaces the produce transition by
two alternative production procedures, each using a different resource.

For producer-consumer interaction, a producer net can be merged with a consumer net by
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Figure 2: Rules for adapting a producer net

firing the RON HL-transition ProdMeetsCons of type APPLYRULE. Rule merge-PC, depicted in
Fig. 3, glues a producer object net and a consumer object net by inserting a connect transition
between both buffers. A so-called negative application condition (NAC) forbids the application
of the rule if there already exists a connect transition. Note that the transition ProdMeetsCons
controls which producer interacts with which consumer.

HL-transitions of type FIRE trigger the firing of object net transitions. Note that for firing
object net transitions, no net transformation rule is applied. The firing semantics of object nets is
the usual P/T net behavior. By firing the FIRE HL-transition Deal, in the glued net the consumer
now can consume items produced by the producer as long as there are tokens on the place Prod-
Buffer. Moreover, the producer may also produce more items and put them to the buffer. After
the deal has been finished, the nets are separated again by firing the APPLYRULE HL-transition
Disconnect. This applies rule separate-PC in Fig. 3 to the glued net which deletes the connect
transition from the net.

Figure 3: Rules for gluing and for separating a producer and a consumer net

Note that the resulting net, which is put on place Prod/Cons, is still one single object net which
consists of two unconnected components. In order to split these components into two object nets,
a HL-transition of type SPLIT has to be fired. Firing RON HL-transition FinishMeeting results in
two separate object nets on place Prod and Cons. In the last step, we put the now separated
producer and consumer nets back to their initial places. To prevent them to return to “wrong”
initial places we again use APPLYRULE HL-transitions. These HL-transitions apply the rules
checkProd and checkCons, respectively, which do not change the object nets they are applied to
but simply check them for the occurrence of a producer or consumer place, respectively. Apart
from HL-transitions of type FIRE, APPLYRULE and SPLIT, RONs provide a fourth HL-transition
type, called STANDARD (not used in the producer-consumer example). STANDARD HL-transitions
simply remove a net token from each pre-domain place and add the disjoint union of all removed
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object nets to each of the post-domain Net places.

3 The RON Environment: Editor and Simulator

The RON environment [BEHM07] is divided into four main components, i.e. the RON tree view
based on an EMF model for RONs, and the visual editors for object nets, for transformation rules
and for high-level nets with the four HL-transition types FIRE, APPLYRULE, SPLIT and STANDARD.
The visual net editors also support the simulation of an edited object net or high-level net. Fig. 4
shows a screenshot of the RON environment showing all views and editors.

RON Tree View. View 1 in Fig. 4 shows the main editor component, a tree view for the
complete RON model from which the graphical views can be opened by double-click.

Figure 4: The RON Environment for Editing and Simulating Reconfigurable Object Nets

5 / 13 Volume X (2008)



RON Analysis

Object Net Editor. The kernel component is a graphical editor for object nets, i.e. the net
tokens on the RON’s NET-typed places. This component is actually a place/transition net editor,
allowing the simulation of firing transitions. An object editor panel is shown in Fig. 4, View 2 ,
holding the object net ProdCons, which models producer-consumer interaction.

Transformation Rule Editor. The editor for transformation rules mainly consists of three ed-
itor panels, one for the left-hand side (LHS), one for the right-hand side (RHS) and one for a
negative application condition(NAC) (see view 3 in Fig. 4). Each editor panel is basically an
object net editor itself, but with the additional possibility to relate the object nets by defining
mappings on places and transitions. Mappings are realized by the mapping tool of the rule editor
that allows the matching of LHS objects to RHS objects to define which objects are preserved
by the rule, or to NAC objects to define which objects are connected to additional forbidden ob-
jects. In the editor, mappings are shown by object colouring. In order to ensure that the mapping
specified by the mapping tool is also a valid Petri net morphism, it is checked for each mapped
transition that all places in its pre- (post-)domain in the LHS are mapped to the corresponding
places in the pre- (post-)domain of in the RHS. Another restriction is that all rules are injective,
so different LHS objects must be mapped to different RHS objects. Note that the object net
ProdCons in Fig. 4, View 2 , is the result of applying rule mergePC to two object nets Prod1
and Cons2 from the places Producers and Consumers, respectively. (For the situation before the
rule is applied, see Fig. 1).

High-Level Net Editor. A high-level net controls object net behaviour and rule applications
to object nets. Such a high-level net is drawn in the high-level net editor panel, shown in Fig. 4,
View 4 . Here, NET places carrying object net tokens are blue containers marked by an “O” for
Object Nets. RULE places carrying transformation rules are green containers marked by an “R”
for Rules. Each transition type has a special graphical icon as visualization: for FIRE,
for APPLYRULE, for SPLIT, and for STANDARD. Enabled HL-transitions are coloured,
disabled ones are gray.

Simulation of RONs. A RON HL-transition is fired when double-clicked. The simulation of
firing HL-transitions of kinds STANDARD, FIRE, and SPLIT has been implemented directly in the
editor. In order to simulate firing of APPLYRULE HL-transitions, internally the RON editor was
extended by a converter to AGG, an engine to perform and analyze algebraic graph transforma-
tions [AGG]. If the user gives the command to fire an APPLYRULE HL-transition he has to select
the rule and the object net token(s) in the pre-domain the rule should be applied to. This is real-
ized in the user interface shown in Fig. 4, View 4 , by ordering the tokens in the corresponding
NET and RULE containers in a way that the uppermost tokens are the ones considered by the rule
application. Furthermore, the user is asked for a match defining the occurrence of the rule’s left-
hand side in the selected object net. Optionally, AGG can find or complete partial matches and
propose them to the user in the RON editor. With the selected rule, match, and object net AGG
computes the result of the transformation which is put on the post-domain places according to
the firing semantics explained in Section 2.

A RON HL-transition of type FIRE triggers the firing of an object net transition for an object net
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in the FIRE transition’s pre-domain. We decided to implement object net transition firing directly
in Java instead of modeling firing steps by graph transformation rules and using AGG to compute
the successor markings. This design decision is based on the complexity of encoding P/T net
behavior in graph transformation systems: there are two possibilities: 1) we could translate each
single object net transition into a (model-dependent) graph rule [Erm06]; 2) we could envisage a
more general encoding resulting in more than one rule for a single firing step due to the arbitrary
number of input and output places for each transition. In case 1) we have the problem that our
net transformation rules may delete / add / replace transitions. So, after each rule application
we might be forced to adapt the set of model-dependent graph rules representing our object
net. In case 2), we cannot make use of AGG’s analysis features to find transitions in conflict,
since the analysis of graph transformation steps is based on finding critical pairs of rules and
needs one firing step to be modeled by one rule only. Thus, it proved to be more natural and
straightforward to implement both the object net firing behavior and the check for conflicting
object net transitions directly in Java.

4 Extending the RON Environment by Independence Analysis

4.1 Independence in Reconfigurable P/T Systems

In this section we give a brief overview on the different analysis cases and demonstrate them by
conflict examples in our producer-consumer system (Fig. 1).

As object nets in RONs can evolve in two different ways (by firing object net transitions and
by applying net transformation rules), the notions of conflict and concurrency become quite
complex. We illustrate the situation in Fig.5, where we have in the center an object net PN0,
with marking M0 and two transitions that are both enabled leading to firing steps (PN0,M0)

t1−→
(PN0,M′

0) and (PN0,M0)
t2−→ (PN0,M′′

0 ), and two transformations (PN0,M0)
prod1,m1=⇒ (PN1,M1)

and (PN0,M0)
prod2,m2=⇒ (PN2,M2) via the corresponding rules and matches.

Figure 5: Concurrency in RONs

Hence, we distinguish three kinds of conflicts corresponding to the squares (1), (2/3) and (4):

Transition / Transition: The classic concurrency situation in P/T systems without place ca-
pacities regards two transitions with overlapping predomains. Such transitions are in conflict if
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they are both enabled and would require more tokens for firing than are available in the current
marking. Hence, for square (1), we have the usual condition that t1 and t2 need to be conflict
free, so that both can fire in arbitrary order or in parallel, yielding the same marking.

Example: Consider the net which results from applying rule addResource to the Producer net
in Fig. 1: here the two transitions UseResource1 and UseResource2 are in conflict because there
is only one token on the place ready to produce.

Rule / Transition: The application of a rule might remove an enabled transition from a given
net. In this case one might be able to fire the transition first and apply the rule afterwards, but
not the other way round. Vice versa, a rule might require a token on a place which might have
been removed by a preceding transition firing step. Hence, for squares (2) and (3), we require
parallel independence which allows the execution of the transformation step and the firing step
in arbitrary order leading to the same object net. Intuitive, a transition firing and a transformation
are parallel independent if the transition is not deleted by the transformation and the successor
marking is still sufficient for the match of the transformation (see [EHP+07]).

Example: Firing the transition produce in net Prod1 on the RON place Producers is in con-
flict with applying the net transformation rule refineProducer to the net Prod1. Since the net
transformation rule removes the transition produce, the firing step cannot take place after the net
transformation step. Vice versa, the transition can fire first without disabling the application of
rule refineProducer.

Rule / Rule: Two rules are in conflict with each other if one of them deletes certain parts of
the object net which the other rule needs for its application. Another conflict possibility is the
creation of net structures by the first rule which are forbidden by a NAC of the second one.
Hence, for square (4), we require parallel independence of both rules. In [EHP+07, EEH+07]
it has been shown that reconfigurable P/T nets fulfill the formal conditions of a weak adhesive
HLR category1. Using such a category not only allows the notions of rules and transformations,
but in addition provides a large amount of results such as:

• Parallelism: The Church-Rosser Theorem states a local confluence in the sense of formal
languages. The Parallelism Theorem states that sequential or parallel independent transfor-
mations can be carried out either in arbitrary sequential order or in parallel. In the context
of step-by-step development these theorems are important as they provide conditions for
the independent development of different parts or views of the system.

• Concurrency and pair factorization: The Concurrency Theorem handles general transfor-
mations, which may be non-sequentially independent. Roughly speaking, for a sequence
there is a concurrent rule that allows the construction of a corresponding direct transfor-
mation.

• Embedding and local confluence: Further important results for transformation systems are
the Embedding, Extension and the Local Confluence Theorems [EEPT06]. The first two

1 Adhesive High-Level Replacement (HLR) systems have been established as a suitable categorical framework for
double-pushout transformations[EEPT06].
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allow to embed transformations into larger contexts and with the third one we are able to
show local confluence of transformation systems based on the confluence of critical pairs.

Example: Both rule addResources and rule refineProducer delete the original transition pro-
duce, when applied to net Prod1. Hence, only one of these rules can be applied, disabling the
application of the other one (delete-use-conflict). Another example for a conflict would be the
rule mergePC. The NAC of this rule forbids the application if there already exists a connect tran-
sition between the two buffers which results in a conflict of the rule with itself. However the
structure of the high-level net will prevent two consecutive applications of this rule to the same
net.

4.2 Implementation

The editor described in the previous chapter offers support to model reconfigurable object nets
and to perform hand-triggered simulation steps.

We extended the basic editing and simulation features of our RON environment by the analysis
techniques explained in the previous section. To perform the analysis we employ the attributed
graph grammar system AGG [AGG], an environment for the execution and analysis of graph
transformations. Since Petri nets and net transformation rules can be simulated as special graphs
and graph transformation rules, we use AGG to compute possible rule matches, to apply rules
and to perform rule/rule conflict analysis. More specifically, we implemented three methods for
the three analysis cases:

1. Method analyzeTransitionTransition(objectnet) is implemented directly
and searches the given object net for conflicting transitions. The result is a vector of transi-
tion pairs which are in conflict. We implemented this analysis directly like the simulation
of object net transition firing described in Section 3.

2. Method analyzeRuleTransition(objectnet, rule) collects all possible mat-
ches of the given rule into the given object net and checks whether there exist enabled
transitions in the object net whose firing would delete tokens which are parts of the match.
Vice versa, the method checks whether the rule application would delete any of the previ-
ously enabled transitions. The resulting pairs, each consisting of an enabled transition and
a match from the LHS of a rule to the object net, describe situations where the transition
will no longer be enabled after applying the rule. We use AGG for match-computing and
implement the formal criteria for conflicts in [EHP+07].

3. Method analyzeRuleRule(rule1, rule2, objectnet) computes all critical
pairs for rule1 and rule2 and checks whether the overlapping graphs are parts of the
intersection of matches from rule1 and rule2 into the object net. Here we use AGG
critical pair analysis for this. The result of the computation will be a vector containing
pairs of matches of the LHS of both rules into the object net. Semantically each pair
describe a situation where the application of the first rule with the first given match will
prevent the application of the second rule under the second given match.

Given a specific RON, our editor offers two modes to perform a conflict analysis: single
conflict mode and local place mode.
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4.3 Single conflict analysis

This mode allows to specify in detail which conflicts are interesting and should be computed.
In our producer-consumer system for example, we would like to know either whether our rules
for adapting a producer’s production workflow might lead to object nets with transition/transition
conflicts, or we might be interested in transition/rule conflicts with the transitions of the producer
net itself or in possible rule/rule conflicts.

For a transition/transition analysis, the user of the RON environment selects an object net and
chooses Analyze Conflicts T/T from its context menu. Window (a) in Fig. 6 shows the result of the
T/T analysis of the object net Prod1, where the two transitions in conflict are highlighted.

Figure 6: A Transition/Transition Conflict (a), a Rule/Transition Conflict (b), and a Rule/Rule
Conflict (c) in the Producer-Consumer System

For a rule/transition analysis, the user of the RON environment selects a rule and an object
net which marks a NET place connected by an APPLYRULE transition to the RULE place which
contains the selected rule. Afterwards, the item Analyze Conflicts R/T can be chosen from the
context menu. Window (b) in Fig. 6 shows that rule refineProd and transition produce are in R/T
conflict with each other because transition produce is deleted by the rule. Note that the steps

Proc. GT-VMT 2008 10 / 13



ECEASST

still can be performed in reversed order: after firing transition produce, rule refineProd is still
applicable because it does not depend on the tokens which are consumed by the transition.

For a rule/rule analysis, two rules and an object net have to be selected in order to be able
to evoke the context menu item Analyze Conflicts R/R. Window (c) in Fig. 6 shows that rules
refineProd and addResources (see Fig. 2) are in conflict with each other. Since the matches of
the rules overlap, both rules replace the same transition produce by a more complex structure.

4.4 Local place conflict analysis

In this analysis mode, a comprehensive direct analysis is evoked for a selected high-level NET
place. This means, all possible local conflicts are computed, taking into account the current
object nets comprising the marking of the selected NET place, the marking of these object nets,
and the rules on RULE places which are connected by an APPLYRULE transition to the selected
NET place. Fig. 7 shows the result of a local place analysis, evoked for the NET place Producer in
our Producer-Consumer-RON from Fig. 1.

Figure 7: Local Place Analysis Results for the NET Place Producer

For all object nets being tokens on the selected high-level NET place, the calculated conflicts
are displayed, sorted by conflict types transition/transition, rule/transition, and rule/rule. Pressing
the corresponding Show button shows the respective conflict in detail, i.e. the conflicting tran-
sitions are highlighted (Fig. 6 (a)), or a match from a rule is shown together with a highlighted
transition this rule is in conflict with (Fig. 6 (b)), or the overlapping matches of two conflicting
rules being in conflict into an object net are shown (Fig. 6 (c)).

5 Conclusion

Modeling mobile and distributed systems requires a modeling language which covers both recon-
figuration and coordination. RONs meet these conditions. The abstract high-level net controls
the flow, selection, manipulation and behavior of object nets (P/T nets) which are tokens on
the high-level net places. For object net reconfiguration at runtime, net transformation rules are

11 / 13 Volume X (2008)



RON Analysis

used, the application of which is also controlled by the high-level net. In this paper, the RON
environment for editing and simulating RONs has been extended with conflict analysis. Apart
from the classical situation of two transitions in a P/T net being in conflict, it is now also possi-
ble to analyze conflicts between parallel applicable net transformation rules, as well as between
enabled transitions and net transformation rules. The knowledge about conflicts helps to detect
potential problems in system behavior, e.g. ”a produce transition can be deleted even if there are
still resources for productions available”.

To the best of our knowledge, no other Petri net tool offers the possibility to define and analyze
net transformations by rules represented as tokens in a high-level net.

Work is in progress to optimize the analysis result visualization (e.g. by showing the overlap-
ping part of two rule matches only once, and by indicating which are the critical objects causing
the conflict). Furthermore, we plan to improve the conflict analysis performance for analyzing
also more complex case studies.
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The GP Programming System

Greg Manning and Detlef Plump

The University of York

Abstract: We describe the programming system for the graph-transformation lan-
guage GP, focusing on the implementation of its compiler andabstract machine. We
also compare the system’s performance with other graph-transformation systems.
The GP language is based on conditional rule schemata and comes with a simple
formal semantics which maps input graphs to sets of output graphs. The imple-
mentation faithfully matches the semantics by using backtracking and allowing to
compute all possible results for a given input.

Keywords: GP, programming system, graph transformation, non-determinism

1 Introduction

GP is a non-deterministic graph programming language basedon conditional rule schemata in
the double-pushout approach [PS04]. The core of GP consists of just four constructs: single-
step application of a set of rule schemata, sequential composition, branching and iteration. The
language is computationally complete [HP01] and comes with a formal semantics [PS08]. The
current implementation of GP consists of a graphical editorfor programs and graphs, a compiler
and the York Abstract Machine (YAM). These components communicate as shown in Figure1
(where YAMG is an internal graph format of the abstract machine).

Figure 1: An overview of the GP system

We describe GP by means of an example. Consider the programminimum spanning tree

1 / 13 Volume X (2008)



The GP Programming System

in Figure2. This program calculates a minimum spanning tree for its input graph.1 The program

main = pickNode;(addEdge;minEdge!;addNode)!.

pickNode(x:int)

x

1

=⇒ x 0

1

addEdge(x,a,e:int)

x 0

1

a

2

e
=⇒ x 0

1

a

2

e 0

minEdge(x,y,e,f,a,b:int)

x 0 a

y 0 b

3 4

1 2

f

e 0

=⇒

x 0 a

y 0 b

3 4

1 2

f 0

e

all matches where f < e

addNode(x,a,e:int)

x 0

1

a

2

e 0
=⇒ x 0

1

a 0

2

e 0

Figure 2: GP programminimum spanning tree

consists of four rule-schema declarations and the main command sequence following the key
word main. Given an input graph whose nodes and edges are labelled withintegers, the pro-
gram first uses the rule schemapickNode to choose any node and replace its labelx with x 0.
The underscore operator allows to add atag to a label, where in general a tagged label consists
of a sequence of expressions joined by underscores. (Sequences of expressions are just ordinary
labels, allowing GP’s underlying theory to be based on a standard variant of the double-pushout
approach rather than on some complicated model of attributed graph transformation.) This pro-
gram uses the tag 0 to mark the nodes of a spanning tree. After the initial node has been marked,
the iteration operator ’!’ executes the subprogram(addEdge;minEdge!;addNode)as long
as possible. The subprogram first picks any edge between a marked node and an unmarked node.
Then the loopminEdge! repeatedly swaps this edge with an edge having a smaller label, where

1 A spanning tree for a directed graphG is a subgraphS of G such that the undirected graph underlyingS is a
spanning tree for the undirected graph underlyingG.
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the latter is checked by the conditionwhere f < e. The flagall matches allows this rule
schema to be matched non-injectively whereas the default inGP is injective matching. After the
minimum edge between the current tree nodes and any unmarkednode has been determined, the
unmarked node of this edge is added to the spanning tree by therule schemaaddNode. It is not
difficult to see that upon termination of the outer loop, the marked nodes and edges constitute
a minimum spanning tree of the input graph. (The rule schemata addEdge, minEdge and
addNode are actually sets of rule schemata which are obtained from those depicted by revers-
ing edges in all possible ways:addEdge andaddNode consist of two rule schemata while
minEdge contains four schemata. For readability, we have omitted these rule schemata in Fig-
ure2.) In general, a graph can have several minimum spanning trees and the program in Figure
2 allows to compute all of them.

A leitmotiv for GP’s design has been syntactic and semantic simplicity, see also [PS08]. There
is only one other core construct besides those occurring in the minimum spanning tree program:
a conditional statement of the formif C then P else Q (whereC, P andQ are programs).
Our programming experience so far suggests that these few constructs are sufficient and allow
succinct solutions to problems. It is possible though to simulate more elaborate control mecha-
nisms. Consider, for example, a conditional loop of the formwhileC do P which executes its
bodyP as long as the programC succeeds. An equivalent GP program is (ifC then P else
fail)!; ifC then fail (wherefail is an always failing program such as the empty set of
rules). As another example, the choice to apply a ruler either once or not at all can be simulated
by the rule set{r, /0⇒ /0} (where /0⇒ /0 has the empty graph on both sides).

The rest of this paper is organized as follows. The next section briefly adresses the graphical
user interface of the GP system, Section3 introduces the York abstract machine and Section4
discusses the GP compiler. Section5 compares the performance of the GP system with other
graph-transformation environments. In Section6, we conclude and give some topics for future
work.

2 Graphical Editor

The GP graphical editing environment is a Java application which allows graph and program
creation, loading, editing and saving, and program execution on a given graph. The outputs of
executions are then available as inputs to other programs. Figure 3 shows a screenshot of the
graphical editor with the ruleminEdge of Figure2 being edited. The editor visualises graphs
using the prefuse data visualisation library [HCL05], which permits graph layout and editing.
The main graph drawing algorithm used is a force-directed layout. Figure5 shows a graph
drawn by this algorithm.

3 The York Abstract Machine

The York abstract machine (YAM) is more fully described in [MP06]. Here, we give an overview
highlighting the areas which have changed in the meantime.

The YAM is a backtracking graph-transformation machine which executes bytecode for low-
level graph operations. It can handle nondeterministic programs and is in parts similar in de-
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Figure 3: A screenshot of the graphical editor

sign to Warren’s abstract machine for Prolog [AK91]: it manages GP’s nondeterminism using a
mixed stack of choice points and environment frames. The implementation of backtracking in
PROGRES [Zün92] takes a WAM-like approach too, although it uses the host language’s call
stack rather than explicit data structures. The YAM also manages the current host graph and a
(typically) small data stack.

Figure4 shows an example state of the choice point and environment frame stack. Choice
points consist of a record of the number of graph changes at their creation time, a program
position to jump to if failure occurs when the choice point isthe highest on the stack, and pointers
to the previous choice and containing environment. The number of graph changes is recorded so
that, when backtracking, the graph changes can be undone: using the stack of graph changes, the
graph as it was at the choice point is recreated. Environmentframes have a set of registers to store
label elements or graph element identities, and an associated function and program position in
the bytecode. They also show which environment and program position to return to. The number
of registers each frame has is determined by the bytecode — itis fixed at compile time.

The current host graph is stored in a complex data structure,making use of the heavily opti-
mised Judy data structures [Siv02]. The structure is designed in such a way that the graph can be
interrogated easily and very quickly, at the cost of slightly slower graph updates. Typical queries
to the graph structure are “edges whose target node is noden” or “nodes whose label has the
value 1 in position 1”. Each element (node or edge) in the graph is labelled with a list of values,
each of which is of type integer or string. The YAM bytecode allows any query over the length
of the list or the type or value of the list elements, such as “all nodes with a label of size two”, or
“all edges with an integer in the second position.”

The machine as presented in [MP06] handled nondeterminism internally. At the bytecode
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Figure 4: An example choice/environment stack

level, the instructions effectively returned a correct result: if a choice led to a failure (and such
was a wrong choice), then the machine would trigger backtracking and retry the choice until a
correct result was obtained. Now, however, the machine simply provides explicit instructions
for handling nondeterminism such asOnFail2, UpdateFail3 andAssert4. This change
was made to unite the failing and non-failing versions of thegraph queries, and to allow more
expressiveness at the bytecode level.

Using these instructions, the compiler constructs helper functions to implement backtracking.
Nondeterministic choice between a set of graph rules is handled by trying them in textual order
until one succeeds. Before each is tried, the failure behaviour is configured to try the next.
Nondeterministic choice between graph-element candidates for a match is handled by choosing
and saving the first element, and on failure, using the saved previous answer to return (and save)
the next element.

Nodes and edges are identified in the structure by integers, and the graph structure contains
many ordered lists of such integers. This allows complex conjunctive queries to be performed
by intersecting ordered lists of integers. For example, in finding the left-hand side of the rule
addEdge in the program of Figure2, having found thex 0 node, a list of potential edges is
created by intersecting the list of all edges leaving this node, the list of all edges which havee
as their first label, and the list of all edges having a label sequence of length one. The code then
creates an environment to store the previous answer returned, and uses theNext instruction to
give the first answer in the intersection which is numerically greater than the previous answer.
It saves this answer to the stack and returns it. If a failure occurs whilst this choice point is on
top of the stack, the code will return the next answer. When there are no more answers it will
propagate the failure to a previous choice point.

2 OnFail pops a code location and creates a new choice point which willjump to that code location on failure.
3 UpdateFail pops a choice point pointer and a code location and changes the choice point so that it now goes
to the new location on failure.
4 Assert pops the top of stack and fails if it is zero.
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Because the underlying data structure stores the node and edge references in the lists as ordered
lists of integers, finding the next element in the intersection is very fast. An intersection can be
done in timeO(ln), wherel is the length of the shortest list in the intersection andn is the number
of lists being intersected. Note that the entire intersection is not generated in one go, the elements
of the intersection are found one at a time, as needed.

4 Compiler

The GP compiler converts textual GP programs into YAM bytecode. It does this by translating
each individual rule or macro into a sequence of instructions, and composing these sequences
using the YAM function calls.

4.1 Generating a searchplan for graph matching

Searchplan generation is a common technique for implementing graph matching [GBG+06,
HVV07, Zün96]. The GP compiler decomposes graph rules into a static searchplan of node
lookups, edge lookups (find an edge whose source and target have not been found yet) and ex-
tensions (find an edge whose source or target has been found).The choice and order of these
search operations is determined using the following priorities, always preferring elements with
value labels over those with variable labels:

1. Check parts ofwhere clauses whose variables have all been bound, that is, all label
variables have been instantiated, and all nodes or edges referred to have been found.

2. Find nodes on the ends of edges which have been found.

3. Find edges where both the start and the end node have been found.

4. Find edges where either the start or the end node has been found.

5. Find nodes where there is a negative edge condition of the formnot edge(v,w) at the
top level of thewhere clause5 and eitherv or w has been found.

6. Find nodes.

The nondeterminism in this list of priorities increases: where clause checks and finding nodes of
known edges are deterministic operations, finding unrestricted nodes is highly nondeterministic.
There will be many different plans which satisfy these priorities, however since the compiler
generates static plans (that is, the host graph is not interrogated), there is no more information to
use in the generation. The choice between possible plans is made using an ordering taken from
the programmer: elements mentioned first in the textual input program will be found first. For
example, the first step in a searchplan is to find the first (labelled) node mentioned.

Both GrGen [GBG+06] and Fujaba [NNZ00] also make extensive use of searchplans. Gr-
Gen.NET [BG07] uses online searchplan generation, so that the searchplans can be recalculated
during execution. This improves the quality of the generated searchplan significantly.

5 That is, the negative edge condition is one of the conjunctsC1, ...,Cn in whereC1 and . . .andCn.
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Once a match has been found, and thewhere clause has passed, the remainder of the code
for the graph rule handles the changes to be made to the graph.The compiler determines the
changes and orders them as follows: deleted edges, deleted nodes, relabelled nodes or edges,
added nodes, added edges. This order ensures that no nodes are deleted before their incident
edges, and no edges are created before their incident nodes.

4.2 Compiling GP commands

With the individual graph rules compiled, they can be composed into a complete YAM program.
There are several ways of joining subprograms in GP: sequential composition, macro calling,
if-then-else branching, and as-long-as-possible iteration. The compilation of a sequential com-
positionP;Q is trivial: the bytecodes forP andQ are concatenated. Macro calling is achieved
by using theCall or TailCall6 bytecode instructions.

As-long-as-possible iteration,P!, is implemented as follows:

1. Create new failure behaviour to succeed (continue) on failure.

2. ExecuteP once.

3. Change failure from instruction 1 from succeed to fail. Having a failure behaviour which
simply fails is the same as having no failure behaviour at all; however, failure behaviours
cannot be removed since they may be referenced elsewhere in the stack.

4. Go to instruction 1.

The failure behaviour must be altered in step 3 to maintain the semantics and not an any-number-
of-times semantics.

As rule sets (apply one rule from a set) are compiled, an ordering is imposed upon them. The
compiled bytecode tries the first rule, and on failure will try the next rule until the end of the set
is reached. If none of the rules successfully applied, then the whole rule set fails. The ordering
imposed is the order in which the rules appear in the program text.

GP’s branching constructifCthenPelseQ first executes the subprogramC on the input
graph. If this yields a result, programP is executedon the input graph. Otherwise, if all execu-
tions ofC end in failure, programQ is executed on the input graph. The construct is compiled in
the following way:

1. Create failure behaviour to go to step 5 on failure.

2. Execute the conditionC.

3. ClearFail the failure point created in step 1, that is, undo the graph changes, forget
the choices back to that point and remove that failure frame,but leave the program pointer
unchanged.

4. Execute the then-partP and succeed.

5. Execute the else-partQ and succeed.

6 TailCall is equivalent to call-then-return, but is actually implemented as return-then-call because this saves
space on the call stack.
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5 Performance

In this section we compare the performance of the GP system with the performance of similar
environments. We focus on a simple problem which has been implemented in different graph
programming systems in the context of the AGTIVE 2007 tool contest [TBB+08]. The task is to
generate a graph of thenth generation of the Sierpinski triangle, producing one generation at a
time. A Sierpinski triangle is a triangle split into 4 subtriangles (made by joining the midpoints
of the 3 edges), where the 3 subtriangles containing one of the original vertices are themselves
Sierpinski triangles. Sierpinski triangles are represented as graphs using nodes as vertices of
triangles and edges as edges of triangles. As a true Sierpinski triangle has infinite detail, we
must generate an approximation. We say that thenth generation of a Sierpinski triangle is one
which has a depth ofn. The 0th generation Sierpinski triangle is a simple triangle. Figure5
shows the 4th generation Sierpinski triangle.

Figure 5: A 4th generation Sierpinski triangle
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5.1 Generating Sierpinski triangles with GP

The GP programsierpinski is presented in Figure6. It expects as input a graph consisting
of a single node labelled with the generation number of the Sierpinski triangle to be produced.
The rule schemainit creates the initial Sierpinski triangle (generation 0) andturns the input
node into a unique “control node” whose label is of the formx y. The underscore operator is
used here to hold the required generation numberx and the current generation numbery in a
single node.

After init has been applied, the nested loop(inc; expand!)! is executed. In each
iteration of the outer loop, the rule schemainc increases the current generation number if it is
smaller than the required number. The latter is checked by the conditionwhere x > y. If the test
is successful, the inner loopexpand! performs a Sierpinski step on each triangle whose root7

is labelled with the current generation number: the triangle is replaced by four triangles such that
the roots of the three outer triangles are labelled with the next higher generation number. The test
x > y fails when the required generation number has been reached.In this case the application
of inc fails and, as a consequence, the outer loop terminates and returns the current graph. It
is not difficult to see that the resulting graph is indeed the Sierpinski triangle of the required
generation.

5.2 Comparison with other systems

In Figure7 we present the execution times for the GP system and some other graph transforma-
tion systems that participated in the Sierpinski tool contest. The times for GP were obtained on a
PC with an Intel Pentium 4 processor with a clock rate of 2.8GHz and 512MB of main memory.
The times for the other systems were obtained on comparable machines. Our figure includes
only a subset of the tools described in [TBB+08]. We have omitted tools that are tailored for
parallel rule applications in specialised areas but cannotbe considered as general-purpose graph
transformation tools.

As Figure7 demonstrates, GP is faster than five other systems and is beaten only by Gr-
Gen.NET and Fujaba. GrGen.NET requires the programmer to specify types of node and edges
(often hierarchical types with multiple inheritance). Theinformation gained from these types
gives more information to the graph matching algorithm and also allows better compilations.
GP has very little typing, freeing the programmer from specifying these overarching types. This
allows shorter, more succinct programs at the cost of some speed. However, as demonstrated by
this benchmark, the speed lost is not too great.

5.3 Non-deterministic programs

Other graph programming systems do not fully exploit the non-deterministic nature of graph
transformation rules. The semantics of GP programs on inputgraphs areall possible output
graphs, and this is taken seriously by the implementation inthat it provides users with the option
to generate several or even all possible results. This mechanism is complete for terminating

7 Theroot of a triangle is the unique node (if it exists) from which a 0-edge and a 1-edge is outgoing. Note that the
inner triangle on the right-hand side ofexpand does not have a root, hence it will never be expanded.
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main = init;(inc;expand!)!.

init(x:int)

x

1

=⇒ 1

x 0 1

0 0

0 1

2

inc(x,y:int)

x y

1

=⇒ x y+1

1

where x > y

expand(x,y,u,v:int)

1 2

3 4

x y y

u v

0 1

2

=⇒

1 2

3 4

x y y+1

u v

y+1 y+1

0

0

0 0

1

1 1
2

2 2

Figure 6: The Programsierpinski

programs. In contrast, AGG [ERT99] makes its nondeterministic choices randomly, with no
backtracking. Similarly, Fujaba has no backtracking. It seems that PROGRES [SWZ99] is the
only other graph transformation language in use that provides backtracking.

The Sierpinski example presented above is a deterministic problem. That is, the program
sierpinski computes a function where each input graph produces a singleoutput graph.
Although in the GP implementation there is a choice of which order to convert subtriangles
to the next generation, since they will all get done eventually this is a confluentprogram in
that all output graphs are isomorphic. This is not always thecase. For example, the program
minimum spanning tree presented in the Introduction is non-confluent: for an inputgraph,
there is not necessarily a unique minimum spanning tree. Theimplementation of GP respects
the semantics, and allows computation of all possible minimum spanning trees. The use of
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this non-determinism is not limited to finding multiple answers. It is possible, and common, to
write programs which rely on the backtracking behaviour to filter results, or make correct non-
deterministic guesses. Most other graph transformation systems do not allow such programs.
Neither AGG nor Fujaba allow backtracking over graph rules.The GrGen.NET API supplies
tools necessary to perform backtracking (such as presenting all possible matches of a rule), but
the GrShell example environment [BG07] does not allow backtracking in this manner.

Using nondeterminism to this extent is sometimes problematic. In the Sierpinski example, the
order in which the matches of theexpand rule are applied makes no difference, yet if later in the
program there was a failure, the backtracking mechanism would try all possible different orders
of the matches. It is an item of future work to develop analysis techniques to detect and disable
the backtracking in such cases (see also the remarks in the next section). Since no backtracking
is required in the Sierpinski example, our solution had the backtracking mechanism of the YAM
disabled.

6 Conclusion and Future Work

The GP implementation matches faithfully GP’s semantics and allows to compute all results of
a (terminating) program. GP is a small clean language, with enough structure so that it is us-
able, but little enough that the semantics is understandable and useable for arguments and proofs
[PS08]. The system is reasonably fast; slow execution is usually caused by a vast nondetermin-
istic search space which can often be avoided by programmingcarefully.

The YAM can give more than one answer, or all answers. It provides a clearly defined sep-
aration between runtime and compile time actions. Whilst the YAM has been designed as part
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of the GP system, it is by no means restricted to it; other graph systems and semantics could be
realised using the bytecode provided by the YAM.

In the current implementation of GP, only one match of one rule is executed at a time. Other
graph programming systems can execute multiple rules or multiple matches in parallel, which
can give large speed gains in certain situations. The GP system does not currently do this because
it involves a considerable amount of checking that all the matches can be successfully executed
without interfering with each other, and would make the bookkeeping for backtracking very
complex.

The GP system generates static searchplans at compile time,so no host-graph interrogation
is possible. With runtime searchplan generation (as in GrGen.NET [GBG+06]), it is possible to
always match the rarest elements first, which reduces the search space to find a match.

As GP programs get larger, it may be useful to include optional conservative static type check-
ing. This may be implemented as graph metamodels or more complex typing systems such as
the GRS types of [BPR04]. By analysing programs, it will sometimes be possible to guarantee
that certain graph structures do or do not occur.

In many cases, nondeterministic (sub)programs are confluent: they cannot possibly fail, and all
solutions are isomorphic. Using static analysis techniques such as critical-pair analysis [Plu05],
it will sometimes be possible to detect these situations. This is useful information in itself,
but can also be used to speed up the implementation, since backtracking would not be required
through a confluent section of a program.
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Abstract: Templates are a language feature of C++ and can be used for metapro-
gramming. The metaprogram is executed by the compiler and outputs source code
which is then compiled. Templates are widely used in software libraries but few
tools exist for programmers developing template code. In particular, error messages
are often cryptic. During template instantiation, a compiler looks up names that
depend on a template’s formal parameters. We use graphs to represent the rele-
vant parts of the source code and a graph program for the name lookup and type
checking for expressions involving such names. This technique provides compiler
writers with a visual way of writing algorithms that generate error messages and
forms the basis for a visual inspection of type problems and suggested remedies for
the programmer. Our graph program terminates and emits correct error messages.

Keywords: Graph programs, Type checking, C++

1 Introduction

Templates are a feature of the C++ programming language for generic programming, i.e. pro-
grammed code generation. Generic source code is written by omitting the specific data types
of variables and instead supplying those as parameters (parameterized types). A parameterized
type and variable of that type can be used as any other type or variable, e.g. the type name can be
used to resolve names and the variable’s members can be accessed. This way, templates separate
types from algorithms in design, and combines them into new class-types and functions at com-
pile time. Compared to non-template code which uses a generic type likevoid *, an immediate
advantage from templates is improved static type checking.Templates are used extensively in the
Standard Template Library and Boost libraries [Jos99, AG04]. They have also found use in per-
formance critical domains, such as scientific computing andembedded systems [Vel98, Str04].
An introduction to templates can be found in e.g. [Str00].

A class type or function containing generic source code is called atemplate definition. A list
of type parameters for a particular template definition is called adeclaration. For each unique
declaration, thetemplate instantiationmechanism generates a specialization of that template
definition. Aspecializationis a copy of the definition where the parameterized types are replaced
by the declaration’s actual type parameters. Non-types, i.e. constants, are allowed as template
parameters, allowing e.g. array sizes to be set at compile time. Templates form a computationally
completemetalanguage[CE00], a sub-language of C++ executed during compilation.

Consider the following example: A parameterized type is used to resolve the namesize in
the template definition in Figure1. The first specialization is for the declarationicon<char>
and will not compile since the provided typechar has no field namedsize and can therefore
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not be used for the expression defining the array size. For thesecond specialization, if the type
resolution<128> contains a static field namedsize of an unsigned integer type, then the
second specialization will compile.

template<typename RESOLUTION>
s t r u c t i c o n {

p i x e l m icon
[RESOLUTION: : s i z e]
[RESOLUTION: : s i z e ] ;

/∗ . . . ∗ /
} ;

Template definition

icon<char> w r o n g d e c l a r a t i o n;

i con<r e s o l u t i o n<128>>

c o r r e c t d e c l a r a t i o n;

Declaration

Metaprogram

s t r u c t i con<char> {
p i x e l m icon [ char : : s i z e ] [ char : : s i z e ] ;
/∗ . . . ∗ /

} ;

s t r u c t i con<r e s o l u t i o n<128>> {
p i x e l m icon

[ r e s o l u t i o n<128>:: s i z e]
[ r e s o l u t i o n<128>:: s i z e ] ;

/∗ . . . ∗ /
} ;

Specializations

Tem
p

late
in

stan
tiatio

n

Compiler

Figure 1: C++ template instantiation.

Even though templates are a useful technique, they can be complex and difficult to read and
write. In particular, error messages are often cryptic. This has led to the development of methods
and tools to analyze template code. The usage of specializations can be analyzed by debuggers,
software patterns like tracers [VJ02], and tools like TUAnalyzer [GPG04]. For the metaprogram
itself, research is being done on a debugging framework Templight [PMS06].

To improve error messages, we suggest modeling definitions and declarations by graphs,
while name lookup and type checking of such graphs is made by graph programs that emit error
messages as graphs instead of text. Graphs allow an abstractand visual representation of all
necessary information, while graph programs provide an intuitive way of writing programs that
detect problems and suggests remedies. In combination withpresentation techniques such as
focusing (on relevant parts) and hierarchical depiction, we believe that our model is usable as a
basis for a visual inspection of type problems and suggestedremedies.

Graph transformation systems is a well investigated area intheoretical computer science. An
overview on the theory and applications is given in the bookFundamentals of Algebraic Graph
Transformation[EEPT06]. Graph transformation systems rewrite graphs with (graphtransfor-
mation) rules. A rule describes a left- and right-hand side.A transformation step is done by
matching the left-hand side to a subgraph of the considered graph and modifying that subgraph
according to the difference of the left- and right-hand side. Graph programs [HP01, PS04] pro-
vide a computationally complete programming language based on graph transformations. Graph
conditions [HP05] can be used to express properties of graphs by demanding or forbidding the
existence of specific structures. In a similar way, graph conditions can limit the applicability of
rules in a graph program, by making demands on elements localto the subgraph matched by a
rule.

In this paper, we use graphs to represent the template sourcecode necessary for name lookup
and type checking during template instantiation. We refer to those graphs as source-code graphs.
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A graph programTTC (Template-Type Checker) looks up dependent names and detects type
clashes in expressions for a subset of the C++ template features. TTC attempts to solve type
clashes by implicit type casts. If such a cast loses precision, a warning message is generated. If
no appropriate cast is found, an error message is generated,indicating the location of the error
and suggesting a remedy for the programmer.TTC outputs a message graph, where errors and
warnings are embedded. The message graph is interpreted by the programmer with the help
of graph conditions. Graph conditions detect warning and error messages in graphs and when
an error is present, they can determine for which declarations a definition can successfully be
instantiated. Figure2 gives an overview.

graph program
TTC

source-code-graph
transformer

programmer

write / update
interpretation with
graph conditions

message graph

source-code graph

source code

Figure 2:TTC type checks graphs and outputs error messages.

The paper is structured as follows. Graph programs are introduced in Section2. Section3
informally describes how C++ source code is transformed into source-code graphs and defines
type safety for graphs. In Section4 we present the graph programTTC for transforming a source-
code graph into a message graph. In Section5 we give proof ideas for how to show thatTTC
terminates and that the error messages generated by it correctly indicate that the input is not type
safe. We conclude our results in Section6. A long version of this paper, with complete proofs
and more examples, is available as a technical report, see [AP07].

2 Graph Programs

In this section, we review conditions, rules, and programs,in the sense of [HP05] and [HP01]. In
the following, we consider the category of directed labeledgraphs with all injective graph mor-
phisms. Labels distinguish different types of nodes and edges and directions model relationships
between nodes. We use the standard definition of labeled graphs and labeled graph morphisms,
see [EEPT06] or [AP07] for details. For expressing properties on graphs we use so-called graph
conditions. The definition is based on graph morphisms.

Definition 1 (Graph conditions) Agraph conditionover an objectP is of the form∃aor∃(a,c),
wherea: P→C is a morphism andc is a condition overC. Moreover, Boolean formulas over
conditions (overP) are conditions (overP). A morphism p: P→ G satisfiesa condition∃a
(∃(a,c)) over P if there exists an injective morphismq: C→ G with q◦ a = p (satisfyingc).
An objectG satisfiesa condition∃a (∃(a,c)) if all injective morphismsp: P→ G satisfy the
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condition. The satisfaction of conditions overP by objects or morphisms with domainP is
extended to Boolean formulas over conditions in the usual way. We write p |= c (G |= c) to
denote that morphismp (object G) satisfiesc. In the context of rules, conditions are called
application conditions.

We rewrite graphs with rules in the double-pushout approach[EEPT06]. Application conditions
specify the applicability of a rule by restricting the matching morphism.

Definition 2 (Rules) Aplain rule p= L← K→ R consists of two injective morphisms with
a common domainK. L is the rule’s left-hand side, andR its right-hand side. Aleft application
conditionac for p is a condition overL. A rule p̂ = p,ac consists of a plain rulep and an
application condition ac forp.

L K R

G D H

m m∗(1) (2)

Given a plain rulep and injective morphismK→D, adirect derivationconsists of two pushouts
(1) and (2) where thematch mandcomatch m∗ are required to be injective. We write a direct
derivationG⇒p,m,m∗ H. Given a graphG together with an injective matchm : L→G, the direct
derivationG⇒p,m,m∗ H can informally be described as:H is obtained by deleting the image
m(L−K) from G and addingR−K. Given a rule ˆp = p,ac and a morphismK→ D, there is
adirect derivation G⇒p̂,m,m∗ H, if G⇒p,m,m∗ H, andm |= ac.

We now define graph programs as introduced in [HP01].

Definition 3 (Graph programs) Every rulep is a (graph) program. Every finite setS of
programs is a program. IfP andQ are programs, then(P;Q), P∗ andP↓ are programs. These-
manticsof a programP is a binary relationJPK⊆ GC ×GC on graphs: (1) For every rulep, JpK =
{ G,H |G⇒p H}. (2) For a finite setS of programs,JS K = ∪P∈S JPK. (3) For programsP
andQ, J(P;Q)K = JQK◦ JPK, JP∗K = JPK∗ andJP↓K = { G,H ∈ JPK∗ | ¬∃M. H,M ∈ JPK}.

Programs according to (1) areelementaryand a program according to (2) describes thenonde-
terministic choiceof a program. The program(P;Q) is thesequential compositionof P andQ.
P∗ is thereflexive, transitive closureof P, andP↓ theiterationof P as long as possible. Programs
of the form(P;(Q;R)) and((P;Q);R) have the same semantics and are considered as equal; by
convention, both can be written asP;Q;R. We useP↓+ as a shortening ofP;P↓.

Notation. When the label of an element is eithera or b we use the notationa|b. L⇒ R is
used a short form of L← K→ R , whereK consists of the elements common toL andR. For
an application condition with morphisma: P→ C, we omit P as it can be inferred from the
left-hand side. We omit the application condition if it is satisfied by any match. To distinguish
nodes with the same label, we sometimes add an identifier in the form of “label:id”. We use
source-code fragments as identifiers and therefore print them in a fixed-width font.
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3 From Source Code to Source-Code Graphs

In this section, we introduce source-code graphs, the inputfor our type-checking program, and
informally describe how source code is transformed into such graphs. A source-code graph
is a graph representation of template definitions, declarations, and expression’s specializations.
The type signature of every declared method, function, and operator in a template definition is
represented in the graph by an overload forest, see below. Expressions that involve parameterized
types are represented in the graph by expression paths, explained shortly. For every declaration,
the above mentioned graph representations are copied and the parameterized types are replaced
by the actual types provided by the declaration.

The basic elements of our source-code graphs are nodes for template definitions, declarations,
data types, names, type signatures, and expression trees. For quick reference, node and edge
labels together with a short explanation are listed below. Note that a visualization of an edge as
dashed or solid denotes a difference in labels.

Nodes Edges
D declaration p actual parameter = comparison
E error message t data type c cast without precision loss
ex (sub)expression T template definition d deduced type of expression
ol overloaded operator W warning message p parameter
op operator name pc cast with precision loss

r return type
R recovered comparison

Template definitions are represented by T-nodes. Two declarations are equivalent if they are
based on the same template and have equal lists of template parameters. Each class of equivalent
declarations are represented by a D-node and denotes a future specialization. Each D-node has
an incoming edge from the T-node representing the template definition the declaration means to
instantiate. Possible template parameters are represented by t-nodes. Such parameters include
classes, structures, fundamental types, and constants. Operator-, function- and method names
are represented by op-nodes. In [AP07] we show a graph program that generates source-code
graphs.

Example1 Consider the source code with two class-type templates, line 1 and 18, in Figure3.
The principal data type is theicon structure with a template parameter for its resolution type.
Theresolution structure has a constant template parameter for a (quadratic) resolution. For
the two unique declarations inmain, name lookup and type checking is needed for the expres-
sions on lines 3, 20, 23, 24, 25, 40, and 41. In Section4 we will show how the graph program
TTC reports the type clash in the expression on line 41. Note thatFigure4 shows the source-code
graph of the source code example from Figure3 where the above mentioned lines are represented
as expression paths. That source-code graph also shows the overload trees for the operators on
line 3 and 22. For completeness, some overload paths representing used operations native to C++
are also included, e.g. comparison (<) of integers.

We will now introduce some necessary graph-theoretic notions. In particular, we introduce and
use expression paths and overload trees to define type safetyfor graphs. Expression paths rep-
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Figure 3: Two class-type templates.

resent the type information from an expression tree and are modeled by ex- and p-nodes. The
root of the tree becomes an ex-node and has an incoming edge from the D-node that represents
the specialization in which it will exist. Each ex-node has an edge to the op-node denoting the
operation’s name. We allow for operators with an arbitrary number of operands, so the children
of the root in an expression tree are modeled by a path of p-nodes. If such a child is a subex-
pression, then the corresponding p-node has an edge to a new expression node. If it is not, then
it denotes a type and its p-node has an edge to the t|D-node denoting that type.

Definition 4 (Expression paths) Given a graphG and a natural numberi, an i-expression path
in G is a pathex p0 . . . pi, where the head,ex, is an ex-node andp0, . . . , pi are p-nodes such that,
from every nodepk, 0≤ k < i, the only edge to another p-node is topk+1.

Example2 Figure5 shows (to the left) an expression tree denoting line 41 in Example 1 to-
gether with its corresponding2-expression path (to the right).

We represent the type signatures of methods with overload forests, trees and paths. A method
namedmethod declared in class typeclass with n parameters is represented by a path of
n+2 ol-nodes. The head of that path has an edge to the op-node representing the namemethod
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Figure 4: A source-code graph split in two for simpler representation, but note that the two
subgraphs are not disjoint: the nodes with identical ids (see the center column) are identified.
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Figure 5: Expression paths represent expression trees.

and another edge to the t|D-node representingclass. The ol-node at positionk (2≤ k≤ n+1)
in the path has an edge to the node denoting the type of the variable at parameter positionk−1.
The last ol-node in the path has an edge to the t|D-node denoting the return type ofmethod.
Functions are modeled as methods but as declared in a specialclass with a name not allowed
in the source language, e.g.functions & operators. Operator overloading is modeled
as functions. In the following operators, methods, and functions are collectively referred to as
operators.

Definition 5 (Overload forest) A graphG contains anoverload forestiff all ol-nodes inG are
part of exactly one overload tree and there exist no pair of overload trees with equivalent roots,
see below. Anoverload treeis a maximal connected subgraphT in G, consisting of only ol-
nodes.T is maximal in the sense that, if an ol-node inT has an edge to an ol-node, then that
node is also inT. Furthermore,T must have a tree structure, i.e. no cycles and every node has
one parent, except for the root. For nodes inT the following holds for them inG: (1) Each
internal (leaf) node has exactly one p-edge (r-edge) to a t|D-node, one edge from its parent, and
no other incoming edges. (2) The root ofT has an additional edge to an op-node. (3) No two
siblings have a p-edge to the same t|D-node. (4) Every node has at most one child that is a
leaf. Requirements 3 and 4 are necessary to prevent ambiguous type signatures. Two roots are
equivalentiff there exists an op-nodeo and t|D-nodet, such that both roots have edges too and
t. An i-overload path o0 . . .oi+1 is a path inT from the root to a leaf. The t|D-node to which an
r-edge exist fromoi+1 is called thereturn typeof the i-overload path.

Example3 The overload tree in Figure6 has two2-overload paths, representing the type sig-
natures of two overloaded operators. The tree represents the operator template on line 22 and the
two paths are generated for the two declarations on line 40 and 41 in Figure3.
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Figure 6: Two overload paths.
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Remark 1.The size of a source-code graph grows linearly with the size of the source code that
would be output by the template instantiation mechanism in aC++ compiler. An expression or
declared operator that exists in such source code is represented only by a single expression path
or overload path, respectively.

The main property in this paper is the one of type safety. A graph is type safe if for every expres-
sion path, there exists an overload path with the same type signature. This property corresponds
to type safety for template instantiation in C++ programs, where every generated expression
must be type checked against the existing and generated operators.

Definition 6 (Type-safe graphs) A graphG is type safeiff it contains an overload forest and is
i-type safe for all natural numbersi. G is i-type safeiff every i-expression path inG is type safe.
An i-overload patho0 . . .oi+1 makes thei-expression pathex p0 . . . pi type safeiff:

1. There exists an op-nodeop and two edges: one fromex to op, the other fromo0 to op.

2. For allk, where 0≤ k≤ i, there exists a t|D-nodet and two edges, one fromok to t and the
other is frompk to either t or the head of a type safej-expression path such thatt is the
deduced type of the thatj-expression path.

Thededuced typeof the i-expression path is the t|D-node with an incoming r-edge fromoi+1.

It is easy to see that no overload path from Figure6 makes the expression path in Figure5 type
safe.

4 The Type-Checking Program

This section describes the graph programTTC which performs the name lookup and type checks
source-code graphs. The section also shows how message graphs are interpreted with graph
conditions.

A schematic of how the subprograms ofTTC interact is shown in Figure7. Intuitively,
TTC works as follows: The input is a source-code graph, each expression path is marked by
MarkExpression, andCompare moves this marker through the path until it reaches the tail
or a type clash. At a type clash,Recover either solves it or generates an error message. For
markers at a tail,Resolve finds the deduced type of the expression path (i.e. it resolves the
type of a subexpression). This chain is then iterated as longas new work is made available by
Recover andResolve for Compare. The yield ofTTC is a message graph. Programs and
rules are described in more detail below.

Definition 7 (TTC) Let the graph programTTC = MarkExpression↓;TypeCheck↓
with the subprograms:

TypeCheck = Compare↓+;Recover↓;AfterRecover↓;Resolve↓
Compare =

{

Lookup,CompareNext,FindType
}

Recover = {Cast,Warning,Error}

Resolve =

{

ResolveSubexpression,
ResolveExpression1,ResolveExpression2

}
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MarkExpression↓

Compare↓+ Recover↓ AfterRecover↓ Resolve↓

source-code graph

message graph

TypeCheck↓

Figure 7: Structure ofTTC.

MarkExpression↓ is executed before the actual type checking starts and markss each ex-
node with an=-edge to show where the evaluation starts. To avoid duplicate evaluation, a loop
is also placed at the ex-node and checked for in the application condition.

MarkExpression: op ex ⇒ op
=

ex , ¬∃
(

op ex
)

Compare↓+ consists of the rulesLookup, CompareNext, andFindType, see Figure8.
They move the=-edge generated byMarkExpression through the expression path as long
as a matching overload path can be found. The program halts when it completes this matching
or encounters a problem: that no overload path makes this expression path type safe or that this
node in the path depends on the deduced type of a subexpression. The ruleLookup finds the
overload tree for a marked expression’s name.CompareNext matches the type signature of
the expression path to an overload path parameter by parameter. The ruleFindType is applied
at the tail of the expression path and deduces the expression’s type via the matched overload
path’s return type. The rule’s application condition makessure that this is actually the tail of the
expression path.
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Figure 8: Rules in the programCompare.
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Recover↓ consists of the rules Figure9 and tries to find alternative overload paths by implicit
type casts. The ruleCast finds a type cast that causes no loss of precision.Warning works as
Cast but uses a cast with a possible loss of precision. For this we generate a warning, a W-node
with three outgoing edges: the location of the problem, the original type, and the cast type. The
application condition make sure thatCast is preferred. The ruleError is applied when there
is no solution by implicit type casts. An error node is therefore generated. It has three outgoing
edges, to the p-node where it occurred, the faulting type, and a suggested type. The application
condition limitsError from being applied whereCast or Warning could be applied instead.

Cast :
p|ex

ol|op
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ol t|D
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Figure 9: Rules for the programRecover.

AfterRecover↓ performs some cleanup work forRecover↓, generated R-edges are reset
to =-edges.

AfterRecover: ex|p
R

op|ol ⇒ ex|p = op|ol

Resolve↓ consists of three rules, as shown in Figure10: ResolveSubexpression re-
places a subexpression with its deduced return type.ResolveExpression1marks an expres-
sion as evaluated with a dashed edge.ResolveExpression2 does the same in the special
case when the return type is the same as the specialization inwhere the expression occurs.

Example4 The graph in Figure11is the yield ofTTC applied to the overload tree from Figure6
and the expression path from Figure5. See [AP07] for more examples.
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Figure 11: Portion of a message graph.

Remark 2. After the termination ofTTC, graph conditions can help to interpret the message
graph. A graph is anerror (warning) graph iff it satisfies the condition∃( /0→ E ) (∃( /0→

W )). A particular declaration can safely be instantiated if its corresponding D-node satisfies

the condition¬∃( D → D ex). If that condition is not satisfied, then one of its expressions
could not be resolved and the programmer must take appropriate actions. A message graph will
contain all the detected errors for the corresponding source code. Graph conditions can therefore
help programmers to locate the areas of the graph that contain such errors. An implementation
of this approach should be able to highlight the areas containing the errors.

Remark 3.The size of the resulting message graph will not grow more than linearly with the size
of the corresponding source-code graph. This is so since every expression tree can at most be
marked by one error message. For size of source-code graphs,see Remark1

5 Correctness and Termination

We now define correctness with respect to errors and termination for graph programs. We give
the ideas for proving thatTTC terminates and is correct w.r.t. errors.

Definition 8 (Correctness and Completeness) A graph programP is correct with respect to
errors if for every pair G,H ∈ JPK, H is an error graph impliesG is not a type-safe source-
code graph. If the converse of the implication holds, we say thatP is complete w.r.t. errors.
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Theorem 1(Correctness) The graph programTTC is correct with respect to errors.

Proof idea. Errors are only generated byRecover and consumes an=-edge that should have
been consumed byCompare↓+, given thatTTC were initially dealing with a type-safe source-
code graph. A complete proof is given in [AP07].

Fact 1. The graph programTTC is not complete with respect to errors. E.g.Recover uses
implicit type casts, and thereby avoids generating errors for some non-type-safe graphs. It has
not yet been investigated whether or not other counterexamples exist.

Definition 9 (Termination) Terminationof a graph program is defined inductively on the struc-
ture of programs: (1) Every rulep is terminating. (2) For a finite setS of terminating programs,
S is a terminating program. (3) For terminating programsP and Q, (P;Q) is terminating.
Moreover,P∗ andP↓ is terminating if for every graphG, there is no infinite chain of derivations
G⇒P G1⇒P . . . where⇒P denotes the binary relationJPK on graphs.

Theorem 2(Termination) The graph programTTC is terminating.

Proof idea.Compare is applied at least once for every iteration ofTypeCheck and consumes
solid edges that are not generated by the other subprograms.A complete proof is given in [AP07].

6 Conclusions

We considered the template instantiation mechanism in C++ and showed how to write visual
rules for type checking and error message generation. We informally described how source code
was transformed into source-code graphs and defined type safety for graphs. We transformed
source-code graphs into message graphs, a transformation given by the graph programTTC
which type checked source-code graphs. The program automatically corrected some errors by
implicit type casts. It emitted error messages for type clashes that it could not correct. Proof
ideas were given for termination and correctness w.r.t. errors.
Further topics include:

1. Analysis of source-code graphs by generalized graph conditions. Graph properties like
“There exists a warning or error node” can be expressed by graph conditions in the sense
of [HP05]. It would be interesting to generalize graph conditions somore complex graph
properties like “The graph is type safe” becomes expressible.

2. Debugging and a transformation from message graphs to source code. The error messages
generated byTTC contained suggestions for remedies. In the double-pushoutapproach to
graph transformation, a central property is the existence of an inverse rule, that when ap-
plied reverses the rewrite step of the rule [EEPT06]. In this way, the inverse rule allows for
back tracking to a previous graph which can be manipulated toexperiment with suggested
remedies. The changes are logged in the output graph (message/change graph) and used
by a source-code transformer to update the source code.
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3. Implementation of the approach. This would include a formalization of the transformation
from source code to source-code graphs and an extension of the set of considered template
features.

Acknowledgements: This work is supported by the German Research Foundation (DFG) un-
der grant no. HA 2936/2 (Development of Correct Graph Transformation Systems). We thank
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Abstract: Subtyping and inheritance are two major issues in the research and devel-
opment of object-oriented languages, which have been traditionally studied along
the lines of typed calculi where types are represented as a combination texts and
symbols. Two aspects that are closely related to subtyping and inheritance – method
interdependency, and self type and recursive object type – have either been over-
looked or not received sufficient/satisfactory treatments. In this paper, we propose a
graph-based notation for object types and investigate the subtyping and inheritance
issues under this new framework. Specifically, we (1) identity the problems that
have motivated this paper; (2) propose an extension to Abadi-Cardelli’s ς -calculus
towards fixing the problems; (3) present definitions of object type graphs followed
by examples; (4) define subtyping and inheritance using object type graphs; (5)
show how the problems can be easily resolved under object type graphs; and (6)
summarize the contributions of this paper.

Keywords: Object type, graph transformation

1 Introduction

As pointed out by Markku Sakkinen in [Sak05], although in recent years the emphasis of the re-
search and development in object-oriented programming (OOP) has shifted from programming
languages (themselves) to larger entities such as components, environments, and manipulating
tools, it does not mean that the existing object-oriented languages are perfect and no improve-
ment is needed. In particular,typing is still a critical issue and a problem-prone area in the formal
study of object-oriented languages, especially when type-related subjects, such as subtyping and
inheritance, are considered.

One aspect related to subtyping is object method interdependencies: the invocation relation-
ship among methods. The failure of keeping track of this invocation structure in object types
can cause elusive programming errors which will inevitablyoccur, undermine the program re-
liability, and burden the program verification. One aspect related to inheritance is self type vs.
recursive object type: which one is thetrue type of the self variable (in the context of inheritance).
The failure of not distinguishing these two types sufficiently can lead to some well-known fun-
damental problems. While the former aspect has been overlooked in the literature, the latter
has not received sufficient attentions and/or satisfactorytreatments, in either theoretical studies
(e.g., [AC96, FHM94, LC96, Liq98, BL95]) or main stream practice (e.g., Java and C++) of
OOP. In the next section, we present concrete examples to illustrate this point.
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2 Motivations

We present two problems that have motivated the writing of this paper.

2.1 Method Interdependency

We call a rectanglefree if its two sides (height and width) are independent,constrained other-
wise. In conventional type systems, the type of a free rectangle and the type of a constrained
rectangle are not distinguished. We show, in this subsection, that this type confusion opens the
door to let the different semantics of free rectangles and constrained rectangles be mixed, which
is serious enough to be able to cause a programnot to perform to its specification and thus
weakens its reliability.

Using the first-orderς -calculus notation [AC96], we can construct a free rectanglefRect, a
constrained rectanglecRect, and their typesFR, CR as follows:

FR
def
= µ(Self )

















h : int
w : int
mvh : int→ Self
mvw : int→ Self
geth : int
getw : int

















, fRect
def
= ς(s :FR)

















h = 1
w = 2
mvh = λ (i : int)(s.h⇐s.h+ i)
mvw = λ (i : int)(s.w⇐s.w + i)
geth = s.h
getw = s.w

















,

CR
def
= µ(Self )

















h : int
w : int
mvh : int→ Self
mvw : int→ Self
geth : int
getw : int

















, cRect
def
= ς(s :CR)

















h = 1
w = 2(s.h)
mvh = λ (i : int)(s.h⇐s.h+ i)
mvw = λ (i : int)(s.w⇐s.w + i)
geth = s.h
getw = s.w

















,

where⇐ is the field update operation, and the intentions of methods in these two rectangles are
obvious. Note that infRect, the height (h) and the width (w) are independent, whereas incRect,
the widthdepends on the height (w = 2(s.h)). Also note thatFR = CR, that is, the types of these
two rectangles are confused (in conventional type systems).

Now, suppose we would like to have a function with the following specification (contract):

This function takes a rectangle and then doubles both its height and its width.

With little effort, such a function can be written as:

ds
def
= λ (r : FR)(r.mvh(r.geth)).mvw(r.getw).

It is easy to check thatds will double its argument’s both sides when taking a free rectangle as
argument. However, whends takes a constrained rectangle as argument, for exampleds(cRect)
(due to the factCR = FR, cRect will type-check), it will fail to do so, as it is supposed to (by the
specification). In detail,
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ds(cRect) = (cRect.mvh(cRect.geth)).mvw(cRect.getw)

= ς(s :CR)





h = 2
w = 6
. . .no change . . .



 .

Clearly, the height ofcRect is doubled, but its width istripled (not doubled)! The reason for this
is the interdependency between the height and the width incRect: when the height ofcRect is
changed to 2, its width isimplicitly changed to 4 due to the width’s dependence on the height.

Considering that the widely-agreed notion of program reliability refers to (e.g. [Seb07]) “pro-
gram performs to its specification under all circumstances”and that the fact thatds does not live
up to its specification when takingcRect as its argument, we argue that the reliability ofds, in the
environment of conventional type systems, is substantially low. Furthermore, such elusive com-
putation fault may be hard-to-detect whends is embedded in large software systems. To resolve
this problem effectively,ds should be written in such a way that it only takes free rectangles, that
is, ds(cRect) should be caught by the type checker. This observation callsfor the separation of
the type of free rectangles from that of constrained ones.

2.2 Self Type and Recursive Object Type

The notion of self type is coined to describe the type of the self variable in an object, especially
when the object contains a self returning method. Then the question is: What is the (semantics of)
self type? Is it just the (recursive) object type or something else? For example, using the notation
of ς -calculus again, an object which consists of two methods, one returning the constant 1 and
one returning the hosting object itself can be coded asa

def
= [l1 = 1, l2 = ς(s : X)s], wheres is

the self variable andX is the type ofs – the self type. How do we interpretX? One “natural”
way is thatX is just the object type itself (recursively defined), that is, X = µ(Y )[l1 : int, l2 : Y ].
As this interpretation works to some extent but runs into substantial problems (see, e.g., [AC96]
for details), other explanations of the self type have been sought. For example, the second-order
self quantifier [AC96] and the MyType [Bru94] are proposed. Nevertheless, no mater how self
type is interpreted, an object type has always been managed to be a subtype of the associated
self type. This setup, combined with inheritance and dynamic dispatch of methods, leads to the
well-known “method-not-found” error as illustrated below(adapted from [Bru94]).

PT
def
= Ob jectType(MyType){x : int,eq : MyType→ Bool}

CPT
def
= Ob jectType(MyType){x : int,c : color, eq : MyType→ Bool}

pt0
def
= ob ject(self : MyType){x = 0,eq = f un(p : MyType)(p.x = self .x)}

pt
def
= ob ject(self : MyType){x = 1,eq = f un(p : MyType)(p.x = sel f .x)}

cpt
def
= inherited f rom pt with {c = red, eq = f un(p : MyType)[(p.x = sel f .x)∧ (p.c = sel f .c)]}

F
def
= f un(p : PT )(p.eq(pt0))

Given these definitions, it is easy to check thatpt0 : PT , pt : PT , andcpt :CPT . Note that
in the definition ofF, we actually have assumed (as [Bru94] does) that the type ofpt0, PT ,
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is a subtype of the self type associated withPT , MyType in this case, so thatp.eq(pt0) type-
checks. Now, if inheritance implies subtyping (as we have been practicing in C++ and Java),
thencpt : CPT <: PT andF(cpt) will type check. However,F(cpt) will crash and produce a
“method-not-found” error becausecpt.eq(pt0) expects its argument,pt0, to have a color field and
uses that color field in the body ofeq of cpt, but pt0 does not have the color field.

Traditionally, it is this kind of problem that has prompted us to claim that “inheritance is not
subtyping” [CHC90]. However, “inheritance implies subtyping” is a strongly desirable property
in OOP. Without it, the software hierarchy build through inheritance will be much less useful
since in this case a subobject (object from a subclass) cannot be regarded as having the same
type with its superobject (object from the superclass), andcannot use any existing programs that
have been written for superobjects. Program reusability will thus be greatly reduced. Towards
keeping this hierarchy useful and resolving the method-not-found problem at the same time, we
propose that an object type should not only be treated differently from its associated self type,
but not be regarded as a subtype of its associated self type either.

3 Enhancing Object Types

In order to address the problems outlined in the previous section, we extend Abadi-Cardelli’s
ς -calculus by adding a mechanism called links that capture the method interdependencies in
objects, and by distinguishing (recursive) object types from their associated self types. The
terms (M) and types (σ ) of this extended calculus are as follows.

M ::= x | λ (x :σ).M |M1M2 |M.l |M.l⇐ς(x :S (A))M′ | [li = ς(x :S (A))Mi]
n
i=1

σ ::= κ | t | σ1→ σ2 | µ(t)σ | A |S (A)

A ::= ι(t)[li(Li) :σi]
n
i=1 Li ⊆ {l1, . . . , ln} for eachi

x, λ (x:σ).M, andM1M2 are the standardλ -terms.[li = ς(x:S (A))Mi]
n
i=1 represents an object

consisting ofn methods, with namesli and bodiesMi for eachi. ς is the self-binder.M.l means
the invocation of methodl in M. M.l⇐ς(x :S (A))M′ is the updating operation which evaluates
to an object obtained by replacing methodl in M by M′.

κ , t, σ1→ σ2, andµ(t)σ are ground types, type variables, function types, and recursive types
respectively. Object types are represented byι(t)[li(Li) :σi]

n
i=1 where each methodli has typeσi,

andLi is the set oflinks of li (defined below).ι is the self-type binder. An alternative way to
represent self type isS (A) which denotes the self type associated with the object typeA. The
two notations are related byA = ι(t)[li(Li) : σi(t)]ni=1 = [li(Li) : σi(S (A))]ni=1. Terms that can
be of a self type are restricted to self (variable) or a modified self (for the sake of self variable
specialization during inheritance).

Definition 1 Given an object[li = ς(s :S (A))Mi]
n
i=1. The only terms that are of typeS (A) are

s or s.li⇐ς(s :S (A))M for someM.

The set of links, which is a part of the newly proposed object types, is defined as follows.

Proc. GT-VMT 2008 4 / 14



ECEASST

Definition 2 (Links) Given an objecta = [li = ς(s :S (A))Mi]
n
i=1, (1) li is said to bedependent

on l j(i 6= j) if there exists aM such thata.li (or a.li(α) for some appropriate argument listα) and
(a.l j⇐ς(s:S (A))M).li (or (a.l j⇐ς(s:S (A))M).li(α)) evaluate to different values; (2)li is said
to bedirectly dependent on l j(i 6= j) if (a) li is dependent onl j, and (b) if all suchlk(i 6= k, j 6= k)
whereli is dependent onlk andlk is dependent onl j, are removed froma, li is still dependent on
l j; (3)The set oflinks of li in objecta (or equivalently, ofMi with respect to objecta), denoted by
La(li) (or equivalently, byLa(Mi)), contains exactly all suchl j on whichli is directly dependent.

4 Object Type Graphs

The notion of links introduces new structures into object types. Object types are thus enriched
but also become more complicated. To effectively analyze and reason about the structure of the
new object types, we present a graph-based representation for object types – object type graphs
(OTG).

4.1 Definitions

Definition 3 (Directed Colored Graph) A directed colored graph G is a 6-tuple(GN ,GA,C,sr, tg,c)
consisting of: (1) a set ofnodes GN , and a set ofarcs GA; (2) acolor alphabet C; (3) asource
map sr : GA → GN , and atarget map tg : GA → GN , which return the source node and target
node of an arc, respectively; and (4) acolor map c : GN ∪GA→C, which returns the color of a
node or an arc.

Definition 4 (Ground Type Graph) A ground type graph is a single-node colored directed
graph which is colored by a ground type.

Definition 5 (Function Type Graph) A function type graph (s,G1,G2)(GN ,GA,C,sr,tg,c) is a di-
rected colored graph consisting exactly of astarting node s ∈ GN , and two type graphsG1 and
G2, such that, (1)c(s) =→; (2) there are two arcs associated with the starting nodes, left arc
l ∈ GA andright arc r ∈ GA, such thatc(l) = in, c(r) = out; l connectsG1 to s by sr(l) = sG1,
tg(l) = s, andr connectss to G2 by sr(r) = s, tg(r) = sG2, wheresG1 andsG2 are the starting
nodes ofG1 andG2, respectively; (3)G1 andG2 are disjoint; (4) if there is an arca ∈ GA with
c(a) = rec, thensr(a) = sGi , tg(a) = s, c(sGi) =→, i = 1,2.

Definition 6 (Object Type Graph) An object type graph (s,A,R,L,S)(GN ,GA,C,sr,tg,c) is a directed
colored graph consisting exactly of astarting node s ∈GN , a set ofmethod arcs A⊆GA, a set of
rec-colored arcsR⊆GA, a set oflink arcs L⊆GA, and a set of type graphsS, such that (1)c(s) =
self. (2)∀a ∈ A, sr(a) = s, tg(a) = sF for some type graphF ∈ S, andc(a) = m for some method
label m; c(a) 6= c(b) for a,b ∈ A, a 6= b. (3) ∀r ∈ R, c(r) = rec, tg(r) = s, sr(r) = sF for some
F ∈ S, andc(sF ) = self. (4) ∀l ∈ L, sr(l) = sF , tg(l) = sG for someF,G ∈ S, andc(l) = bym for
some method labelm.

Remarks: Directed colored graph is the foundation of graph grammar theory [EPS73, Ehr78,
Roz97]. Object type graphs are adapted from directed colored graphs. Ground type graphs are
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trivial. Function type graphs are straightforward. They need to be defined because an object
type graph may include them as subgraphs. An object type graph is formed by a starting nodes
and a setS of type graphs with eachF ∈ S being connected tos by a method arc that goes from
s to F. The starting nodes is colored byself and is used to denote the self type. The method
interdependencies are specified by arcs inL. If L(m) is the set of links of methodm, then for
eachl ∈ L(m) there is an arc (colored bybyl) that goes froml to m. Recursive object types are
specially indicated by rec-colored arcs inR.

For the sake of brevity, we drop the subscripts in(s,G1,G2)(GN ,GA,C,sr,tg,c) and
(s,A,R,L,S)(GN ,GA,C,sr,tg,c) whenever possible throughout the paper.

4.2 Examples of OTG

We now provide some examples to illustrate the definitions introduced in the last section. Through-
out this section, if the type of an objecta is represented by a graphA, we will say the type ofa is
A, and vice versa.

Example 1 In Figure1, A, B, andC are the type graphs for the three ground typesint, real, and
bool respectively. They are just a node colored by the appropriate ground types.D is the type
graph for function typeint→ int. E is the type graph for(int→ B)→ int, whereB is the object
type in Figure2(a)which will be explained in the next example.

int int

in out

in

out

D E

x y

self

intint
byx

int

in

int

out

int int

in out

in

out

C E

x y

self

intint
byx

int

in

int

out

real bool

int

B

A

Figure 1: Examples of Ground Type Graphs and Function Type Graphs.

Example 2 In Figure2(a), graphA denotes the object type[x : int,y : int], where methodsx and
y are independent of each other. GraphB denotes the type[x : int,y({x}) : int] wherey depends
on x. Note that the direction of the link arc inB is from x to y (not fromy to x), and that the link
is colored bybyx, signifying that changes made to methodx will affect methody. For instance,
an object of typeA may be[x = 1, y = 2] (which is actually a record), and an object of typeB
may be[x = 1, y = ς(s :S (B))(s.x+2)].

Note also that although the presence of the link inB or the absence of the link inA serves as
an extra condition (compared to conventional type systems)for selecting objects to be typed asA
or B respectively, there are still infinitely many objects that are of typeA or typeB. For example,
objects[x = m,y = n] with m,n ∈ N are all of typeA; objects[x = n,y = ς(s : B)(a(s.x) + b)]
with n,a,b ∈ N are all of typeB. In this sense, OTG is (still) an abstract specification of object
behaviors.
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x y

self
s

intint

x y

self
s

intint
byx

A B

(a)

a b

self

selfint

x mvx

self

int
byx

A B

c

rec

int
in

out

bya byb

(b)

Figure 2: Example of Object Type Graphs

Example 3 In Figure2(b), A is the type graph forι(t)[x : int,mvx({x}) : int → t] which is the
type of a simplified 1-d movable point[x = 1,mvx = ς(s : B)λ (i : int)(s.x⇐ s.x + i)]. The facts
thatmvx depends onx and returns a modified self object are indicated by thebyx-colored arc and
the out-colored arc respectively. Note the direction of theout-colored arc goes to the starting
node of the type graph directly, indicating that this is a self type (as opposed to recursive objet
type). GraphB represents the type of the object[a = 1, b = p, c({a,b}) = ς(s : S (B))s] where
p is some predefined object of typeB. Here, note that the fact thatb is of recursive object type is
depicted by asel f -colored node and arec-colored arc going from this node to the starting node
of the graph; and that the fact thatc is of self type is depicted by its method arc going directly
to the starting node of the graph. The difference between recursive object type and self type is
clearly represented in object type graphs.

5 Subtyping under OTG

Given the definition of OTG, we now investigate the issue of subtyping under OTG. Throughout
the paper, we writeAσ <: Bτ iff σ <: τ whereσ andτ are types andAσ andBτ are their type
graphs. We first present the necessary definitions and then provide some subtyping examples.

5.1 Definitions

Definition 7 (Type Graph Premorphism) Let Φ be the set of ground types. Given two type
graphsG = (GN ,GA,C,sr, tg,c) and G′ = (G′N ,G′A,C′,sr′, tg′,c′), a type graph premorphism
f :G→ G′ is a pair of maps( fN :GN → G′N , fA :GA→ G′A), such that (1)∀a ∈ GA, fN(sr(a)) =
sr′( fA(a)), fN(tg(a))= tg′( fA(a)), andc(a)= c′( fA(a)); (2)∀v∈GN, if c(v)∈Φ, thenc′( fN(v))∈
Φ; otherwisec(v) = c′( fN(v)).

Definition 8 (Base, Subbase) Given an object type graphG = (s,A,R,L,S). Thebase of G,
denoted byBa(G), is the graph(s,A, t(A),L), wheret(A) = {tg(a) | a ∈ A}. A subbase of G is a
subgraph(s,A′, t(A′),L′) of Ba(G), whereA′ ⊆ A, L′ ⊆ L, t(A′) = {tg(a) | a ∈ A′}, and for each
l ∈ L′ there exista1,a2 ∈ A′ such thatsr(l) = tg(a1) andtg(l) = tg(a2).
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Definition 9 (Closure, Closed) Theclosure of a subbaseD = (s,A′, t(A′),L′) of an object type
graphG = (s,A,R,L,S), denoted byCl(D), is the unionD∪E1∪E2, where (1)E1 = {l ∈ L |
∃a1,a2 ∈ A′ with tg(a1) = sr(l), tg(a2) = tg(l)}, and (2)E2 = {l,h,a, t(l) | l,h ∈ L, a ∈ A, a 6∈
A′, tg(l) = sr(h) = tg(a), and∃a1,a2 ∈ A′ such thattg(a1) = sr(l), tg(a2) = tg(h)}. A subbase
D is said to beclosed if D = Cl(D).

Definition 10 (Covariant, Invariant) Given an object type graph(s,A,R,L,S). Let t(A) =
{tg(a) | a ∈ A}. For eachv ∈ t(A), if v is not incident with any links, or ifv is the target node
of some links but not the source node of any links, thenv is said to becovariant; otherwise,v is
said to beinvariant.

Definition 11 (Object Subtyping) Given two object type graphsG = (sG,AG, /0,LG,SG) and
F = (sF ,AF , /0,LF ,SF). F <: G if and only if the following conditions are satisfied: (1) There
exists a premorphismf from Ba(G) to Ba(F) such thatf (Ba(G)) = Cl( f (Ba(G))). That is,
f (Ba(G)) is closed. (2) For each nodev in f (Ba(G)), let u be its preimage inBa(G) under f ,
Fv ∈ SF be the type graph withv as its starting node, andGu ∈ SG be the type graph withu as its
starting node. (i) Ifv is invariant, thenFv is isomorphic toGu. (ii) If v is covariant, thenFv <: Gu.

Remarks: Type graph premorphism is adapted from graph morphism whichis a fundamental
concept in algebraic graph grammars [EPS73, Ehr78, Roz97]. It preserves the directions and
colors of arcs and the colors of nodes up to ground types. The base of an object type graph
singles the method interdependency information out of the entire object type graph so that the
structure of the method interdependencies can be better studied. The closure of a subbase cap-
tures the complete behavior of the subbase by including, in addition to all methods and links in
the subbase, a setE2 of methods (and associated links) outside of the subbase in the following
way: for any methodl in E2, (1) l depends on some methods inside the subbase, and (2) there
exist some methods inside the subbase that depend onl.

5.2 Examples

We now present some simple subtyping examples.

Example 4 Given the two type graphs in Figure3(a), clearly we can find a premorphismf from
base ofA to base ofB such thatf (Ba(A)) is closed; note also that nodev in B is covariant. Thus,
B <: A. As an example, we can regard the object[x = 1, y = ς(s :S (B))(s.x +1)] of typeB as
having typeA.

Example 5 For the two type graphs in Figure3(b), we can also find a premorphism from the
base ofA to the base ofB, and nodev in B is also covariant. But, nodeu in B is invariant which
requires the corresponding nodeu′ in A have the same color – pos (standing for positive integer)
in order to haveB <: A. But u′ is colored byint, hence,B 6<: A.

As an example to justify thatB 6<: A, let b = [x = 1, y = ς(s :S (B))(log(s.x)+1)], it is easy
to checkb : B. If B <: A, thenb : A, and in this case we can update thex field in b to a negative
integer, say, -1, resulting an object likeb = [x = −1, y = ς(s : S (B))(log(s.x) + 1)]. In this
object, the invocation of methody will crash sincelog is not defined over negative integers.
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Figure 3: Examples of Object Subtyping
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Figure 4: Examples of Object Subtyping

Example 6 Considering the graphsA andB in Figure4(a), it is easy to check (similar to the
case of example4) that B <: A. As an example for this subtyping, an object[x = 1, y = ς(s :
S (B))(s.x+1), z = 1]which is of typeB, can clearly be regarded as having typeA.

Example 7 Let us revisit the two object types in Figure2(a). We haveB 6<: A, since we cannot
find a premorphismf from Ba(A) to Ba(B) such thatf (Ba(A)) is closed. Similarly, there exists
no such a premorphismg from Ba(B) to Ba(A) such thatg(Ba(B)) is closed, soA 6<: B.

One may wonder what kind of type (graph) can be of a subtype ofA or B respectively. Any
subtype ofA must not have a link between methodsx andy; and any subtype ofB must have a
link going from x to y. This is the structural requirement in Definition11. As a result, object
[x = 1, y = 1] cannot be regarded as having the same type with the object[x = 1, y = ς(s :
S (B))(s.x + 1)], and vice versa. One may contend that this subtyping is too restrictive so that
some “good” subtyping instances are not allowed by it; we argue that this is the trade-off in the
sense that the strictness of this subtyping can block and prevent potential programming errors,
as shown in the next example.

Example 8 As the last example, we show how the “free or constrained rectangles problem”
described in section 2.1. The (new) types of the free rectangle fRect and the constrained rectangle
cRect are depicted asF andC in Figure4(b). Note that the independence between the height and
the width in the free rectanglefRect and their dependency in the constrained rectanglecRect are
faithfully shown by the absence and presence of abyh-colored link between methodsh andw in
F andC, respectively. It is easy to check thatC 6<: F. So if we modify the functionds of section
2.1 by replacing its parameter typeFR by the new typeF in Figure4(b), then the callds(cRect)
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Figure 5: Definitions of Graph Gluing and Direct Derivation

will be rejected under OTG by the compiler since it does not type-check.

6 Inheritance under OTG

We now turn to the issue of inheritance. Some basic notions ingraph grammar are needed before
we can define inheritance formally.

6.1 Definitions

Definition 12 (Type Graph Production) A type graph production p is a pair of type graph
premorphismsf : K→ A1 andg : K→ A2, whereA1 is called theleft side, A2 theright side, and

K the interface. This is denoted asp = (A1
f
← K

g
→ A2).

Definition 13 (Type Graph Gluing) Given two type graph premorphismsf : K → A and g :

K → B. Thegluing of A andB alongK is thepushout of K
f
→ A andK

g
→ B in the category

formed by type graphs together with type graph premorphisms(Figure5(a)).

Definition 14 (Direct Derivation) Given type graphsP, D, H, a type graph productionp =

(S
f
← K

g
→ T ), and a premorphismk : S→ P (called a context map). We say thatH is directly

derived from P via p by k, denoted byP
(p,k)
=⇒ H, if P is the result of gluingS andD alongK and

H is the result of gluingD andT alongK (Figure5(b)).

Definition 15 (Unfolding Production and Operation) A graph productionu = (S
f
←−K

g
−→G)

is called an unfolding production if (1)K is a graph consisting of two nodesv1 and v2, and
c(v1) = c(v2) = sel f ; (2) S is a graph consisting of two nodesu1 andu2 and an arct such that
c(u1) = c(u2) = sel f ,c(t) = rec,sr(t) = u2, andtg(t) = u1; (3) f (vi) = ui, i = 1,2; g is a partial
morphism withg(v2) = sG wheresG is the starting node ofG. Given an unfolding production

u = (S
f
←− K

g
−→G), an object graphF, and a premorphismi : S→ F, we sayF unfolds toP if

F
(u,i)
=⇒ P.
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Definition 16 (Addition Production and Operation) A graph productiona = (S
f
←−K

g
−→G) is

called an addition production, if (1)K consists of only one nodev, andc(v) = sel f ; (2) S consists
of only one nodeu, andc(u) = sel f ; (3) f (v) = u andg(v) = sG wheresG is the starting node of

G. Given an addition productiona = (S
f
←− K

g
−→ G), an object graphF, and a premorphism

j : S→ F, we say thatP is the result of addingG into F if F
(a, j)
=⇒ P.

Definition 17 (Link Production and Operation) A graph productionl = (S
f
←− K

g
−→ G) is

called a link production, if (1)G is a graph consisting of two nodesv1, v2 and an arca connecting
these two nodes.c(vi) (i = 1,2) is either a ground type or a→ or asel f , andc(a) = bym, where
m is the color of one of the methods inG; (2) K is a graph consisting of two nodesu1 andu2

with c(ui) is either a ground type or a→ or asel f , i = 1,2; (3) S is isomorphic toK, that is, f is
an isomorphism fromK to S; g is an injection withg(ui) = vi, i = 1,2; Given a link production

l = (S
f
←− K

g
−→G), an object graphF, and a premorphismk : S→ F, we say thatP is the result

of embeddingG into F if F
(l,k)
=⇒ P.

Definition 18 (Inheritance Construction of Object Type Graphs) Given object type graphsF
andG. F is said to be inherited fromG if G can be transformed intoF through a finite sequence
of unfolding operations, addition operations, and link operations.

Definition 19 (Inheritance) Given object type graphsS and T , an object of typeT can be
constructed by inheritance from an object of typeS if T is inherited fromS.

The central idea here is that inheritance of objects should be guided and guarded by object
types. We devise, through some basic graph transformation techniques, an “inheritance” no-
tion on object types, and then use this notion to judge whether an object can be built through
inheritance from another object.

6.2 Examples

We now give some examples to demonstrate the graph operationdefinitions in the last section.

Example 9 A graph gluing example is shown in Figure6(a), where f andg map the only node
in A to thesel f -colored node inB andC respectively, andD is the result of gluingB andC along
A. Intuitively, this gluing operation entails the connection of B andC by identifying their starting
nodes.

Example 10 Figure6(b) shows an unfolding operation.F
(u,i)
=⇒ P, whereu = (S

f
←− K

g
−→ G),

f (vi) = ui, i = 1,2, g(v2) = sG, i(u1) = sF , i(u2) = r. As we can see,P can be understood as
constructed by deleting therec-colored arc fromF, and then glue the result with a copy of the
original F by identifying the starting node of the former with the source node of therec-arc of
the latter.

Example 11 We finally show how the “colored point problem” addressed in section 2.2 can be
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Figure 6: Examples of Graph Gluing and Unfolding Operation
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resolved under OTG inheritance and subtyping. The type of points pt and pt0 and the type of
color pointcpt are depicted asP andCP in Figure7 respectively. We can see thatCP is inherited
from P (through one addition operation and one link operation), which means thatcpt can be
constructed by inheritance frompt (or pt0). Moreover, it is easy to check thatCP <: P under
OTG subtyping, which indicates that inheritance and subtyping are congruent in this case. (Note
that this contrast with the “inheritance is not subtyping” slogan in the literature which is mainly
motivated by this colored point example.) Finally, the crash of F(cpt) is prevented since the
functionF, as defined in section 2.2 and in the literature, does not type-check under OTG typing.
Note in its definition,F = f un(p : PT )(p.eq(pt0)), with PT = Ob jectType(MyType){x : int,eq :
MyType→ Bool}, p.eq requires an argument of the self type associated withPT , S (PT ), but
pt0 has typePT , andPT is neither the same as nor the subtype ofS (PT ) under OTG.

7 Resolution of the Problems

As examples of OTG subtyping and inheritance, we have demonstrated in the last section that
the two problems outlined in section 2 can be successfully resolved under OTG subtyping and
inheritance mechanisms. Here, we just summarize some majorpoints.
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• OTG subtyping takes into consideration the method interdependencies in objects. An ob-
ject in which there is no dependence between two methods can never be regarded as having
the same type with or a subtype of that of an object in which there is an interdependency
between these two methods, and vice versa. The problem addressed in section 2.1 can be
naturally resolved in OTG since there is an interdependencybetween height and width in
constrained rectangles, and there is no such interdependency in free rectangles. Conse-
quently, these two kinds of rectangles have different types.

• OTG inheritance replies on basic graph derivations. The fundamental idea in this respect
is that inheritance on objects should be regulated using type information of the relevant
objects. An “inheritance” relation over object types is first defined using graph derivations
and then used to determine whether an object can be constructed by inheritance from
another one.

• “Inheritance is not subtyping” has been advocated in the literature for quite a while. De-
spite that, the mainstream OOP still adheres to the practicethat “inheritance indicates
subtyping”. One of the reasons for this is that without this practice, the software hierar-
chy built by inheritance would be almost useless. Thus this practice is highly desirable.
The“colored point problem” described in section 2.2 is one of the motivating examples
that has prompted “inheritance is not subtyping”, because otherwise we will face some
“method-not-found” error. Under OTG, we give this problem anew solution in the sense
that “inheritance indicates subtyping” is retained and ”method-not-found” error is avoided.

8 Related Work

Representing object types as directed colored graphs and subsequently addressing the subtyping
and inheritance issues by graph transformations is our original idea. It uniquely connects the
type theory of object-oriented languages to algebraic graph transformation theory. The founda-
tions of type theory can be found in [Bar92, AC96, Pie02], and the recent results and directions
in type theory research are reflected in, for example, [PRB07, Che07, DHC07]. The origin
of algebraic graph grammar and graph transformation can be traced back to [EPS73, Ehr78],
and [Roz97, EEPT06] present a comprehensive coverage of this research area. For current trends
and developments in graph transformation, see for example,the proceedings of GT-VMT and
ICGT [EG07, CEM+06].

Incidentally, it is interesting to note that the phrase “type graph” has been used inconsistently
in the literature. For example, it is used to denote the disjunctive rational trees in Prolog type
analysis and database query algebra [HCC93, Sch01], to facilitate the investigation of quan-
tification in Type Logical Grammar [BS06], and to give types for (some other) graphs in graph
transformation study [GL07, EEPT06]. Obviously, none of these relates to the object type graphs
introduced in this paper in a clear manner.

9 Final Remarks

Subtyping and inheritance are two major issues in OOP. Although both issues have been stud-
ied extensively, problems still persist. Two particular problems, method interdependencies and
“inheritance is not subtyping”, are identified and subsequently addressed by a graph-computing
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(OTG) approach in this paper. It is demonstrated that both problems can be resolved effectively
under OTG subtyping and inheritance mechanisms.
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Abstract: This paper proposes an approach for the specification of the behavior
of software components that implement data abstractions. By generalizing the ap-
proach of behavior models using graph transformation, we provide a concise spec-
ification for data abstractions that describes the relationship between the internal
state, represented in a canonical form, and the observers of the component. Graph
transformation also supports the generation of behavior models that are amenable
to verification. To this end, we provide a translation approach into an LTL model
on which we can express useful properties that can be model-checked with a SAT
solver.

Keywords: Graph Transformation Systems, Specifications, Data Abstractions, Model
Checking, SAT Solving

1 Introduction

Abstraction by specification [LG00] is the fundamental approach to abstract from implementa-
tion details by providing a high-level description of the behavior of a software component. Such
an abstract description of the behavior is the specification of the software component.

In this paper, we focus on the specification of data abstractions [LG00], which can be viewed
as a particular class of stateful components. In a data abstraction, the internal state is hidden;
clients can interact with the component by invoking the operations exposed by its interface.
Common examples of data abstractions are stacks, queues, and sets, which are usually part of
the libraries of modern object oriented languages, such as JAVA.

Several formalisms have been proposed in the past for the specification of data abstractions.
Among these, we mention the pioneering work on algebraic specifications [GH78, GTW78].
Recently, in the area of recovering specifications and program analysis, behavior models (see for
example [DLWZ06, XMY06]) have been proposed as a simple formalism to relate the observ-
able part of a data structure with the methods used to modify its internal state. In this paper,
we propose a generative approach for the construction of behavior models based on graph trans-
formation systems. Moreover, we found that the generative capabilities of graph transformation
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tools are suitable for the generation of models that can be easily translated into logic models for
verification. For this purpose, we propose a translation of graph-transformation generated mod-
els into a linear temporal logic, on which verification is possible via bounded model checking.

This paper is organized as follows. Section 2 recalls some background concepts on the speci-
fication of data abstractions. Section 3 presents the case of a traversable stack, a container whose
specification has been critically analyzed in the past because of its subtle intricacies. Section 4
describes our approach to the specification of stateful components implementing data abstrac-
tions. Section 5 contains our bounded model checking approach to the verification. Finally,
Section 6 concludes the paper.

2 Formalisms for Data Abstractions

Data abstractions hide their internal state and implementation and export a set of operations
(methods), to allow clients to access their instances. Methods can be classified as:

• constructors, which produce a new instance of a class;

• observers, which return some view of the internal state;

• modifiers, which change the internal state.

A method might both modify the internal state and return some information about it. In this
case, such an observer is called impure; otherwise, it is pure, that is, it has no side-effects and
does not alter the internal state of the object.

Stateful components implementing data abstractions may be specified by providing pre- and
post-conditions [Hoa69] for the methods exposed by the component’s interface. Because a
method may also change the internal state, this approach requires the introduction of a logi-
cal abstraction of the internal state, which complicates the specification of the component. For
example, the JML language [LBR99] uses models for this purpose.

Algebraic specifications do not generally require an explicit abstraction of the hidden state,
since it is implicitly taken into account through the use of axioms on sequences of operations.
An algebraic specification is composed of two parts: the signature and the set of axioms. The
algebraic signature defines the types (sorts) used in the set of axioms, and the signatures of the
operations. The set of axioms is usually composed of a sequence of universally quantified for-
mulae expressing equalities among terms in the algebra. For example, an algebraic specification
for a class implementing a stack of strings may be characterized by the following axiom:

∀s ∈ Stack,∀e ∈ String : pop(push(s,e)) = s

which states that for every possible stack, the object obtained by the application of a push
followed by a pop is equivalent to the original object. Algebraic specifications are supported
nowadays by various languages and tools [GH93, Com04].

2.1 Behavior Models

A behavior model is a finite-state automaton that captures the relationship among the modifiers
and return values of the observers. In a behavior model, each state is an abstraction of a set of
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String pop()
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Figure 1: A simple abstracted behavior model of a Stack.

size ()=0
read()= Error

Stack ()

pop() throws Error

size ()=1
read()=a

size ()=1
read()=b

size ()=2
read()=b

size ()=2
read()=a

size ()=2
read()=b

size ()=2
read()=a

push(a) push(b)

push(a)

pop()

pop()

pop()

push(b)push(b)

push(a)

pop()

pop()

pop()

Figure 2: A deterministic behavior model for a Stack

different internal states of the actual component, identified by a simple predicate on the return
values of a set of observers. Several different approaches to recover behavior models have been
implemented for various purposes. For example, ADABU [DLWZ06] behavior models are char-
acterized by states labeled with pure observers, while transitions are labeled with method names
(without actual parameters). Other approaches, such as ABSTRA [XMY06], produce more pre-
cise finite state machine abstractions by using different techniques to represent the component’s
state. Figure 1 shows the simple behavior model of a stack produced by ADABU; in this model,
the behaviors of all the stacks with size greater than zero are abstracted in a unique state.

Since infinitely many states are summarized in a finite-state machine, the resulting automaton
is necessarily non-deterministic. However, a deterministic model is often more useful to reason
about the properties of the component or to generate test cases; thus, we aimed at producing
a deterministic specification, that is, one in which the application of each operation brings the
automaton to a unique state, which represents a unique state of the object.

Figure 2 shows a partial deterministic model of the behavior of a stack. Deterministic models
grow bigger and, for components with infinite possible internal states, they can only partially rep-
resent the behavior of the component. Deterministic models, such as the one of Figure 2, rely on
the presence of a set of instance pools for the actual parameters and represent the behavior of the
component for such parameters. In the example, the push method is tested with an instance pool
for the input parameter composed of two different strings, “a” and “b”. In this paper, we present
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p u b l i c c l a s s MTStack {
p u b l i c MTStack ( ) { . . }
p u b l i c vo id push ( S t r i n g e l e m e n t ) { . . }
p u b l i c vo id pop ( ) throws E r r o r { . . }
p u b l i c vo id down ( ) { . . }
p u b l i c vo id r e s e t ( ) { . . }
p u b l i c S t r i n g r e a d ( ) throws E r r o r { . . }
p u b l i c boolean i sEmpty ( ) { . . }
p u b l i c i n t s i z e ( ) { . . }

}

Figure 3: The public interface of Majster’s Traversable Stack

an approach to the representation of the complete, unabstracted and thus deterministic behavior
of stateful components defining data abstractions by using graph transformation systems.

3 Traversable Stack

In this section we introduce an example of data abstraction that is used as a running example
to explain our approach. The example is inspired by a case study that generated a lively debate
in the late 1970s in the community working on algebraic specifications. We will refer to the
example as Majster’s Traversable Stack (MTS) [Maj77], by the name of the author who first
addressed the problem. The public interface of MTS is shown in Figure 3. For simplicity, we
assume the contained object to be of type String . MTS defines the usual operations of a stack,
such as push and pop, and allows for traversal by using a hidden pointer and by exposing the
following operations:

• down, which traverses the stack circularly by moving the pointer stepwise towards the
bottom of the stack;

• read, which yields the element returned by the pointer;

• reset, which moves the pointer on the top of the stack.

For example, let us consider a stack of three elements, obtained by applying the constructor
and three push operations of three different elements, the strings “a”, “b” and “c”. In this case,
the read observer returns “c”. If a down operation is applied, the hidden pointer moves towards
the bottom of the stack; thus, the read observer returns “b”. If the hidden pointer reaches the
bottom of the stack, a further application of the down operation brings the hidden pointer to the
top of the stack.

MTS was introduced because the author argued that no finite set of axioms could specify the
data abstraction in an algebraic way without using auxiliary functions, that is, purely in terms
of the externally visible operations. For example, the specification of the down operation would
require axioms like the following:
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downn (
downn−1 (

. . .
(
down1 (

pushn (
. . . push2 (

push1(MT Stack(),o1),o2
)
. . .

)
,on

))
. . .

))
=

pushn (
pushn−1 (

. . . push2 (
push1(MT Stack(),o1),o2

)
. . . ,on−1

)
,on

)
Since n 1 is generic in the axiom formula, the specification would require an axiom for each

n > 0.
In the sequel, we will show how MTS can be rigorously specified in our approach, based

purely on the operations exported by the data abstraction’s interface.

4 A Graph Transformation approach

In this section we illustrate our approach to the specification of data abstractions based on graph
transformations. Let us consider the behavior model for a stack depicted in Figure 2: it describes
the behavior of all the stacks up to size 2. The specification of an abstract data type is given
as a graph transformation system whose rules can be applied not only to generate such a partial
(deterministic) model but also any other model that, for example, describes the behavior of stacks
up to a generic size n.

In this paper we use the approach to graph transformation systems implemented in AGG [Tae04],
which supports a rich set of features, such as negative application conditions, attributes defined
as JAVA objects, and conditions on attributes. In the following, we define the type graph for
MTS, which defines the kinds of graph nodes and edges that are needed in the specification, and
then we define the graph transformation rules.

4.1 Type graph

The type graph for MTS is shown in Figure 4. A state of the behavior model is either a null
state or an object state (a stack of strings). Conventionally, a null state represents the state of
an instance object of the data abstraction before any application of a constructor. The null state
is unique and represents the initial state of the behavior model. The type node representing
an object state is labeled with a set of attributes, which represent the return values of the ob-
servers invoked when the object is in the corresponding state. Edges represent constructors and
modifiers. Constructors link the null state node with a node representing the object state after
applying a constructor, while modifiers are loops on the state node since they change the state
of the instance. Each edge is labeled with attributes corresponding to the parameters, the return
value, and the exception the method might rise when applied (exceptions are modeled as Boolean
values).

As already said, behavior models rely on instance pools of parameters to be used to generate
actual invocations of modifiers. For example, we can generate a behavior model for MTS that
uses two strings, “a” and “b” as the possible contained objects. The type graph has a node for
each type needed, labeled in the same way as the data abstraction node. For primitive types and

1 In this and in the following formulae, the superscript j above each operation indicates the j-th subsequent opera-
tion of that kind.
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Figure 4: MTS Type Graph

Strings, we can box the value in a node that contains just an attribute representing the primitive
type.

4.2 Rules and Canonical Form

Since data abstractions hide their internal state, the information gathered by just invoking ob-
servers might be insufficient to uniquely identify the object state. For example, let us consider
two MTS of size 2, containing the same string “a” on the top and two different strings on the
bottom, “a” for the first stack and “b” for the second. In both cases, let us consider the hidden
pointer to be on the top of the stack. The invocation of the three observers (read, size, isEmpty)
of the MTS is insufficient to reveal the different internal state, since they would return the same
values (i.e., “a” for read, 2 for size and false for isEmpty).

Inspired by Veloso’s algebraic specification of MTS [Vel79], we use a canonical form for
the data abstraction to identify each different object state. We define the canonical form as a
language composed by method applications as tokens. The canonical form language must satisfy
the following properties:

• each string of the language is composed of an initial constructor and a —possibly empty—
sequence of modifiers;

• for each possible internal state, there is one and only one string of the canonical form
language to represent it;

• for each string of the language, there is an internal state that is labeled by that string, such
that the invocation of the corresponding sequence of methods produces an object of that
state.

As a convenience, we identify a language of operations, which satisfies these properties, as a
canonical form of the data abstraction. This explains why the object state node of the type graph
on Figure 4 is enriched with an attribute (CF) describing its canonical form. According to this
approach, any possible MTS instance can be represented with a string of the following canonical
form language LMT S:

• ε , which conventionally labels the null state;
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NAC LHS RHS

(a) Constructor rule

NAC LHS RHS

AC: !cf0 . contains (”down”)

(b) Canonical push rule

NAC LHS RHS

AC: x>1 ∧ cf0 .count(”push”)−cf0.count(”down”)>1

(c) Canonical down rule

Figure 5: Partial GT specification of MTS (part I)

• MT Stack(), that is, the empty stack after calling the empty constructor;

• pushn
(

pushn−1
(
. . . push1 (MT Stack(),o1) . . . ,on−1

)
,on

)
, that is, a stack after any non-

empty sequence of pushes;

• downm
(
downm−1

(
. . .

(
pushn

(
. . . push1 (MT Stack(),o1) . . . ,on

))
. . .

))
,1≤m < n, that is,

any non-empty and non-singleton stack with at least one down invocation but strictly less
than the stack size.

For each internal state of the instances of the data abstraction, and thus for each string of
the canonical form language, we can define which operations on that state are canonical, and
those that are not. Given a state X labeled with a canonical form X ∈LMT S, an operation m is
canonical in X if X ·m ∈LMT S.

For example, in the case of the canonical form of MTS described above, the language defines
when a push operation has to be considered as canonical, that is, whenever no (canonical) down
operations have been applied to the instance. Every other operation is non-canonical: such
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operations bring the data abstraction in a state for which a corresponding different canonical
string in the canonical language already exists. For example, the chosen canonical form language
LMT S implies that every pop operation is non-canonical.

Once the language has been identified, we can define GT rules dealing with canonical opera-
tions (explained in Section 4.3) and other rules dealing with non-canonical operations (explained
in Section 4.4. For example, the language of canonical method applications defined in Section 3
for MTS can be used as a canonical form language for the specification of the data abstraction.

Since for each state of the instances there exists a corresponding string of the canonical form
language, we can use it to label each state of the graph. We implemented the canonical form
attribute type with an ad-hoc JAVA class that stores a list of strings, each representing an appli-
cation of a canonical operation. Each string is stored together with all the actual parameters of
the corresponding operation application, which can be accessed by invoking the observers on the
instance of the canonical form.

4.3 Canonical Form Rules

A canonical form rule defines a state generation, i.e., it specifies how a new state in a canonical
form can be generated from an existing one by applying a canonical operation. Canonical form
rules share the following common template:

• The Left-Hand Side (LHS) of the rule is always composed of a single node for the data ab-
straction state, and a set of nodes representing the parameter’s values needed for applying
the canonical operation;

• The Right-Hand Side (RHS) preserves the nodes contained in the LHS and, furthermore,
it adds the new canonical state and a new edge between the two data abstraction states, to
represent the application of the canonical operation.

For example, the MTS requires a canonical rule for the default constructor, and other rules for
the canonical applications of methods push and down.

Canonical constructor rules generate new transitions from the null state to new nodes rep-
resenting the object state after the invocation of a constructor. The LHS of constructor rules is
composed of the null state and a set of nodes representing the parameter values for the invocation
of the constructor. The RHS adds the generated state and initializes the observer attributes. The
canonical form representation of the generated node is initialized with a new value representing
the application of the constructor. For example, MTS exposes only one constructor, which can
be chosen as part of the canonical form. The canonical constructor rule is shown in Figure 5a.

Modifier rules differ from constructor rules just because the node in the LHS is a node rep-
resenting an object state: it cannot be the null state. The node must be identified by a set of
attribute conditions, which uniquely identify the correct state on which the rule must be applied.

Figure 5b shows the rule for operation push. Attribute conditions state that the canonical form
cf0 must not contain any down operation. The rule introduces a new state, with size increased
by one, the read observer returning the argument of the last push operation, and the canonical
form modified by appending the push operation. Figure 5c shows the canonical down rule, which
can be applied whenever the difference between the number of push operations and that of down
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NAC LHS RHS

AC: x>1 ∧ cf0 . contains (”down”) ∧
cf1 . equals (cf0 .appendAt(x+1,”push”,z)) ∧ z1. equals (cf1 . attr (1+cf1 .count(”down”)))

(a) Non-canonical push rule

NAC LHS RHS

AC: x>1 ∧ cf0 .count(”push”)−cf0.count(”down”)==1 ∧
cf1 . equals (cf0 .removeAll(”down”)) ∧z1. equals (cf0 . attr (x))

(b) Non-canonical down rule

NAC LHS RHS

AC: x>1 ∧ cf1 .count(”down”)==0 ∧ cf1 . equals (cf2 .append(”push”,z1))

(c) Pop rule

Figure 6: Partial GT specification of MTS (part II)

operations in the canonical form is greater than one. The introduced state has the same size
as the previous and the read method returns the first attribute of the jth element of the normal
form, where j = (x + 1) − cf0. countOperations (“down” ). It is not hard to prove that with
the defined canonical form language that element in the canonical form is always a push and
that after each down operation the read method returns the corresponding element obtained by
moving the hidden pointer towards the bottom of the stack. Negative Application Conditions
(NACs) preserve the determinism of the generated behavior model.

4.4 Non-Canonical Method Rules

The generative approach of canonical constructors and modifiers rules defines the state space
of the data abstraction. Thus, we represent non-canonical method applications as rules that add
edges between existing nodes of the graph. With this approach, non-canonical method rules can
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be applied iff the related states have been already generated by canonical form rules. The LHS
and RHS of a non-canonical method rule must contain the two nodes, and the RHS of the rule
creates the edge between them that represents the application of the method.

In the MTS case, method pop is not part of the canonical form. Thus, every transition cor-
responding to the application of a pop operation is added by non-canonical modifier rules (see
Figure 6c). A more complex case regards operations down and push. In fact, these operations
are not always part of a canonical form, depending on the context of the previous canonical
operations applied to the object. For example, operation down is canonical only when applied
after a sequence of n > 1 pushes, starting with a constructor, and for a maximum of n−1 times.
Otherwise, it is not canonical. Thus, a non-canonical rule (see Figure 6b) for operation down
must be added to handle the non-canonical case. The non-canonical rule has a different context
of application, represented by a different condition on attributes. In this case, the non-canonical
down moves the hidden pointer to the top of the stack. In a similar way, the push operation is not
canonical when applied after a down operation. In Veloso’s specification, the operation is valid,
and we can specify it with the rule of Figure 6a.

The MTS specification does not contain any example of non-canonical constructor rule. Such
a rule would be similar to the case of non-canonical modifiers.

4.5 Canonical Form and Topology

In principle, attribute conditions on the canonical form could be expressed by topological pat-
terns. For example, given the canonical push rule of Figure 5b, one can notice that the attribute
condition that states that the canonical form does not contain any down operation could be ex-
pressed by the following informal topological constraint: there exists a path from the null state
to the node on the LHS of the rule, starting with a constructor edge and composed only of push
edges. Such topological conditions cannot be expressed with AGG, thus we used equivalent
attribute conditions.

5 Verification

Our specification can be used to verify interesting properties of data abstraction specifications.
Our verification approach has two steps: (1) AGG is used to generate a behavior model of the
data abstraction; (2) the resulting model is translated into a Linear Temporal Logic (LTL) model,
on which we apply SAT-solving [DP60] to model-check properties.

5.1 Model Generation

In general, model checking a specification expressed with graph transformations is not easy;
several solutions have been proposed for the general case [BS06, RSV04]. However, the behavior
of our rules, as expressed in the previous section, is limited: they can only add new nodes or
edges to the graph. At each transformation step, the graph on which the rule is applied is left
unmodified by the rule itself. For this reason, the model to be checked is an instance graph (i.e.,
a behavior model of the data abstraction) after a limited number of rule applications, and it can
be generated by simply using AGG.
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Graph transformation rules can generate infinitely many behavior models. For example, for
any data abstraction with potentially infinite states, our specification approach can generate an
unbounded number of graphs representing the behavior of the data abstraction. To model check
the specification against certain properties we need to bound generated models by adding some
attribute conditions on the canonical form rules. Non-canonical form rules are implicitly limited
by the fact that they operate by only adding edges between existing nodes.

For example, suppose that we want to verify a given property on the MTS previously defined;
we might choose to limit the scope of the verification to all the possible states of a MTS with
size < 4. We can limit the application of canonical rules, and thus the size of the model, by
adding this constraint as a constraint to the attributes of canonical form rules. In the case of
MTS, the canonical rule to be constrained is the push canonical rule. If the size attribute of
the node on the LHS is greater than or equal to 4, the push canonical rule is not applied, thus
stopping the generation of new nodes.

5.2 LTL Translation

The model obtained by applying the rules of the graph grammar is translated into an LTL de-
scription which can be fed to ZOT [PMS07], together with the set of properties that should be
satisfied by all the possible states of the data abstraction. ZOT produces a corresponding set of
propositional formulae which can be automatically used as input for a SAT-solver.

The axioms for the logical model are built in the following way:

• We define a variable with finite domain for the state of the behavior model; the domain is
a set of items defining the state in which an object of the data abstraction can be.

• Similarly, we define a set of variables for each observer attribute on each node repre-
senting a state of the object; for example, we might define a variable named size for the
corresponding observer that can assume a set of different integer values, such as {0,1,2,3}
if we correspondingly limit the model.

• We define a variable called do that represents the name of the operation enabled in the
transition; it can assume a set of values composed of the names of the constructors and
modifiers, together with a string representation of their actual parameters.

Axioms A set of axioms is needed to characterize each state with the corresponding observer
variables. Thus, the translation contains a set of implications of the following kind:

state = s1a ⇒ (size = 1)∧ (isEmpty = f alse)∧ (read = a)

Enabled transitions can be expressed by defining axioms that denote which operations can be
applied in a state. For example, the following axiom:

state = s0 ⇒ (do = pusha∨do = pushb∨do = popE)

states that the only possible operations that can be done on the empty stack are push and pop
operation, which is exceptional.
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Finally, we need axioms to define the postcondition of the application of methods. For exam-
ple, the axiom:

do = stack ⇒ X(state = s0)

states that the next state after the invocation of the constructor is the state corresponding to the
empty stack. Another example is given by the following implications:

(state = s0∧do = pusha ⇒ X(state = s1a))∧ (state = s0∧do = pushb ⇒ X(state = s1b))

These implications define the different behavior obtained by pushing different elements on
the empty stack. With all these axioms defined, we have an LTL specification on which each
transition represents the application of an operation on instances of the data abstraction. For
this reason, we can use the LTL operator X to predicate on which states are reached after the
application of a sequence of methods.

5.3 Example Properties

Let us consider the following simple property, which states that the application of a pop after a
push in any state brings the object to the same initial state:

∀x ∈ state vals ((state = x)∧ (do = pusha∨do = pushb)∧X(do = pop)
⇒ X2(state = x))

Precisely, the property states that if we are in state x and we push a or b, and then we do a pop, the
final state is again x. Another, more complex property, for the MTS is that for any state x where
the size of the stack is greater than or equal to 2, the application of n = size() down operations
brings the object to state x:

∀x ∈ state vals,y ∈ {2,3} ((state = x)∧ (size = y)∧
(
∀k(0 ≤ k < y ⇒ Xk(do = down))

)
⇒ Xy(state = x))

We fed ZOT with the LTL translation of a generated behavior model with states with size < 4,
and checked it against these two properties. The LTL model, together with the negated properties,
was found unsatisfiable in a few seconds; thus, the two properties are valid for the chosen bound.

6 Conclusions

This paper presents an approach to the specification and verification of data abstractions by
using graph transformations. The generative nature of graph transformation provided a means
to describe intensionally the (potentially infinite) behavior models of abstract data types, thus
overcoming the limitations of plain finite-state automata. Graph transformations can be used to
generate behavior models of the specified data abstraction which can be easily translated into
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a finite set of axioms suitable for automatic verification, for example by using a SAT-solver.
By using a generative approach, the complexity of the generated model can be tailored to the
verification needs.

Our ongoing work is now on trying to infer behavior models defined through graph transfor-
mation systems by observing execution traces of existing module libraries.
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Abstract: Graph parsing is known to be computationally expensive. For this reason
the construction of special-purpose parsers may be beneficial for particular graph
languages. In the domain of string languages so-called parser combinators are very
popular for writing efficient parsers. Inspired by this approach, we have proposed
graph parser combinators in a recent paper, a framework for the rapid development
of special-purpose graph parsers. Our basic idea has been to define primitive graph
parsers for elementary graph components and a set of combinators for the flexible
construction of more advanced graph parsers. Following this approach, a declara-
tive, but also more operational description of a graph language can be given that is
a parser at the same time.

In this paper we address the question how the process of writing correct parsers on
top of our framework can be simplified by demonstrating the translation of hyper-
edge replacement grammars into graph parsers. The result are recursive descent
parsers as known from string parsing with some additional nondeterminism.

Keywords: graph parsing, functional programming, parser combinators, hyperedge
replacement grammars

1 Introduction

Graph languages are widely-used nowadays, e.g., for modeling and specification. For instance,
we have specified visual languages using graph grammars [Min02]. In this context we are par-
ticularly interested in solving the membership problem, i.e., checking whether a given graph be-
longs to a particular graph language, and parsing, i.e., finding a corresponding derivation. How-
ever, while string parsing of context-free languages can be performed in O(n3), e.g., by using the
well-known algorithm of Cocke, Younger and Kasami [Kas65], graph parsing is computation-
ally expensive. There are even context-free graph languages the parsing of which is NP-complete
[DHK97]. Thus a general-purpose graph parser cannot be expected to run in polynomial time
for arbitrary grammars. The situation can be improved by imposing particular restrictions on the
graph languages or grammars. Anyhow, even if a language can be parsed in polynomial time by
a general-purpose parser, a special-purpose parser tailored to the language is likely to outperform
it.
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Unfortunately the development of a special-purpose graph parser is an error-prone and time-
consuming task. The parser has to be optimized such that it is as efficient as possible, but still
correct. Backtracking, for instance, has to be prevented wherever possible. Therefore, in a recent
paper [MM07] we have proposed graph parser combinators, a new approach to graph parsing
that allows the rapid construction of special-purpose graph parsers. Further we have introduced
a Haskell [Pey03] library implementing this approach. It provides the generic parsing framework
and a predefined set of frequently needed combinators.

In [MM07] we further have demonstrated the use of this combinator framework by providing
an efficient special-purpose graph parser for VEX [CHZ95] as an example. VEX is a graph lan-
guage for the representation of lambda terms. The performance gains mainly have resulted from
the fact, that VEX is context-sensitive and ambiguous – properties many general-purpose graph
parsers do not cope well with. The structure of VEX graphs is quite simple though, i.e., they
basically are trees closely reflecting the structure of lambda terms. Only variable occurrences
are not identified by names as usual; they rather have to refer to their binding explicitly by an
edge. Nevertheless, the parser for VEX could be defined quite operationally as a tree traversal.

However, the operational description of languages like, e.g., structured Flowgraphs is much
more difficult. Parsers get very complex and hard to read and verify. This brings up the question,
whether graph parser combinators actually are powerful enough to express standard graph gram-
mar formalisms. One such formalism are hyperedge replacement grammars [DHK97], which
allow such languages to be described in a declarative and natural way.

Therefore, the main contribution of this paper is a method for the straightforward translation
of hyperedge replacement grammars [DHK97] to parsers on top of our framework. The result-
ing parsers are readable and can be customized in a variety of ways. They are quite similar to
top-down recursive descent parsers as known from string parsing where nonterminal symbols are
mapped to functions. Unfortunately, in a graph setting we have to deal with additional nondeter-
minism: besides different productions for one and the same nonterminal, we also have to guess
particular nodes occurring in the right-hand side of a production. We can use backtracking, but
performance naturally suffers.

However, our approach can be used to build an initial, yet less efficient parser. Language-
specific performance optimizations can then be used to improve the parser’s efficiency step by
step. Moreover, the presented approach offers the following benefits:

• Combination of declarative and operational description of the graph language.

• An application-specific result can be computed.1

• Context information can be used to describe a much broader range of languages.

• Robust against errors. The largest valid subgraph is identified.

This paper is structured as follows: We discuss the combinator approach to parsing in Sect. 2
and introduce our graph model in Sect. 3. We go on with the presentation of our framework in
Sect. 4 and discuss the actual mapping of a hyperedge replacement grammar in Sect. 5. Finally,
we discuss related work (Sect. 6) and conclude (Sect. 7).
1 A general-purpose parser normally returns a derivation sequence or a parse tree, respectively. Several systems,
however, provide support for attributed graph grammars.
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2 Parser Combinators

Our approach has been inspired by the work of Hutton and Meijer [HM96] who have proposed
monadic parser combinators for string parsing (although the idea of parser combinators actually
is much older). The basic principle of such a parser combinator library is that primitive parsers
are provided that can be combined into more advanced parsers using a set of powerful combi-
nators. For example, there are the sequence and choice combinators that can be used to emulate
a grammar. However, a wide range of other combinators are also possible. For instance, parser
combinator libraries often include a combinator many that applies a given parser multiple times,
while collecting the results.

Parser combinators are very popular, because they integrate seamlessly with the rest of the pro-
gram and hence the full power of the host language can be used. Unlike Yacc [Joh75] no extra
formalism is needed to specify the grammar. Functional languages are particularly well-suited
for the implementation of combinator libraries. Here, a parser basically is a function (as we will
see). A combinator like choice then is a higher-order function. Higher-order functions, i.e., func-
tions whose parameters are functions again, support the convenient reuse of existing concepts
[Hug89]. For instance, consider a function symb with type Char->Parser that constructs a
parser accepting a particular symbol. Then we can easily construct a list pl of parsers, e.g., by
defining pl=map symb [’a’..’z’] (applies symb to each letter). A parser lcl that ac-
cepts an arbitrary lower-case letter then can be constructed by folding pl via the choice operator,
i.e., lcl=foldr choice fail pl. Thereby, fail is the neutral element of choice.

At this point, we provide a toy example to give an impression of how a parser constructed with
monadic combinators looks like. For that purpose we compare the implementation of a parser for
the string language {akbkck|k > 0} and a graph parser for the corresponding language of string
graphs as defined in [DHK97].

An important advantage of the combinator approach is that a more operational description of
a language can be given. For instance, our exemplary language of strings akbkck is not context-
free. Hence a general-purpose parser for context-free languages cannot be applied at all, although
parsing this language actually is very easy: “Take as many a characters as possible, then accept
the same number of b characters and finally accept the same number of c characters.”

Using PolyParse [Wal07], a well-known and freely-available parser combinator library for
strings, a parser for this string language can be defined as shown in Fig. 1a. The type of this
parser determines that the tokens are characters and the result a number, i.e., k for a string akbkck.

abc::Parser Char Int
abc =
do
as<-many1 (char ’a’)
let k=length as
exactly k (char ’b’)
exactly k (char ’c’)
return k

abcG::Node->Grappa Int
abcG n =
do
(n’,as)<-chain1 (dirEdge "a") n
let k=length as
(n’’,_)<-exactChain k (dirEdge "b") n’
exactChain k (dirEdge "c") n’’
return k

Figure 1: Parsers for a) the string and b) the graph language akbkck
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Figure 2: The string graph “aabbcc”

If the given word does not begin with a member of the language one of the calls of exactly
fails.

The code is written in the functional programming language Haskell [Pey03]. The given parser
uses the do-notation, syntactic sugar Haskell provides for dealing with monads. Monads in turn
provide a means to simulate state in Haskell. In the context of parsers they are used to hide
yet unconsumed input. Otherwise, all parsers in a sequence would have to pass this list as a
parameter explicitly. Users of the library, however, do not have to know how this works in detail.
They rather can use the library like a domain-specific language for parsing nicely embedded into
a fully-fledged programming language.

In order to motivate our combinator approach to graph parsing, we provide the graph equiv-
alent to the previously introduced string parser abc. Strings generally can be represented as
directed, edge-labeled graphs straightforwardly. For instance, Fig. 2 provides the graph repre-
sentation of the string “aabbcc”.2

A graph parser for this graph language can be defined using our combinators in a manner quite
similar to the parser discussed above. It is shown in Fig. 1b. The main difference between the
implementations of abc and abcG is, that we have to pass through the position, i.e., the node n
we currently process.

3 Graphs

In this section we introduce hypergraphs and the basic Haskell types for their representation. Our
graph model differs from standard definitions as found in, e.g., [DHK97], that do not introduce
the notion of a context.

Let C be a set of labels and type : C → IN a typing function for C. In the following, a hyper-
graph H over C is a finite set of tuples (lab,e,ns), where e is a (hyper-)edge3 identifier unique in
H, lab∈C is an edge label and ns is a sequence of node identifiers such that type(lab) = |ns|, the
length of the sequence. The nodes represented by the node identifiers in ns are called incident to
edge e. We call a tuple (lab,e,ns) a context in analogy to [Erw01].

The position of a particular node n in the sequence of nodes within the context of an edge
e represents the so-called tentacle of e that n is attached to. Hence the order of nodes matters.

2 In contrast to the string language there is a context-free hyperedge replacement grammar describing this language.
However, it is quite complicated despite the simplicity of the language (cf. [DHK97]). An Earley-style parser for
string generating hypergraph grammars like this is discussed in [SF04].
3 We call hyperedges just edges and hypergraphs just graphs if it is clear from the context that we are talking about
hypergraphs.
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Figure 3: An exemplary Flowchart a) and its hypergraph representation b)

The same node identifier also may occur in more than one context indicating that the edges
represented by those contexts are connected via this node.

Note, that our notion of hypergraphs is slightly more restrictive than the usual one, because
we cannot represent isolated nodes. In particular the nodes of H are implicitly given as the union
of all nodes incident to its edges. In fact, in many hypergraph application areas isolated nodes
simply do not occur. For example, in the context of visual languages diagram components can
be represented by hyperedges, and nodes just represent their connection points, i.e., each node is
attached to at least one edge [Min02].

The following Haskell code introduces the basic data structures for representing nodes, edges
and graphs altogether:

type Node = Int
type Edge = Int
type Tentacle = Int
type Context = (String, Edge, [Node])
type Graph = Set Context

For the sake of simplicity, we represent nodes and edges by integer numbers. We declare a
graph as a set of contexts, where each context represents a labeled edge including its incident
nodes.4

Throughout this paper we use Flowcharts as a running example. In Fig. 3a a structured
Flowchart is given. Syntax analysis of structured Flowcharts means to identify the represented
structured program (if any). Therefore, each Flowchart must have a unique entry and a unique
exit point.
4 In the actual implementation these types are parameterized and can be used more flexibly.
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Flowcharts can be represented by hypergraphs that we call Flowgraphs in the following. In
Fig. 3b the hypergraph representation of the exemplary Flowchart is given. Hyperedges are
represented by a rectangular box marked with a particular label. For instance, the statement
n:=0 is mapped to a hyperedge labeled “text”. The filled black circles represent nodes that we
have additionally marked with numbers. A line between a hyperedge and a node indicates that
the node is visited by that hyperedge.

The small numbers close to the hyperedges are the tentacle numbers. Without these numbers
the image may be ambiguous. For instance, the tentacle with number 0 of “text” hyperedges
always has to be attached to the node the previous statement ends at whereas the tentacle 1 links
the statement to its successor. The Flowgraph given in Fig. 3b is represented as follows using the
previous declarations:

fcg = {("start",0,[1]), ("text",1,[1,2]), ("cond",2,[2,7,3]),
("cond",3,[3,4,5]), ("text",4,[4,6]), ("text",5,[5,6]),
("text",6,[6,2]), ("end",7,[7])}

The language of Flowgraphs can be described using a hyperedge replacement grammar in
a straightforward way as we see in the next section. We provide a special-purpose parser for
Flowgraphs on top of our framework in Sect. 5.

4 Parsing Graphs with Combinators

In this section we introduce our graph parser combinators. However, first we clarify the notion
of parsing in a graph setting.

4.1 Graph Grammars and Parsers

A widely known kind of graph grammar are hyperedge replacement grammars (HRG) as de-
scribed in [DHK97]. Here, a nonterminal hyperedge of a given hypergraph is replaced by a new
hypergraph that is glued to the remaining graph by fusing particular nodes. Formally, such a
HRG G is a quadruple G = (N,T,P,S) that consists of a set of nonterminals N ⊂ C, a set of
terminals T ⊂C with T ∩N = /0, a finite set of productions P and a start symbol S ∈ N.

The graph grammar for Flowgraphs can be defined as GFC = (NFC,TFC,PFC,FC) where NFC =
{FC,Stmts,Stmt}, TFC = {start,end, text,cond} and PFC contains the productions given in Fig. 4a.
Left-hand side lhs and right-hand side rhs of each production are separated by the symbol ::=
and several rhs of one and the same lhs are separated by vertical bars. Node numbers are used
to identify corresponding nodes of lhs and rhs.

The derivation tree of our exemplary Flowgraph as introduced in Fig. 3b is given in Fig. 4b.
Its leaves are the terminal edges occurring in the graph whereas its inner nodes are marked
with nonterminal edges indicating the application of a production. The direct descendants of an
inner node represent the edges occurring in the rhs of the applied production. The numbers in
parentheses thereby identify the nodes visited by the particular edge.

A general-purpose graph parser for HRGs gets passed a particular HRG and a graph as pa-
rameters and constructs a derivation tree of this graph according to the grammar. This can be
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Figure 4: Flowgraphs, a) grammar and b) derivation tree of the example

done, for instance, in a way similar to the well-known algorithm of Cocke, Younger and Kasami
[Kas65] known from string parsing (indeed, all HRGs can be transformed to the graph equivalent
of the string notion Chomsky Normal Form). This approach has been elaborated theoretically
by Lautemann [Lau89] and proven to be useful in practical applications, e.g., in [Min02] for the
syntax analysis of diagrams.

Flowgraphs can be parsed with such a general-purpose graph parser in a straightforward way.
However, as mentioned in the introduction there are graph languages that are not context-free
(and thus cannot be described by a HRG) or that are highly ambiguous (thus causing most
general-purpose parsers to perform poorly). Furthermore, here we are not interested in the deriva-
tion tree, but rather in the program represented by the graph, i.e., its semantics. For these reasons
graph parser combinators are beneficial either way. We now briefly introduce the framework and
describe how the HRG of Flowgraphs (and other HRGs similarly) can be translated into a graph
parser on top of our framework.

4.2 The Combinator Library

Due to space restrictions in the following we focus on those types and functions that are needed
to translate hyperedge replacement grammars schematically. Further information and a more
general version of the framework can be found in [MM07]. First we provide the declaration of
the type Grappa representing a graph parser:

newtype Grappa res = P (Graph -> (Either res Error, Graph))

This type is parameterized over the type res of the result. Graph parsers basically are func-
tions from graphs to pairs consisting of the parsing result (or an error message, respectively) and
the graph that remains after successful parser application.
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Name Type Description

context (Context->Bool)->
Grappa Context

A context satisfying a particular condition.

labContext String->Grappa Context A context with a particular label.
connLabContext String->[(Tentacle,Node)]->

Grappa Context
A labeled context connected to the given nodes
via the given tentacles.

edge Tentacle->Tentacle->String->
Node->Grappa (Node,Context)

A labeled context connected to the given node
via a particular tentacle also returning its suc-
cessor (via the other, outgoing tentacle).

dirEdge String->Node->
Grappa (Node,Context)

A directed edge, edge 0 1.

Table 1: Graph-specific primitive parsers

Name Type Description

oneOf [Grappa res]->Grappa res Returns the first successful parser of the input list,
corresponds to | in grammars.

chain (Node->Grappa (Node, res))->
Node->Grappa (Node, [res])

A chain of graphs, a node is passed through.

bestNode (Node->Grappa res)->
Grappa res

Identifies the node from which the best continua-
tion is possible, very expensive.

noDanglEdgeAt Node->Grappa () Succeeds if the given node is not incident to an
edge, handy for ensuring dangling edge condition.

allDifferent [Node]->Grappa () Succeeds if the given nodes are distinct, handy for
ensuring identification condition.

connComp Grappa res->Grappa [res] Applies the given parser once per connected com-
ponent, while collecting the results.

Table 2: Some graph parser combinators

In general, the most primitive parsers are return and fail. Both do not consume any input.
Rather return succeeds unconditionally with a particular result whereas fail always fails;
thereby, backtracking is initiated.

In Table 1 we provide some important graph-specific primitive parsers. They are all nondeter-
ministic, i.e., support backtracking on failure, and consume the context they return. Additionally
we provide the primitive parser aNode::Grappa Node that returns a node of the remaining
graph (with backtracking).

In Table 2 we briefly sketch some of the graph parser combinators provided by our library.
Variations of chain have already been used in the introductory example, e.g., chain1 that
demands at least one occurrence.

Proc. GT-VMT 2008 8 / 14



ECEASST

fc::Grappa Program
fc = do

(_,_,[n1])<-labContext "start"
(_,_,[n2])<-labContext "end"
stmts (n1,n2)

stmts::(Node, Node)->Grappa Program
stmts (n1, n2) = oneOf [stmts1, stmts2]
where stmts1 = do

s<-stmt (n1, n2)
return [s]

stmts2 = do
n’<-aNode
s<-stmt (n1, n’)
p<-stmts (n’, n2)
return (s:p)

stmt::(Node, Node)->Grappa Stmt
stmt (n1, n2) = oneOf [stmt1, stmt2, stmt3]
where stmt1 = do

connLabContext "text" [(0,n1),(1,n2)]
return Text

stmt2 = do
(_,_,ns)<-connLabContext "cond" [(0,n1)]
p1<-stmts ((ns!!1), n2)
p2<-stmts ((ns!!2), n2)
return (IfElse p1 p2)

stmt3 = do
(_,_,ns)<-connLabContext "cond" [(0,n1),(1,n2)]
p<-stmts ((ns!!2), n1)
return (While p)

Figure 5: A parser for Flowgraphs

5 Parsing Flowgraphs

In this section we directly translate the grammar given in Fig. 4a to a parser for the correspond-
ing language using our framework. Our goal is to map a Flowgraph to its underlying program
represented by the recursively defined type Program:

type Program = [Stmt]
data Stmt = Text | IfElse Program Program | While Program

In Fig. 5 the parser for Flowgraphs is presented. It is not optimized with respect to perfor-
mance. Rather it is written in a way that makes the translation of the HRG explicit. For each
nonterminal edge label l we have defined a parser function that takes a tuple of nodes (n1, ...,nt)
as a parameter such that t = type(l). Several rhs of a production are handled using the oneOf
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combinator. Terminal edges are matched and consumed using primitive parsers. Thereby their
proper embedding has to be ensured. We use the standard list operator (!!) to extract the node
visited via a particular tentacle from a node list ns.

For instance, stmt3 represents the while-production. First, a “cond”-edge e visiting the nodes
n1 and n2 via the tentacles 0 and 1, respectively, is matched and consumed. Thereafter the body
of the loop is parsed, i.e., the stmts starting at the node visited by tentacle 2 of e, i.e., ns!!2,
ending again at n1. Finally the result is constructed and returned. If something goes wrong and
backtracking becomes necessary, previously consumed input is released automatically.

The parser is quite robust. For instance, redundant components are just ignored and both the
dangling and the identification condition are not enforced. These relaxations can be canceled
easily – the first one by adding the primitive parser eoi (end of input) to the end of the def-
inition of the top-level parser, the others by applying the combinators noDanglEdgeAt and
allDifferent, respectively, to the nodes involved.

Note, that the implementation of stmts follows a common pattern, i.e., a chain of graphs
between two given nodes. So using a combinator the parser declaration can be further simpli-
fied to stmts=chain1Betw stmt. Here, chain1Betw ensures at least one occurrence as
required by the language. Its signature is

chain1Betw::((Node,Node)->Grappa a)->(Node,Node)->Grappa [a]

and it is defined exactly as stmts except from the fact that it abstracts from the actual parser
for the partial graphs.

Performance

This parser is not very efficient. A major source of inefficiency is the use of aNode that binds a
yet unknown node arbitrarily thus causing a lot of backtracking. This expensive operation has to
be used only for the translation of those productions, where inner nodes within the rhs are not in-
cident to terminal edges visiting an external node, i.e., a node also occurring in the lhs.5 However,
even so there are several possibilities for improvement. For instance, we currently try to make
this search more targeted by the use of narrowing techniques as known from functional-logic pro-
gramming languages [Han07]. Performance can be further improved if particular branches of the
search space can be cut. For instance, we can prevent backtracking by committing to a (partial)
result. In [MM07] we have demonstrated how this can be done in our framework. Finally, we
can apply domain-specific techniques to further improve the performance. For instance, a basic
improvement would be to first decompose the given graph into connected components and apply
the parser to each of them successively. We provide the combinator connComp for this task.
However, this step can only be applied to certain languages and at the expense of readability.

So we can start with an easy to build and read parser for a broad range of languages. It may be
less efficient, however, it can be improved step by step if necessary. Further it can be integrated
and reused very flexibly, since it is a first-class object.

5 The function aNode can also be used to identify the start node in our introductory example abcG.
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6 Related Work

Our parser combinator framework basically is an adaptation of the PolyParse library [Wal07].
The main distinguishing characteristics of PolyParse are that backtracking is the default behavior
except where explicitly disallowed and that parsers can be written using monads. There is an
abundance of other parser combinator libraries besides PolyParse that we cannot discuss here.
However, a particularly interesting one is the UU parser combinator library of Utrecht University
[SA99]. It is highly sophisticated and powerful, but harder to learn for a user. Its key benefit is
its support for error correction. Hence a parser does not fail, but a sequence of correction steps
is constructed instead.

Approaches to parsing of particular, restricted kinds of graph grammar formalisms are also
related. For instance, in [SF04] an Earley parser for string generating graph languages has been
proposed. The diagram editor generator DiaGen [Min02] incorporates an HRG parser that is an
adaptation of the algorithm of Cocke, Younger and Kasami. And the Visual Language Compiler-
Compiler VLCC [CLOT97] is based on the methodology of positional grammars that allows to
parse restricted kinds of flex grammars (which are essentially HRGs) even in linear time. These
approaches have in common that a restricted graph grammar formalism can be parsed efficiently.
However, they cannot be generalized straightforwardly to a broader range of languages like our
combinators.

We have demonstrated that semantics can be added very flexibly in our framework. The graph
transformation system AGG also provides a flexible attribution concept. Here, graphs can be at-
tributed by arbitrary Java objects [Tae03]. Rules can be attributed with Java expressions allowing
complex computations during the transformation process. AGG does not deal with hypergraphs.
However, it can deal with a broad range of graph grammars. These are given as so-called parse
grammars directly deconstructing the input graph. Critical pair analysis is used to organize re-
verse rule application.

In [RS95] a parsing algorithm for context-sensitive graph grammars with a top-down and a
bottom-up phase is discussed. Thereby first a set of eventually useful production applications
is constructed bottom-up. Thereafter viable derivations from this set are computed top-down.
Parser combinators generally follow a top-down approach, although in a graph setting bottom-
up elements are beneficial from a performance point of view.

Finally there are other approaches that aim at the combination of functional programming and
graph transformation. Schneider, for instance, currently prepares a textbook that provides an
implementation of the categorical approach to graph transformation with Haskell [Sch07]. Since
graphs are a category, a higher level of abstraction is used to implement graph transformation al-
gorithms. An even more general framework is provided in [KS00]. The benefit of their approach
is its generality since it just depends on categories with certain properties. However, up to now
parsing is not considered.
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7 Concluding Remarks

In this paper we have discussed graph parser combinators, an extensible framework support-
ing the flexible construction of special-purpose graph parsers even for context-sensitive graph
grammars. It already provides combinators for the parsing of several frequently occurring graph
patterns. We even may end with a comprehensive collection of reusable parser components.

Parser combinators are best used to describe a language in an operational way. For instance,
we have provided a parser for the graph language akbkck as a toy example. Similar situations,
however, also appear in practical applications as, e.g., discussed in [Kör07]. We further have
provided a schema for the straightforward translation of hyperedge replacement grammars into
a parser on top of our framework. The resulting parser is not efficient. It is rather a proof of
concept. Languages like our exemplary Flowgraphs can be parsed very efficiently using a stan-
dard bottom-up parser. However, the main benefit of our framework is that language-specific
optimizations can be incorporated easily in existing parsers, e.g., by providing additional infor-
mation, using special-purpose combinators, heuristics or even a bottom-up pass simplifying the
graph.

Parsing generally is known to be an area functional languages excel in. In the context of string
parsing a broad range of different approaches have been discussed. However, in particular the
popular combinator approach has not been applied to graph parsing yet. With the implementation
of our library we have demonstrated that graph parser combinators are possible and beneficial
for the rapid development of special-purpose graph parsers.

Future work

Our approach is not restricted to functional languages though. For instance, in [AD01] the trans-
lation of string parser combinators to the object-oriented programming language Java is de-
scribed. We plan to adapt this approach in the future to, e.g., integrate graph parser combinators
into the diagram editor generator DiaGen [Min02]. This hopefully will allow the convenient
description of even more visual languages.

The parsers presented in this paper suffer from the fact that purely functional languages are not
particularly dedicated to deal with incomplete information. For instance, we have discussed why
inner nodes occurring in the right-hand sides of productions have to be guessed. Multi-paradigm
declarative languages [Han07] like Curry [Han] are well-suited for such kinds of problems. We
currently reimplement our library in a functional-logic style to overcome these limitations. This
work will also clarify the relation to proof search in linear logic [Gir87]. Here, the edges of a
hypergraph can be mapped to facts that can be connected to a parser via so-called linear impli-
cation ((). During the proof the parser consumes these facts and at the end none of them must
be left.

We further plan to investigate error correction-strategies in a graph setting. For instance, in the
context of visual language editors based on graph grammars this would allow for powerful con-
tent assist. Whereas in a string setting error-correcting parser combinators are well-understood
already [SA99], not much has been done with respect to graphs yet. Admittedly, we do not
expect to find an efficient solution to this problem.
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[RS95] J. Rekers, A. Schürr. A parsing algorithm for context sensitive graph grammars.
Technical report 95-05, Leiden University, 1995.

[SA99] S. D. Swierstra, P. R. Azero Alcocer. Fast, Error Correcting Parser Combinators: a
Short Tutorial. In Pavelka et al. (eds.), 26th Seminar on Current Trends in Theory
and Practice of Inform. LNCS 1725, pp. 111–129. 1999.

[Sch07] H. J. Schneider. Graph Transformations - An Introduction to the Categorical Ap-
proach. 2007. http://www2.cs.fau.de/˜schneide/gtbook/.

[SF04] S. Seifert, I. Fischer. Parsing String Generating Hypergraph Grammars. In Ehrig et al.
(eds.), Graph Transformations. Lecture Notes In Computer Science 3256, pp. 352–
267. Springer, 2004.

[Tae03] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In Pfaltz et al. (eds.), AGTIVE. Lecture Notes in Computer Sci-
ence 3062, pp. 446–453. Springer, 2003.

[Wal07] M. Wallace. PolyParse. 2007. http://www.cs.york.ac.uk/fp/polyparse/.

Proc. GT-VMT 2008 14 / 14

http://www.unibw.de/steffen.mazanek/dateien/ifl2007


ECEASST

Visual Design and Reasoning
with the Use of Hypergraph Transformations
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Abstract: This paper deals with visual design and reasoning. A visual language
with its internal representation in the form of attributed hierarchical hypergraphs is
discussed. Hypergraph attributes allow for defining and analysing constraints im-
posed by design knowledge. Operations on hypergraphs which reflect modifications
of design diagrams are also presented. The approach is illustrated by examples of
designing floor-layouts.

Keywords: visual design, graph transformations, hypergraphs, knowledge-based
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1 Introduction

This paper describes a knowledge-based decision support design system where designs are con-
figurations of visual elements. Both partial and complete design solutions arerepresented in the
form of diagrams forming a specific visual language, called the layout language. The syntactic
knowledge of this language is defined by means of attributed hierarchical hypergraphs.

The proposed approach constitutes an attempt to solve the problem of transforming the visual
design knowledge into a computer internal representation for a system which is to support the
designer in the early stage of the design process [GGLŁŚ, GŚG]. The compatibility between
the proposed visual language and the internal representation that serves as a base for reasoning
about designs is discussed.

In our approach each diagram drawn by the designer is represented inthe form of an attributed
hierarchical hypergraph. Hyperedges of hypergraphs represent both diagram components and
the multi-argument relations among them. Hierarchical hyperedges correspond to groups of
diagram components. Hypergraphs nested in these hyperedges correspond to subcomponents of
the diagram parts. Hierarchical hypergraphs not only reflect the top-down way of designing but
also enable the designer to consider the project on the specified level of detail and allow one
to express relations between components on different hierarchy levels.Attributes assigned to
hyperedges encode the semantic design knowledge.

Diagram modifications made by the user are reflected in the hypergraph representation, which
is correspondingly changed using operations defined on hypergraphs. When the designer decides

1 / 14 Volume X (2008)



Visual Design and Reasoning

to divide a chosen area of the layout into smaller parts the operation called hyperedge develop-
ment [GŚG], is used. A reverse operation, called hyperedge suppression, which allows one to
redesign the chosen area, is defined in this paper.

The paper strongly recommends the designer to interact with the computer system on the level
of a visual language. The knowledge stored in the attributed hypergraphrepresentation of dia-
grams allows the system to reason about layouts and to support the designer by suggesting further
steps and prevent him/her from creating designs not compatible with the specified constraints or
criteria. The approach is illustrated by examples of designing floor-layouts.

2 Related work

This paper deals with supporting conceptual design phase by a knowledge-based system. Nowa-
days detailed design and design documentation phases are usually well supported in CAD tools
such as ArchiCAD, Architectural Desktop and AllPlan, etc. [Szu]. Although there are many
computational tools for describing, editing, analyzing, and evaluating design projects [Min],
there still exists lack of consistency between knowledge visualization of the given domain (ar-
chitecture, construction, machine building) and its internal representation ina computer program.
This is one of the reasons that the initial design phase, called conceptual design, is the least sup-
ported one.

Our approach proposes a visual representation of designs together with their internal represen-
tation. Such a method allows one to equip the design editor with intelligent assistantssupport-
ing creative design by reasoning about the project features and suggesting design modifications.
When developing a visual language the role of sketches in the conceptualdesign phase was taken
into consideration [Gol]. Therefore elements of our language contain general ideas about design
objects and are not treated as completed design components used in design visualizations in all
CAD tools.

Graphs and hierarchical structures are used quite frequently in knowledge-based design tools
[SWZ]. Our approach is based on a formal model of hierarchical hypergraphs introduced in
[DHP] and extended in [́Slu]. This type of hypergraphs enables us to express multi-argument
relations between elements on different hierarchy levels, which is essential in design. Our hyper-
graphs can be treated also as an extension of hypergraphs used by [Min], which are too restrictive
in expressing relations.

3 Design Diagrams and Attributed Hierarchical Hypergraphs

In this section we present an example of a visual language, called a layoutlanguage, which en-
ables the designer to create and edit floor-layouts. A vocabulary of this language is composed of
shapes corresponding to components like rooms, walls, doors, windows,while the rules specify-
ing possible arrangements of these components constitute its syntactic knowledge. Elements of
the layout language are diagrams seen as simplified architectural drawings.

Let us consider a floor-layout presented in Figure1(a) and its design diagram shown in Fig-
ure 1(b). A design diagram is composed of polygons which are placed in an orthogonal grid.
These polygons represent components of a floor-layout, like functional areas or rooms. Mutual
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(b)

(a)

Figure 1: a) An architectural drawing, b) a design diagram

location of polygons is determined by design criteria. Lines with small squareson them represent
the accessibility relation among components, while continuous lines shared by polygons denote
the adjacency relations between them. The accessibility relation between two areas is specified
when the existence of a wall with doors, a fragment of a wall or lack of a wall are planned in a
floor-layout design. When a wall dividing two areas is not planned, the location of a line repre-
senting the accessibility relation is determined by the specified sizes of the areas. The sides of
each polygon are ordered clock-wise starting from the top left-most one.In a design diagram
only qualitative coordinates are used i.e., only relations among graphical elements (walls) are
essential.

Each design diagram has its internal representation in the form of an attributed hierarchical
layout hypergraph. Such a hypergraph contains two types of hyperedges, which can represent
components and spatial relations on different levels of details. Hyperedges of the first type
are non-directed and correspond to layout components. Hyperedgesof the second type represent
relations among components and can be either directed or non-directed in thecase of symmetrical
relations. Considering floor-layout design only spatial relations which are by nature symmetrical
(accessibility and adjacency) are taken into account.

An example of the internal representation of the diagram presented in Figure 1(b) is shown
in Figure2. This hypergraph is composed of eleven component hyperedges, three of which are
hierarchical ones, and fourteen relational hyperedges, where halfof them represent the acces-
sibility relation and the other half the adjacency relation. The relational hyperedge connecting
node 2.2 of the hyperedge labelledLr and node 4.6 of the hyperedge labelledBe is one of the
hyperedges expressing relations between components nested in different parent hyperedges.

To represent features of layout components and relations between themattributing of nodes
and hyperedges is used. Attributes represent properties (like shape,size, position, number of
windows or doors) of elements corresponding to hyperedges and nodes.

3 / 14 Volume X (2008)



Visual Design and Reasoning

Figure 2: A hierarchical layout hypergraph corresponding a designdiagram from Figure 1(b)

The proposed hierarchical layout hypergraph constitutes a modificationof hypergraphs pre-
sented in [Min, Ślu] and is defined as follows.

Let [i] denote the interval[1, i] of natural numbers (with[0] = /0) and letΣ = ΣE ∪ΣV , where
ΣE ∩ΣV = /0, be a fixed alphabet of hyperedge and node labels, respectively.Let At be a set of
hyperedge and node attributes.

Definition 1 An attributed hierarchical layout hypergraph overΣ = ΣE ∪ΣV andAt is a system
G = (EG,VG,sG, tG, lbG,attG,extG,chG),where :

1. EG = EC
G ∪ER

G is a nonempty finite set of hyperedges, where elements ofEC
G represent

object components, while elements ofER
G represent relations andEC

G ∩ER
G = /0,

2. VG is a nonempty finite set of nodes,

3. sG : EG → (VG)∗ andtG : EG → (VG)∗ are two mappings assigning to hyperedges sequences
of source and target nodes respectively, in such a way that∀e ∈ EC

G sG(e) = tG(e),

4. lbG = lbEG ∪ lbVG , where:

• lbEG : EG → ΣE is a hyperedge labelling function, such thatΣE = ΣC
E ∪ΣR

E ∧ ΣC
E ∩

ΣR
E = /0∧ ∀e ∈ EC

G lbEG(e) ∈ ΣC
E ∧ ∀e ∈ ER

G lbEG(e) ∈ ΣR
E ,

• lbVG : VG → ΣV is a node labelling function,
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5. attG = attEG ∪attVG , where:

• attEG : EG → P(At) is a hyperedge attributing function,

• attVG : VG → P(At) is a node attributing function,

6. extG : [n] →VG is a mapping specifying a sequence of hypergraph external nodes,

7. chG : EC
G → P(A) is a child nesting function, whereA = EG ∪VG is called a set of hy-

pergraph atoms, and such that one atom cannot be nested in two different hyperedges, a
hyperedge cannot be its own child, source and target nodes of a nested hyperedgee are
nested in the same hyperedge ase.

Hyperedges of the layout hypergraph are labelled by names of components or relations. A se-
quence of source and target nodes is assigned to each hyperedge and express potential connec-
tions to other hyperedges. Moreover, for each hierarchical hypergraph a sequence of external
nodes is determined. A child nesting function ensures that one atom cannotbe embedded in
two different hyperedges. It also guarantees that there are no ancestor-descendant cycles in a
hypergraph, which means that a hyperedge cannot be its own child.

4 Operations on Hierarchical Layout Hypergraphs

It is known that a design process cannot be a priori defined in an algorithmic way. During a design
process the designer often modifies a design diagram and/or changes design goals before he gets
a plausible solution. To reflect these changes in our internal representation of a visual language
we equip the proposed system with operations acting on hierarchical layout hypergraphs. They
allow to create and modify hypergraphs representing structures of objects being designed.

The hyperedge development operation, which enables to represent a model structure on a
more detailed level, was defined in [GŚG]. It takes two hierarchical hypergraphs as arguments
and nests in a hyperedge corresponding to an object element in the first hypergraph the second
hypergraph representing the components of this element and relations among them. The nodes
connected to a developed hyperedge are substituted by the corresponding external nodes of the
child hypergraph.

Now we define in a formal way an operation called ahyperedge suppression, which is a reverse
to a development operation. It is useful when the designer wants to redesign the chosen area.
Then he/she has to remove the existing area division before dividing it in a different way. A
suppression operation takes as an argument a hierarchical layout hypergraph and removes the
nested contents of one of its earlier developed component hyperedges.

Let us consider Figure2 and Figure3. Figure3 presents the result of applying a suppression
operation consisting in removing a hypergraphH nested in the hyperedgẽe labelledL corre-
sponding to the living area (Figure2).

Let SG(e) andTG(e) denote sets of all nodes specified by sequences of source and targetnodes
of a hyperedgee in a given hierarchical layout hypegraphG.

Definition 2 Let G be an attributed hierarchical layout hypergraph overΣ = ΣE ∪ΣV andAt,
andẽ∈EC

G be a component hyperedge ofG such that there exists a hierarchical layout hypergraph
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H overΣ andAt, andch+
G(ẽ) = EH ∪VH , wherech+

G denotes the transitive closure ofchG.
Let EXTH denote a set of external nodes ofH, V denote a finite set of nodes such thatV ∩VG = /0,
E denote a set of all relational hyperedges ofER

G \ER
H and connected with nodes ofEXTH , and

E ′ denote a finite set of relational hyperedges such thatE ′∩EG = /0.
Let a functionsubstr(string1,string2) return a substring ofstring1 without the prefixstring2.

The hyperedge suppression operation is defined by three functions:

1. a suppression functionsup : EXTH →V defined in such a way that
∀v,w ∈ EXTH substr(lbG(v), |lbH(v)|) = substr(lbG(w), |lbH(w)|) ⇒ sup(v) = sup(w),
is a surjection which determines the correspondence between a set of newnodes and ex-
ternal nodes ofH assigning one node to all nodes with labels which differ only by a prefix
number.

2. a suppression labelling functionlbsup : V → ΣV defined in such a way that
∀v ∈V lbsup(v) = substr(lbG(w), |lbH(w)|), wherew ∈ sup−1(v),
is a mapping assigning to new nodes labels obtained by removing prefixes from labels of
the corresponding external nodes ofH.

3. a suppression embedding functionembsup : E → E ′ is a surjection which determines the
correspondence between a set of new relational hyperedges and relational hyperedges con-
nected with external nodes ofH.

The result of the hyperedge suppression operation is an attributed hierarchical layout hypergraph
˜G = (E

˜G,V
˜G,s

˜G, t
˜G, lb

˜G,att
˜G,ext

˜G,ch
˜G) overΣ andAt, where:

1. E
˜G = (EG \EH \E)∪E ′,

2. V
˜G = (VG \VH)∪V ,

3. s
˜G : E

˜G → (V
˜G)∗ andt

˜G : E
˜G → (V

˜G)∗ are defined in such a way that:

• s
˜G(ẽ) = t

˜G(ẽ) ⊆ ˜V ∗, where˜V = SG(ẽ)∪V ,

• ∀e ∈ EG \EH \E \{ẽ} s
˜G(e) = sG(e)∧ t

˜G(e) = tG(e),

• ∀e ∈ E ′ s
˜G(e) = f (e)∧ t

˜G(e) = f (e) where f : E ′ → (V
˜G)∗,

4. lb
˜G = lbE

˜G
∪ lbV

˜G
, where:

• ∀e ∈ EG \EH \E lb
˜G(e) = lbG(e),

• ∀e2 ∈ E ′ lb
˜G(e2) = lbG(e1), wheree1 ∈ emb−1

sup(e2),

• ∀v ∈VG \VH lb
˜G(v) = lbG(v),

• ∀v ∈V lb
˜G(v) = lbsup(v),

5. att
˜G = attE

˜G
∪attV

˜G
, where:

• ∀e ∈ EG \EH \E att
˜G(e) = attG(e),

• ∀e2 ∈ E ′ att
˜G(e2) = attG(e1), wheree1 ∈ emb−1

sup(e2),
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• ∀v ∈VG \VH att
˜G(v) = attG(v),

• ∀v ∈V att
˜G(v) = h(v), whereh : V → P(At),

6. ext
˜G : [ñ] →V

˜G ×ΣV .

7. ∀e ∈ EC
G \{ẽ} ch

˜G(e) = chG(e) ∧ ch+
˜G
(ẽ) = /0.

As the result of the hyperedge suppression operation the hypergraphH is removed from the
component hyperedgẽe of G. The external nodes ofH are substituted by the corresponding
nodes ofV which become new source nodes of the hyperedgeẽ. The correspondence among
nodes is established by a suppression functionsup on the basis of the node labels. The source
nodes of̃e have the same labels as before a development operation onẽ.

The suppression embedding function replaces the relational hyperedges connected to the ex-
ternal nodes ofH by new relational hyperedges connecting nodes ofG to source nodes of̃e. The
way of replacing each hyperedge by the corresponding set of new hyperedges is specified on the
basis of design constraints.

Let us come back to the example of the suppression operation removing a hypergraphH nested
in the hyperedgẽe labelledL corresponding to the living area (Figure2 and Figure3). Node
replacing specified by the functionsup determines six new nodes (a setV ) corresponding to ten
external nodes of the nested hypergraph. The labels of new nodes are obtained by removing
prefixes coming from the corresponding external nodes of the removedhypergraph. For example
two nodes with labels 2.4 representing east walls of the hall and toilet, respectively, are merged
into one node with label 4 representing the north side of the areaL, while three nodes labelled
3.5.3 are merged into one node labelled 5.3 and representing the south wall ofthe living area.
The four relational hyperedges which were connected with nodes 2.2, 1.3, 2.4 and 2.4 (E =
2.2,1.3,2.4,2.4) are replaced by three new relational hyperedges ofE ′ connected with nodes
2, 3 and 4 of the hyperedge labelledL according to the suppression embedding function. As
the result of this suppression operation a hierarchical layout hypergraph shown in Figure3 is
obtained.

5 Visual reasoning

Visual languages play a similar role in design as design sketches as they enable to follow
changes made in design diagrams. Nowadays computer systems with visual languages should
be equipped with intelligent tools capable of assisting the user in a computationalprocess. Such
tools ought to be able to reason on the basis of the internal representationsof visual language
elements.

The presented system is able to reason about the diagram being designedand suggest the de-
signer modifications which are needed and warn him/her against creating solutions not compati-
ble with the specified constraints. To this end the system is equipped with a setSr of predicates
of the formr : P(H )×K → {T RUE,FALSE}, whereH denotes a family of attributed hier-
archical layout hypergraphs overΣ andAt, andK denotes design knowledge. Each predicate
tests whether the predefined criteria are satisfied for the presently generated hierarchical layout
hypergraph.
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Figure 3: The hierarchical layout hypergraph obtained by removing a hypergraph from the hy-
peredge representing the sleeping area

Design knowledge is divided into syntactic knowledgeKs and interpretation knowledgeKi

[CRRBG]. The predicates ofSr are divided into syntactic predicates (St) based on syntactic
knowledge and semantic ones (Sm) based on interpretation knowledge. Each predicate ofSt has
a specified subhypergraph which is searched for in a layout hypergraph created so far. After
each hypergraph development operation, which nests a hypergraph ina hyperedge, for each
component hyperedge of a nested hypergraph a predicater1 ∈ St, which tests the accessibility
of the corresponding room or area, is activated. This predicate searches for a subhypergraph
shown in Figure4(a), whereLab denotes a label of a component hyperedge. For example in a
hypergraph nested in a hyperedge representing the whole apartment (Figure2) and presented in
Figure6(b) for both component hyperedges labelledS andL one such subhypergraph is found,
while for a hyperedge labelledG representing a garage a searched subhypergraph is not found.
The designer is notified that there is no inside connection of a garage and itis accessible only
from the outside of the house.

The example syntactic predicater2 searches in a nested hypergraph for a subhypergraph shown
in Figure 4(b). The labelsDr and K denote a dining-room and a kitchen, respectively. The
predicate checks if a dining-room is located near a kitchen and is accessible from it. If these
conditions are not satisfied for the existing dining-room the designer obtains a suitable piece of
information.

Predicates belonging to a setSm enable the system to perform semantic analysis of the gen-
erated hypergraph. The semantic reasoning about a design diagram is performed on the basis of
identifiers and present values of attributes assigned to hypergraph atoms. To each component hy-
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Figure 4: a) A subhypergraph of a predicater1, b) a subhypergraph of a predicater2

peredge the attributearea, which value specifies the area of the corresponding space, is assigned.
To relational hyperedges labelledacc the attributetype is assigned. Its value specifies the way
in which the adjacent spaces are accessible (by the door, by lack of a fragment or a whole wall
between them). To hypergraph nodes the attributesposition andwindow number are assigned.
They specify the location of the walls and the numbers of windows which the walls contain.

The example semantic predicater3, which is activated for each room located in a design
diagram, sums up values of thewindow number attribute of all nodes assigned to a corresponding
component hyperedge representing this room. Comparison of the obtainednumber with the
specified architectural norms allows the system to reason about the lightningof the room and the
loss of heat, and warn the designer about the possible problems.

Another example of semantic reasoning concerns deducing shape of rooms on the basis of
identifiers of nodes assigned to hyperedges representing diagram components. First, a syntac-
tic predicate, which searches for composition hyperedges connected withsix or eight nodes, is
activated. For the found hyperedges of the first type, a semantic predicater4 tests if the cor-
responding areas have the shape of a letterL, while for the hyperedges of the second type, a
semantic predicater5 tests if the corresponding areas have the shape of a letterT . Predicater4
searches for two pairs of nodes, each of them representing two non-collinear and parallel walls,
and such that walls represented by these pairs are not perpendicular (hyperedgesS andL in Fig-
ure6(b)). Predicater5 searches for three nodes representing three parallel walls with the same
orientation and such that at most two of them are collinear, one node representing a wall which
is parallel to the mentioned three walls but has the opposite orientation. Two remaining pairs of
nodes should represent parallel and non-collinear walls with opposite orientations.

6 Implementation

In this section a structure of the systemHGSDR (Hypergraph Generator Supporting Design
and Reasoning) is presented. The system allows the designer to edit diagrams and automatically
applies operations on hierarchical layout hypergraphs being internalrepresentations of diagrams.
It also gives the possibility to define constraints and reason about designdiagrams.

The system is written in Java and contains four modules (Figure5): a graphical interface for
editing objects and constraints, a constraint module for reasoning about diagrams, a hierarchical
layout hypergraph generator and a control module for hypergraph visualization. The graphical
interface enables the designer to construct diagrams of visual elements directly accessible in the
editor or taken from a library of objects defined by the user or an external library of domain-
oriented objects. A set of visual primitives, which are directly accessible contains points, line
segments, polygons and eliptic arcs. Texts can be used to describe primitives. The graphical
interface allows the designer to interactively create and edit both objects, their attributes and
constraints concerning these attributes.
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Figure 5: A system architecture

The constraint module contains syntactic and semantic reasoning rules. It activates the rules,
solves constraint equations defined on hypergraph attributes and sends messages to the designer.
It prompts the designer which diagram transformations are needed. Whenthe designer changes
values of attributes, which are connected by specified constraints (like distance or location), the
system can force the appropriate constraints to be satisfied by changing sizes of some objets and
drawing a new diagram again.

The hierarchical layout hypergraph generator automatically creates hypergraphs, where hy-
peredges correspond to diagram components and relations between them.The control module
for hierarchical hypergraph visualization verifies and updates an existing hierarchy and enables
to group components of the same hierarchy level and show relations between these groups and
other components being on different levels of the hypergraph hierarchy.

7 Case Study

Let us consider an example of creating a design diagram presented in Figure 1(b), which corre-
sponds to the layout of a one storey house with a garage shown in Figure1(a). The first diagram
drawn by the designer represents the area of the whole apartment. The initial hypergraph repre-
senting this diagram, that is automatically generated (Figure6(a)), is composed of one hyperedge
connected with four external nodes representing sides of the area andplaced in the diagram ac-
cording to the geographical location of the sides they correspond to.

In the next step, the designer divides the whole apartment area into three parts representing
a living area, sleeping area and a garage, respectively (Figure7(a)). As a consequence, the
hyperedge development operation on the layout hypergraph is invokedautomatically. As the
result of this operation the layout hypergraph representing the three areas and adjacency rela-
tions between them is nested in the hyperedge representing the whole apartment. The obtained
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(b)

(a)

Figure 6: a) A component hyperedge representing the whole area of theapartment, b)a hierar-
chical layout hypergraph obtained as a result of a hyperedge development operation

hierarchical layout hypergraph is shown in Figure6(b).
The four external nodes of the hyperedge shown in Figure6(a) are replaced by seven external

nodes of the nested layout hypergraph in respect to their geographical orientations. The labels of
the external nodes of the layout hypergraph nested in the hyperedge representing the apartment
are concatenated with labels denoting the number of the parent hyperedgenode they replaced.
The node number 1 of the apartment is replaced by nodes representing north sides of the living
area (L) and the sleeping area (S). Both new nodes are labelled 1.1, where the first part of this
label denotes that they correspond to first sides of areasL andS, while the second part of the
label is inherited from the node which they replaced. The node number 2 is replaced by node 2
of the sleeping area and node number 2 of the garage, where both of themrepresent east sides
of the diagram and are labelled 2.2. The node number 3 is replaced by nodenumber 3 of the
garage (labelled 3.3) and node number 5 of the living area (labelled 5.3). The node number 4 of
the apartment is replaced by the node number 6 of the living area (labelled 6.4).

Then, the sleeping area is divided by the designer into a bedroom and a bathroom, which are
adjacent to each other (Figure7(b)). This modification of the design diagram results in nesting
the layout hypergraph representing these rooms and adjacency between them in the hyperedge
labelledS representing the sleeping area. As the result of applying the hyperedgedevelopment
operation the hierarchical layout hypergraph presented in Figure3 is obtained.

Six external nodes of the hyperedge labelledS are replaced by seven corresponding external
nodes of the nested hypergraph. The labels of these seven nodes areconcatenated with labels de-
noting numbers of the parent hyperedge nodes they replaced. For example, the node labelled 1.1
of the sleeping area is replaced by nodes representing north walls of the bedroom (Be) and bath-
room (Ba) (nodes 1.1.1 and 1.1.1, respectively).The relational hyperedges which were connected
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Figure 7: a)Three areas of the apartment, b) the apartment with the dividedsleeping area

with nodes 3, 4, 5 and 6 of the hyperedge labelledS are replaced by new relational hyperedges
connected with nodes 3.3, 2.4, 3.5, and 4.6 of the nested hypergraph, respectively.

Then, the designer divides the living area into five rooms representing a living room, kitchen,
hall, entrance and a toilet, respectively (Figure1(b)). As the result of the next hyperedge develop-
ment operation, which nests the layout hypergraph representing these five rooms and adjacency
relations between them in the hyperedge representing the living area the hierarchical layout hy-
pergraph shown in Figure2 is obtained. Six external nodes of the hyperedge labelledL are
replaced by the corresponding external nodes of the nested layout hypergraph. For example,
the node labelled 4 is replaced by two nodes 2.4 representing east walls of the hall and of the
toilet (W ), respectively, while the node 5.3 by three nodes labelled 3.5.3 which correspond to
south walls of the kitchen (K), entrance (E) and toilet, respectively. Three relational hyperedges
which were connected with nodes 2, 3 and 4 of the hyperedge labelledL are replaced by four
new relational hyperedges. For example, the hyperedge which was connected with node 4 of the
living area is replaced by two relational hyperedges, one connected withnode 2.4 of the hall and
another one with node 2.4 of the hyperedge labelledW (Figure2).

If the designer is not satisfied with the layout of the living area and decidesto change it, then
she/he removes the division of this area and goes back to the diagram shown in Figure7(b). As
a consequence, the hyperedge suppression operation on the layout hypergraph is invoked auto-
matically. As the result of this operation the hierarchical layout hypergraph shown in Figure3 is
obtained. The nodes which were divided by the development operation are merged again. Node
replacing is specified in such a way that the merged nodes are given the same labels which they
had before the development operation was used.

In the next step the living area is divided into four spaces corresponding to a living-room,
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Figure 8: a) A redesigned diagram, b)a hierarchical layout hypergraph corresponding to it

kitchen, entrance and a toilet. The design diagram obtained as a result of anew division ofL and
the corresponding hierarchical layout hypergraph are presented inFigure8(a) and Figure8(b).

8 Conclusions

This paper is the next step in developing a visual language to support innovative design. In our
approach the designer’s modifications of diagrams are reflected by operations performed on their
hypergraph representations. The way of reasoning about design diagrams on the syntactic and
semantic level, based on knowledge stored in attributed hierarchical layouthypergraphs, that
enables the system to suggest the designer modifications of created solutions, is also described.

The presented system is tested on designing floor-layouts. Other applications will concern
visual languages for designing gardens in different styles and designing three-dimensional forms
of buildings. The present implementation is written in such a way that each new application
requires only some changes in the editor module.
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[SWZ] A. Scḧurr, A. Winter, A. Zündorf. Graph grammar engineering with PROGRES.
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Abstract: A triangulated network of mobile units is modelled by means of a graph trans-
formation system in which graph nodes are labelled with geometric coordinates and edges 
are labelled with distances. Nodes represent mobile units and edges represent wireless 
radio communication links between them. Under concurrency the model can describe 
interesting practical scenarios, for example swarms of taxis in an urban environment. The 
contribution features the enhancement of a graph transformation system by trigonometric 
calculations. By the way it is also shown that the classical “negative edge condition” has 
only limited applicability if a strict locality principle is assumed, and –vice versa– that  
there are reasonable modeling cases in which this locality principle itself fails to suffice.  
 
Keywords: Attributed Graph Transformation, Mobile Network, Concurrency, Locality. 
 

1 Scenario 

 
Figure 1: Triangulated network before (top) and after (bottom) the movement of some nodes. 
Dark shaded nodes have changed their positions, and some communication links have also 
been reconfigured in their topological positions, which is depicted  by thicker lines. 
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Graph Transformation Model of a Triangulated Network of Mobile Units 

Imagine an inner-city scenario in which a swarm of independent yet cooperating taxis keep 
each other informed about sources of customers to be picked up, traffic jams in the streets, etc. 
Every taxi is equipped with a simplistic communication device to keep in contact with a small 
number of other units in a not-too-far distance. To avoid confusion between the units, two 
locality constraints are imposed on every unit: 

• The number N of communication partners to each unit is limited. 
• The communication distance D between each unit is limited, too. 
 

The network is self-organizing like a swarm of fish, thus not controlled by any central agency. 
Furthermore, the network structure shall be triangulated (as further defined below), such that: 

• It has a well-manageable regular internal structure, as depicted in Figure 1, whereby: 
• Configurations can be simply (re)-calculated with the usual formulae of trigonometry. 
 

In the following sections of this paper a simple yet effective graph transformation model to 
such a self-organizing mobile network is developed. The underlying graph transformation 
techniques themselves being rather “classical” (except of a new interpretation of the “negative 
edge” condition) the value of this study is to be found in its general and uniform representation 
of a practically relevant scenario – enabling simulative experiments to study the behaviour of 
such systems, locally and globally, under various settings of its key parameters. 

2 Technical Preliminaries 
The graph transformation paradigm used in this paper combines the PROGRES system’s 
syntax [SWZ99] and denotational semantics [Sch96] of program-embedded attributed graph 
transformation with the VISIDIA system’s message-passing operational semantics [BGM01] 
[LMS95] as follows: 

• Edges in the left-hand-side of a graph transformation rule represent communication 
link between two units, whereby the liveness of such links must be acknowledged by 
means of message-passing between the connected units. 

• The non-existence of an edge between two units u and u’ (negative edge condition) 
can thus only be recognized indirectly via a third unit u” to which both u and u’ are 
linked. Any rule with a left-hand-side combining only u and u’ with a “negative edge” 
(which would be perfectly legal in PROGRES with its “omnivident” global viewpoint) 
is thus meaningless under this strictly local operational perspective. 

• An edge decorated with an explicit edge-attribute e indicates that some information e 
is (or can be) shared between the two adjacent nodes by means of message-passing as 
described above. Edge-attributes are only “syntactic sugar” for the sake of legibility of 
the model specification – in the terminology of PROGRES: “derived” (not “intrinsic”). 

• The operational semantics (implementation) of an edge between an ordinary node u 
and a multi-node u* (which represents a finite set of nodes in the neighbourhood of u) 
requires star-synchronisation under mutual exclusion, as explained in [BGM01]. 

• Where mutual exclusion is not locally required, arbitrarily many transformation rules 
may be applied across the network graph at any time, in any paradigm of concurrency; 
see for example [LMS99]. 

• Isomorphisms are generally used to map the transformation rules’ left-hand-sides into 
the model graph for application – with special treatment of the multi-nodes [SWZ99]. 
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The triangulation property of the network graphs in this paper is defined as follows: A ring of 
size r is a graph with r nodes {V0,…Vr–1} and r edges {E0,… Er–1} such that for all 0≤ i < r : 
Ei = (Vi, Vi+1 mod r) and no further edges exist between those nodes than just these ones. Then a 
planar graph is called triangulated if all its ring-shaped sub-graphs are of size r = 3. Thereby it 
is not required that all possibilities of triangle-building are fully exhausted: As it can be seen in 
Figure 1, there might be “incomplete” triangle subgraphs {Vx, Vy, Vz} with edges (Vx, Vy) and 
(Vy, Vz) but no ring-closing edge (Vz, Vx). 
 

3 Model Specification 
In the following, the terms “attribute” (from the PROGRES terminology) and “label” (from the 
VISIDIA terminology) are used synonymously. In the model developed in this paper for the 
mobile units scenario, nodes and edges of the network graph are labelled as follows: 

• An edge can carry a variable label D, representing a geometric distance between two 
nodes (in whatever vector-space, naïvely two-dimensional Euclidean). Also remember 
what has generally been said about edge labels in the previous section. 

• Nodes carry several labels of the following kind: 
o C is a vector-type label representing the coordinates (position) of the node in 

the chosen vector-space (environment). 
o A or P are auxiliary labels (modelling artefacts without a corresponding 

property in the modelled world), used for the treatment of concurrency and 
mutual exclusion as further explained below. 

o A label OFF is used to model defective nodes (units) which cannot 
communicate. In the absence of this label the unit is assumed to be operative; 
nodes with edges cannot be OFF. 

o A label NEW can be used to signify previously non-existing units which have 
just arrived in the operational terrain covered by the network, or also to signify 
the recovery of a previously defective node. New nodes cannot be connected 
immediately – in other words: nodes with edges cannot be of type NEW. 

  
Consequently the graph transformation rules of the model are labelled, too. However, there are 
also generic rules in which some of the labels (node labels or edge labels) are omitted. This 
means that such a rule can be applied without taking the instance-value of the omitted label 
into account. For example, if a graph transformation rule depicts an edge without edge label D 
then this edge could be mapped to any edge in the model graph. Thus, the model is based on a 
simple hierarchic type system, with ANY being the only super-type to all the other concrete 
types and no intermediate types in between. Omission of a type is regarded as equivalent to the 
explicit labelling of the according entity with the ANY symbol – see [Sch97] for comparison. 
 
3.1 Locally Mutual Exclusion of Activities 
  
The first rule of the model checks if a node, which intends to change its geographic position, is 
free to do so. If this is the case, it takes a token which prevents any immediate neighbour from 
becoming active as well. As usual it is assumed that the choice of an anchor-place for rule 
application is made non-deterministically (at random). In Figure 2 this rule is depicted. It tells 
us that a node can pick an activity token (for mutual exclusion in the local neighbourhood) if 
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this node itself as well as all its adjacent nodes are currently passive. As mentioned above, the 
model rules shall be denotationally interpreted like in PROGRES, whereby an additional star 
symbol (*) is used here as “lexical sugar” to emphasize the mapping of a multi-node to the 
entire neighbourhood (star) of a central node (here: node 1). Moreover it must be kept in mind 
how two overlapping rule-applications in the same local neighbourhood are prevented by the 
operational semantics of the VISIDIA system [BGM01][LMS99], due to which it can never 
happen that two adjacent units find themselves both in an active state A at the very same time. 
This means that simultaneous activities of two immediately adjacent units in the scenario are 
modelled via pseudo-simultaneous interleaving of mutually exclusive actions in rapid pace.  
 

 
Figure 2: Rule which explicitly models mutual exclusion of activities in a neighbourhood. The 
passive centre node of a star may pick an activity-token if all its neighbours are passive too. 
An operational semantics like the one implemented in the VISIDIA system guarantees that this 
rule itself is not multiply applied in the same local neighbourhood at the same time, which 
prevents two adjacent nodes from taking the activity token A simultaneously. 
 
Thus, the issue of local mutual exclusion is treated in this paper at two different levels: 
explicitly in the model specification by means of the A and P labels, as well as implicitly by 
VISIDIA operational rule-application semantics (message exchange along the communication 
channels). In non-overlapping (remote) regions of the model graph, however, a rule may well 
be multiply applied, at the same time, in genuine non-interleaving concurrency. Technically 
speaking this explicit modelling of local mutual exclusion would not be necessary; the implicit 
star-synchronisation of a VISIDIA kind of operational semantics would suffice. Nevertheless 
the explicit exclusion model with labels A and P was chosen for the sake of conceptual clarity. 
 
3.2 Movement of Units 
 
After a node has acquired activity-status (see above) it can change its location according to the 
mobile unit scenario. This is modelled with node labels representing coordinates in the chosen 
vector space. “Motion” is thus nothing but node relabelling, interpreted in terms of the chosen 
domain. When a node has been “moved” (by relabelling), two further actions must take place: 

• The adjacent edges, labelled with the distances between the active node and its passive 
neighbour nodes, must also get relabelled to correctly represent the new geographic 
configuration. 

• Then, the active node must release its exclusion label A and return to a passive state P. 
 
As shown below, all these actions can be expressed in one single graph transformation rule. 
For the recalculation of positions and distances, the graph grammar system is augmented with 
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a simple trigonometric calculus which must be executed while the graph grammar rules are 
applied. The authors of PROGRES system have demonstrated how this can be done [SWZ99].   
 

 
Figure 3: Movement rule. The distance is calculated by an imported function, according to the 
PROGRES system. Thereafter the active node gives up its mutual exclusion token and returns 
into a passive state. 
 
Note that the movement of a node can temporarily destroy the desired triangulation property of 
the underlying network. For reasons of model simplicity (which means: a small number of 
small rules) it has been decided to temporarily concede the violation of this global topologic 
network property and to fix any violation with an equally simple set of repair-rules, rather than 
trying to design a complicated graph transformation system with large (non-local) rules for the 
sake of avoiding the violation of the triangulation property in the first place. (The repair-rules 
will be shown in the subsequent section.) Also note that the usage of large (non-local) rules 
would undermine the concept of a self-organizing network which is not controlled by a central 
agency. Small (local) rules, on the other hand, can be easily applied by the network nodes 
themselves as described in the literature to the concurrent graph relabeling paradigm [LMS99]. 
 
3.3 Communication Breakdown 
 
In the mobile unit scenario it should be realistically assumed that communication can break 
down from time to time (which can also result in a temporary violation of the triangulation 
property and will also be treated by repair-rules as described in the subsequent section). In this 
paper any instance of a communication breakdown has one of the following three reasons; (see 
Future Work section below for further considerations): 

• Communication breakdown due to a unit-internal technical defect; 
• Communication breakdown due to too far distance between the communicating units; 
• Communication breakdown because a unit cannot cope with too large numbers of 

communication partners any more; (the connectivity degrees of network nodes are 
assumed to be limited). 

 
For all these cases, model rules are provided in the following. The activity status (A or P) of 
the nodes involved is irrelevant here, because the activity status is only a model artefact by 
means of which simultaneous movements of adjacent nodes are simulated (through small-step 
interleaving under mutual exclusion). Where motion is not involved at all, explicit distinction 
between A-nodes and P-nodes is obsolete as well. 
 

6 / 14 Volume X (2008) 



 
 
Graph Transformation Model of a Triangulated Network of Mobile Units 

 
Figure 4: Transformation rule describing a communication breakdown due to internal defect. 
 

 
Figure 5: Rule describing a communication breakdown due to long distance (weak signal). 
 

 
Figure 6: Too many communication partners: the most remote one is abandoned. Classical 
graph transformation systems, without counting features, cannot process such kind of rules. 
 
As far as Figure 6 is concerned one might ask the question how a unit (here: 1) can have more 
than the maximal number of communication partners in the first place. The answer is found in 
the dynamic and self-optimizing nature of the system to be modelled: Temporary violations of 
global “invariant” properties (here: the maximal degree of connectivity) are admitted for a 
short period of time, such that (for example) a better communication link can be established 
before a worse one is given up. (This issue will become clearer in the subsequent paragraphs 
where the reparation of violated triangulations and the establishment of new communication 
links are modeled.) Also note that the rule depicted in Figure 6 requires a graph transformation 
paradigm which allows for counting the magnitude |N| of the neighbourhood of a centre node, 
which means that neither the classical PROGRES system [SWZ99] nor the classical VISIDIA 
system [BGM01] can be used to implement this crucial rule. 
 
In this sub-section in only remains to be said that a defective (thus: isolated) node must be able 
to get back into operational mode, as a precondition to the re-establishment of its participation 
in the communicative network. This is modelled by the rather trivial rule depicted in Figure 7. 
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Figure 7: A defective unit gets repaired. (It is as if a new unit would appear in the landscape.) 
 
3.4 Reparation of Locally-Temporarily Violated Network Invariants  
 
The scenario model is generally assumed to possess a number of global invariants, such as the 
triangulated structure of the network graph, the maximal communication distance between two 
units, or the maximal degree of connectivity (number of communication partners) throughout 
the network. On the other hand it has already been mentioned that the dynamic character of the 
scenario will locally lead to violations of those invariants for short periods of time,‡ until some 
repair-mechanisms restore the desired homogeneity of the model graph. These mechanisms are 
modelled explicitly (as part of the scenario specification) in the following paragraphs. 
 

 
Figure 8: Scenario in which the triangulation property is violated after a far-reaching move of 
unit 1 (see red line). The edges between units 1 and 2, respectively units 1 and 3, are now 
crossing the edge between units 4 and 5, such that this sub-graph is not planar any more. 
 
Consider the following situation depicted in Figure 8, in which some unit makes a move over 
some longer distance (by means of the motion rule of Figure 3) which leads to a local violation 
of the desired triangulation property. The strategy dealing with such situations consists of two 
subsequent steps: 

• One of two edges which are “crossing” each other –which can only be described in 
terms of the vector-space geometry functions with which the graph transformation 
system is augmented– will be deleted; for the purpose of network optimization this is 
typically the longer link (with a greater distance label D). 

• If such a deletion leads to a subsequent destruction of the network’s triangulation 
property elsewhere, new communication links must be established at those locations, 
as it is sketched in Figure 9. 

                                                      
‡ An analogy in the physical nature can be found in the realm of quantum physics, whereby spontaneous 
appearances of short-lived virtual particles can temporarily violate the macro-law of energy preservation 
for a short period of time in a small area of space. 
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Figure 9: Continuation of the scenario of Figure 8. In a first step (left) the conflicting links 
are deleted (see dotted lines). Thereafter (right), new links must be established elsewhere to re-
establish the desired triangulation property (see thick blue lines). 
 
In the following, the graph transformation rules are shown by means of which scenarios like 
the one depicted in Figure 8 and Figure 9 can be effectively modelled. Note that this is the 
point of the specification at which the most complicated calculations in terms of the underlying 
geometry must be imported (in PROGRES style) into a graph transformation rule in order to 
confirm the existence of a cut-point between two finite lines in the underlying vector-space. 
 

 
Figure 10: Graph rule describing the detection and deletion of a conflicting network link. 
 
In Figure 10 as well as in Figure 11 the “violated” triangle is formed by the nodes 1, 2 and 3. 
Note that the edges between nodes 1 and 2, respectively between 1 and 3, are not redundant for 
the detection of the cross-point, because these edges represent communication links: Node 1 is 
the central unit in this scenario, which detects the cross-point between line D and line D’ by 
communication with its neighbours 2 and 3. A rule designed like the ones in Figure 10 and 
Figure 11, but without the edges between nodes 1 and 2, respectively 1 and 3, would imply the 
global (omnivident, communication-less) perspective of a classical graph transformation 
system such as PROGRES [SWZ99] – in contradiction to VISIDIA’s operational semantics of 
locality and message-passing [BGM01] [LMS99], to which the model of this paper adheres. In 
this paradigm the left-hand-side of a rule with such a purpose can only be a connected graph.  
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Also note that node 4 of Figure 10 could possibly remain isolated after the according rule has 
been applied – ditto for the rules depicted in Figure 5 and Figure 6. In such a case the isolated 
node would assume a NEW state, like the one which is depicted in Figure 7. The according 
graph transformation rule is not depicted in this paper for reason of triviality: every unit knows 
intuitively (by itself) when it does not have any communication partners, thus when to relabel 
itself to NEW. 
 

 
Figure 11: Ditto, this time with the other one of the two conflicting links being deleted. 
 
Further note that the rules of Figure 10 and Figure 11 together ensure local optimization by 
determining the longer link to be deleted and the shorter link to remain. It is obvious that two 
rules are needed for this optimization purpose: one for the case that D > D’, and one for the 
case that D ≤ D’. These rules are designed as ordinary rules (not as a star-rules) such that only 
one edge in a conflict situation is deleted per rule application. This design option has been 
chosen in order to keep the amount of destruction within a region of the model graph as small 
as possible (thus also the amount of required restaurations) for conservative reasons. In case 
that more than one conflicting edge must be destroyed, these rules can be applied repeatedly 
until all conflicts are resolved. 
 

 
Figure 12: Rule modeling a new unit receiving a radio signal and establishing a network link 
with its hitherto unknown newly found communication partner. No VISIDIA-semantics here! 
 
After an edge has been deleted as shown above, or after a defective unit has come back into 
operation mode, there are opportunities for the (re)-establishment of communication links for 
the sake of the already mentioned global triangulation property. In the case of a new node, 
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which has per der definitionem no communication links (and therefore no knowledge about the 
existence of any other units) the new node cannot do anything but wait and listen until it 
receives a signal from another, hitherto unknown nearby unit. A communication link between 
these two units is then formally established, and the now connected node looses its NEW 
status, as depicted in Figure 12. Per default the value of D must be smaller than maximum, 
otherwise no radio signal could have been received at all. Should the newly established link 
violate any of the already mentioned global network invariants then the repair-rules (Figure 6, 
Figure 10, Figure 11) would be in place again to rectify the temporary topological flaw in an 
optimizing manner. 
 
At this point it is important to note that the graph transformation rule of Figure 12 is the only 
rule of the scenario model which can not be explained in terms of VISIDIA’s message-passing 
semantics. Here, and only here, it is necessary to assume the “omnivident” perspective of the 
PROGRES paradigm. The reason is that, from a strictly local perspective, nodes 1 and 2 of 
Figure 12 cannot know anything about each other unless a communication link exists – which 
is however not the case in the left-hand-side of that rule. From a local perspective, the event of 
receiving a signal from a hitherto unknown unit comes as an unpredictable surprise to the 
receiving unit. It is not possible to verify the existence of the left-hand-side situation of Figure 
12 through message exchange, because any message exchange already implies the situation of 
the right-hand-side of Figure 12. When the software prototype to this scenario model is being 
implemented (see section Future Work), this problem must be solved ad-hoc by means of data 
structures which do not correspond to the “pure” VISIDIA theory; (possibly: representation of 
a unit’s surrounding “landscape”, storing information about the presence of radio signals). 
 

 
Figure 13: Transformation rule describing the establishment of a new triangulation-link. 
 
Finally it must be explained how new “triangle” configurations in the model graph can come 
into existence, as it is shown in Figure 13. Per default, the distance D (between the newly 
connected nodes 2 and 3) cannot exceed the maximum. The dotted and crossed-out line in the 
left-hand side of the rule depicted in Figure 13, which models the establishment of a new 
triangulation, represents a negative application condition known from graph transformation 
systems such as PROGRES [SWZ99]. In the model of this paper (with its strict principle of 

Proc. GT-VMT 2008 11 / 14 



 
 
 ECEASST 

locality in which the classical “omnividence” is no longer given), it must be explained how 
such an easily-drawn dotted line can be effectively implemented. This is done again by means 
of message passing (as explained in the Technical Preliminaries section above). Last but not 
least it should be mentioned that also the application of this rule (Figure 13) can lead to 
temporal violations of network invariants, but also in this case the already mentioned repair 
rules can be applied to fix the flaw. 
 
3.5 Global Dynamics through Local Processes 
 
All graph transformation rules in the model –except the one of Figure 12– are designed in such 
a way that they can be applied and executed by the network nodes themselves (without any 
global super-instance) with the techniques of the concurrent relabeling paradigm [BGM01]. 
Obviously no neighbourhood (star) radius is greater than 1 in these rules, which makes their 
application (in terms of message exchange within a neighbourhood) especially easy. Indirect 
communication (of radius greater than 1 via router nodes) does not occur. 
 
The dynamics of the mobile network of communicating units as a whole is thus a result of the 
concurrent activities of the individual units within the network. The activity of each individual 
unit is a simple process, following a simple protocol, which comprises at least the following 
algorithmic steps (described in pseudo-code as follows): 
 
WHILE (operative) // process cycle for every unit 
  { 
   WHILE (repair_rule_applicable) {apply repair_rule};  // as often as possible 
            IF (move_is_desired)          {apply move_rule}; // once per cycle 
            IF (link_rule_applicable)    {apply link_rule}; // once per cycle 
  }; 
 
In this rule-application protocol, priority is given to the application of repair-rules to maintain 
the desired global topological network invariants as mentioned above. Alternative designs of 
the protocol could obviously lead to different global network behaviour, which would make up 
an interesting question for experimental studies; (see Future Work section below). 
 

4 Related Work 
There are many formalisms and approaches to the modelling of distributed systems as a whole 
or particular aspects thereof. As far as the domain of graph transformation is concerned (which 
is the theme of GT-VMT-2008), a similar mobile network scenario and a similar modelling 
approach to it was recently published by Casteigts and Chaumette [CCh05]. It differers from 
the model presented in this paper as far as the embedding of geometric calculations for 
positions and distances into the transformation rules is concerned. Heckel and Guo described a 
layered graph transformation model of roaming cellphones being transferred from one base 
station to another one [HGu04]. Their scenario is thus similar to the scenario presented above 
(and also intended to be subject to simulative experiments), but geometric considerations such 
as network triangulation or distances between units do not play a role in their paper. Moreover, 
their model is developed in the classical “omnivident” paradigm, not in the paradigm of local 
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communications. The short-paper [GHe04], published by the same authors, is little more than 
an abstract summary of [Hgu04] but it provides a nice description of the typical characteristics 
and difficulties of distributed mobile systems, as well as a nice discussion of broader related 
work. Knirsch and Kreowski where amongst the first ones to model agent systems on a high 
level of abstraction [KKr00]. Their formalism and notation appears quite similar to the one of 
[LMS99] but remains rather vague as far as the issue of mobility is concerned. Chalopin, 
Godard, Métivier and Ossamy, on the other hand, have successfully modelled agent mobility 
on a given network in terms of graph relabelling with message-passing semantics [CGM06], 
however their graph model is static and does not allow for restructurings of the network itself. 
 

5 Future Work 
To date, none of the existing graph transformation software packages offers experimental 
simulation environments to such an extent that hundreds of nodes of pixel-size could be 
displayed in motion on a computer screen. So far, existing graph transformation software 
packages have put all emphazise on the visualisation of structural or topological properties of 
their model graphs, not on the visualisation of their geometric properties and node motion, as it 
would be required for the communicating mobile unit scenario described in this paper. The 
implementation of such a software system is planned, whereby the graph transformation rules 
described in this paper shall be hard-coded into the prototype for the sake of runtime speed. 
 
Once such a prototype would be available, the necessary empirical validation of the introduced 
concepts would be possible. Then it could be investigated through experimental observation 
and measurement, for example: 

• How frequently does the global network invariant (triangulation) get locally violated? 
• How quickly are those local violations being repaired? 
• How does the size of a neighbourhood (e.g.: maximally 5 communication partners or 

maximally 8 per unit) as well as the length of the maximal communication-distance 
influence the behaviour of the entire network as a swarm-like super-unit? 

• How smoothly does the network re-organize its structure when many nodes are on the 
move into different directions?  

• How would a different rule application protocol, individually executed by each unit, 
affect the behaviour of the network system as a whole? 

• (Etc.) 
 
The model developed in this paper is still quite simplistic as far as the physical properties of 
communication links are concerned. It has been simply assumed that the maximal distance of 
communication is a constant D for all units in the network. In reality one would have to deal 
with locally variable parameters Ď, depending (for example) on weather-conditions, objects 
obstructing the transmission of radio signals, etc. The graph transformation model of the 
scenario would have to be amended accordingly – not so much in terms of the graphical 
rewrite-rules, but rather in terms of the functional calculations into which those rules have 
been embedded. 
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Abstract: In the paper, some graphs representing mechanical systems are analyzed. 

The transformations of graphs representing a gear and a truss are considered. These 

transformations of the graphs allow for derivation of simplified calculation courses in 

some cases e.g. gear ratios or forces. Furthermore, these simplifications are mutually 

connected with adequate changes of the graph or sub-graphs in step-wise manner 

taking into account the functional schemes of the artifacts. The derived calculation 

methods utilize other algebraic objects associated with a graph  e.g. cut matrices and 

sets of fundamental cycles. 

 

Keywords: gear functional scheme, Hsu’s graph, f-cycle, cut matrix, kinematical analysis 

1 Introduction 

Graphs are used as models of versatile technical systems e.g. electrical and electronic systems, 

railways and road networks, phone networks and mechanical systems. The last mentioned area 

of application is relatively new and it is relatively narrowly known. Nevertheless the 

achievements within this area of investigation are crucial for AI applications in mechanical 

design or AI-aided design [9]. The most essential and simultaneously wide introduction to the 

graph representation of mechanical systems can be found in books Tsai [11], Rudolph [6] and 

Kaveh [4] describing some different aspects, respectively. The valuable contributions to the 

discussed field have been done by Hsu [3], Shai [9], the author [15-19] and many others. 

Graph transformations are used in engineering applications mainly in civil engineering 

[1,2,10] but recently this tool was also used in mechanical engineering [5,7,8,13]. The graphs’ 

application in civil engineering focus mainly on a layout of civil engineering structures e.g. 

trusses, buildings or floor arrangements in buildings. In paper [5], the reference review 

connected with an application of graph-grammars in mechanical design has been made. The 

described methodology was used for generation of new designs of gears i.e. their functional 

schemes. In paper [7], the synthesis of mechanisms based upon an application of graph 

grammars is presented. The task of synthesis and enumeration of all possible designs of a 

particular mechanical artifact can also be performed by means of the graph-based approach 

[11]. Firstly, graphs are used e.g. for encoding of a functional scheme of a planetary gear or a 

geometrical structure of a truss. Secondly, base on some algebraic objects related to the graphs 

(e.g. matrices, polynomials or matroids [15]) the calculation methods are derived and used. 

The transformations of the graphs assigned to planetary gears are shown in the paper. Some 

adequate transformations are connected with the changes of drives and the related changes of 

passage of a rotational speed and power throughout a gear. Simultaneously these 

transformations cause simplification of adequate equation systems in an automatic way. The 

whole process makes possible to analyze simplified functional schemes and it allows for 
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derivation of relevant simplified kinematic equation systems for consecutive considered work 

modes in case of the automatic gear boxes. The goal of this paper is to show which graph 

transformation are used in modeling of gears and trusses as well as what is the mechanical 

interpretation of these transformations which – moreover - are different from other approaches 

shown in the cited references. It is worth to underline that in recent years, it was very rare to 

analyze versatile mechanical artifacts in the light of common graph transformations approach. 

On the contrary, usually just single objects were considered or other aspects of graph models 

were highlighted. Moreover, it has to be added that O. Shai [9] compared several graph-

models of artifacts from the AI knowledge transformation perspective. 

2 Graphs as models of mechanical systems 

The possibility of representation of a mechanical system M by means of a graph G consists in 

simplification and representation of the system M by means of relations between its elements. 

These relations can be then turned into graphs where elements of relations are presented as 

edges with adequate weights. There are versatile graph representations of a planetary gear 

[15]. The review of some more frequently used approaches is given in [18]. Other graph-based 

methods of modeling of mechanical systems are described in works [9, 11]. A graph G (V, E 

W) is a weighted graph, where: |V| = n, |E| = m and a function W: E → {set of weights}. The 

function W as well as the set of weights depend on a considered artifact and a considered 

problem. A single weight is usually assigned to a single edge e.g. see explanation given to  

Fig. 1. However in some cases - when advanced mechanical analysis is performed upon   

a graph model of an artifact (i.e. a truss) - several weights are assigned to a single edge. For 

example, in case of a truss (Fig. 2) when stresses are analyzed every edge represents a rod 

made of metal - therefore some weights are as follows: cross-section area of the bar [m
2
], force 

acting along the bar [N], physical and mechanical properties of the bar material e.g. density 

[kg/m
3
] etc. [19]. Moreover, sometimes instead of weights the different line types are used for  

edges pictograms aiming for easiness in interpretation of a weighted graph. In Fig.1 the 

functional scheme of a gear and the assigned weighted graph are presented. Two parallel short 

lines perpendicular to the main axis indicate that scheme is symmetrical but the symmetrical 

image under the axis is omitted. Planets 2 and 7 in Fig. 1a can look like geared wheels 

presented in Fig. 1c, arm 1 is omitted. Meshing of elements 6 (planet) and 3 (wheel with 

internal toothing) can look like it is shown in Fig. 1d. A relation between a pair of two gear 

elements i.e. the fact that two geared wheels are in mesh - is shown in a graph as stripped-line 

edge. For example: geared wheels 2 and 7 (so called planets) in Fig 1a are turned into the 

vertices 2 and 7 in the graph in Fig. 1b. Because these planets cooperate in a mechanical sense 

(their tooth are especially in contact; generally speaking in mesh) therefore the edge {2,7} is 

drawn as a stripped one. In case of a pair of gear elements: arm and planet – their adequate 

vertices are connected via continuous line starting from polygon e.g. element 1 and 2 (arm and 

planet) are represented as vertices 1 and 2 connected via the edge {1,2} drawn as continuous. 

The rotational axis of the planet is fixed to the arm. The arm assures a constant distance 

between the main gear axis and the axis of the planet allowing for their mutual rotational 

movement. We can considered different elements as input and output of the gear e.g.: 5-1, 1-3  

or  5-3, respectively. The Hsu’s method of assignment of a graph to a gear scheme has been 

utilized. The method can be summarized as follows: vertices of graphs and adequate gear 

elements are notated by means of the same labels i.e. natural numbers. The relations between 

elements of the gear are considered as follows:  
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- all pairs which rotate around the same main axis (rotational pairs) are represented by vertices 

of a (shaded) polygon  e.g. 1,3,4 and 5. Therefore we have pairs: {1,3},{1,4}, {1,5}, {3,4, 

{3,5} and {4,5}. The whole full graph being a subgraph of the considered graph of the 

planetary gear represents the whole set of these rotational pairs (6 in case of rectangle, 10 in 

case of pentagon etc.). The rule was introduced that this full graph is replaced in figures by a 

shaded polygon. This approach allow for achieving a more readable form of the graph. This 

approach is dedicated only to the illustrative form and in further detailed considerations 

connected e.g. with distinguishing of cycles (called here f-cycles [11]) all edges of full graph 

are theoretically considered despite that they are hidden in the drawn polygon; 

 

a)       b) 

 
 

c)       d) 

 
Fig. 1. Planetary gear (a), its Hsu’s graph (b), external (c) and internal (d) meshings 

 

- pairs of elements being in mesh (co-operation of two toothed wheels, geared wheels) are 

represented via stripped lines (edges) e.g. {4,6}, {3,6}, {4,7}, {5,2} and {2,7}. The meshing 

between the planets 2 and 7 is external (Fig.1c) whereas the meshing between wheels 2 and 

5 is internal (Fig.1d) what will have respectable meaning in writing the equations describing 

the kinematics of a gear wheel but it is not encoded in a graph explicitly. Internal meshing 

means that the wheel 5 has its tooth inside a toothing ring of the element 5; 
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- rotational pairs “planet wheel – arm (carrier)” are represented via continuous edges i.e.: 

{1,7}, {1,2}  and  {1,6}.  

The powerfulness of the graph representation of mechanical systems consist in usage of 

versatile algebraic structures connected with the graph and derivation of some calculation 

methods utilizing these algebraic objects (chapters 3.2 and 3.3, below). The tasks which can be 

performed by means of graph-based models are as follows: 
- analysis of gear ratios [11], 

- solution of a reverse problem i.e. assignment of a functional scheme to a gear graph [5, 17], 

- enumeration of all gear schemes fulfilling a particular constraint i.e. having less then e.g. 7 

rotational elements [11], 

- calculation of forces in a truss loaded by external discrete forces (acting in nodes) [14], 

- checking a stiffness of a truss [4] 

and many others [11].  

In the underneath consideration e.g. a cut matrix for trusses and f-cycles for gears graph 

models will be applied in adequate calculations. A truss is a structure made of rods. Neglecting 

the type and dimensions of joints the simplified model is obtained. Such a model is frequently 

used in an introductory engineering calculations. At the beginning an assignment of a graph to 

a truss is done in a natural way: nodes of truss are converted into vertices and bars into edges, 

respectively. The model and the transformation steps which simplify some calculations are 

described underneath. Transformations of graphs which are assigned to mechanical systems 

have several goals: 

- derivation of calculation methods in simple manner taking into engineering knowledge 

transformed into a field of graphs (obtained methods are equivalent to the traditional ones), 

- automation of calculation courses and 

- constructing a design form in an algorithmic way via  step by step performed routine. 

 

3 Transformations of graphs being models of mechanical systems 

Graph representations of automated gear boxes can be used for an automation of a ratio 

calculation as well as some other tasks. The essence of transformation relays in every case in 

different task: 

- creation of a functional scheme step by step – several mutually related facts about graph are 

taken into account, 

- creation of a system of equations (describing e.g. a truss) in algorithmic way – assuring the 

proper arrangement of these equations, 

- simplification of a gear functional scheme and simultaneously  simplification of  

an adequate graph. It also helps in an analysis of the direct path of passing a rotational 

movement from the input to the output of a gear. Moreover it allows for a ratio calculation 

for every drive upon a simplified subgraph. Underneath, firstly, the problem of creation of  

a functional scheme of an exemplary gear is analyzed. 

 

3.1. Building of a gear functional scheme based upon its graph 

 

The problem of conversion of a graph being a model of a mechanical system into its functional 

scheme has not been fully solved until now [7,11] especially in a fully automatic or 

algorithmic way. Underneath, the proposal is formulated how to interpret the consecutive 
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phases of creation of a functional scheme of a gear as a process of expanding a subgraph 

which evolves from an initial chosen vertex up to the whole graph. The task of drawing (in the 

graph) of particular edges and vertices (and drawing paralelly adequate mechanical elements) 

is performed in algorithmic way analyzing a graph and a scheme in a cross reference manner – 

one choice implies the next one in accordance with clear, unequivocal rules.  

Assignment of the graph presented in Fig. 1b to the scheme shown in Fig. 1a is illustrated in 

Table 1 (in what follows denoted by T1). The procedure of assignment of a functional scheme 

to a graph can be considered in following steps: 

(i) choice of a vertex in a polygon – the vertex 1 was chosen. It implies that all the edges 

starting from 1 are considered simultaneously i.e. {1,2}, {1,6}, {1,7}. They are drawn as 

bold lines in box T.1(1,2). The interpretation of the scheme in box T.1(1,1) is as 

follows: 1 – is the main axis of a gear. Moreover, 1 – is a carrier for the planets 2,6 and 

7 because the graph edges are drawn by means of continuous lines, 

(ii) edge {2,7} is a stripped line therefore planets 2 and 7 are a pair of geared wheels in 

mesh  /see: first row of the table,  box T1(1,2)/, 

(iii) choice of the vertex 3. It is the second consecutive vertex of the polygon therefore its 

representative i.e. gear element 3 (geared wheel with an internal toothing) rotates around 

the main axis. The edge {3,6} is drawn as a stripped line – see box T.1(2,2) – therefore 

elements 3 and 6 are in mesh, element 3 is added in the created functional scheme - box 

T.1(2,1), 

(iv) choice of the vertex 4. It is  the polygon node so the element 4 rotates around the main 

axis, furthermore the edges {4,6} and {4,7} are drawn as stripped lines - box T.1(3.2). 

Therefore the element 4 is in mesh with two planets simultaneously – in mechanical 

sense it means that it is so called sun. This fact is illustrated in box T.1(3.1), 

(v) choice of the vertex 5. It is  the last vertex of the polygon - box T.1(4.2). So, element 5 

rotates also around the main axis. The edge {5,2} indicates that the elements 2 and 5 are 

in mesh  - box T.1(4.1). The functional scheme has been fully done. 

The transformation of the graph is here shown symbolically as turning more and more parts of 

the graph into bold lines. So transformation of a subgraph is really simple: adding graph 

elements one after another but simultaneously the functional scheme has to be built in 

accordance with the graph and the mechanical point of view. Finally the bold subgraph is 

turning into a final complete graph fully drawn as bold - so the procedure is finished. This 

procedure is needed for a task of creating of a family of design solutions of gears. The 

properties of graphs representing gears have been formulated [11]. Upon generating of the 

family of the graphs which fulfil these conditions [11] – the atlases of designs are built i.e. the 

sets of functional schemes of particular gears. However in many papers the process is finished 

on the phase of graphs generation believing that the final step could be done by a reader.  

Therefore performance a conversion: “graph-functional scheme” described above – causes that 

the family of designs is understandable for engineers. This phase was frequently omitted in 

papers dealing with graph models of gears but sometimes it had caused that the existence of 

some mistakes [18] was not revealed. Only analysis of the gear scheme by an experienced 

engineer allows for full analysis of the machines from mechanical point of view. So, it seems 

that a fully algorithmic procedure has to be prepared applying an expert system. It exceeds the 

range and aim of the present paper.  
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Table 1. Building of the functional scheme upon the gear graph 
 

Graph Representation of planetary gear 

Functional scheme Graph representation 

 1 2 

1 

 

 

2 

 

 

3 

 

 

4 
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Here only the rough idea of transformation of the gear graph is given. Till now, it has not been 

turned into the computer program. More automatic and computerized version is described  

in  [5]. 

 

3.2. Truss analysis 

 

Second analyzed exemplary mechanical system is a truss – considered in a simplified version 

formulated in a previous chapter for statically determined trusses. We focus our attention on a 

problem of forces calculation but many other tasks can be also performed [4, 9]. The applied 

procedure of assignment of a graph to a truss is as follows: 

(a1) truss is a linear graph itself, let’s number/label its vertices by natural numbers from 1 to 

n or n capital letters A, B, C, etc., 

(a2) turning a graph into a directed graph is performed via introducing arcs according to the 

rule that direction of an arc is established from a vertex of a lower number to a vertex of 

greater number or taking into account a sequence of characters of the Latin alphabet, 

(a3) additional tree is introduced which allows for systematic assignment of the cut matrix. 

The discussed calculation method does not depend on labeling (numeration) of the graph 

vertices and the tree assignment where the root of the tree can be placed outside the existed 

graph or one of its vertices. The assignment of direction can be done in arbitrary way (it arises 

directly from numeration). Every arc symbolizes the direction of acting force. If the resulting 

forces are obtained as negative then it means that the direction of a force is reverse. If all 

forces are positive it means that all directions of acting forces are the same as direction of 

graph edges (arcs). The exemplary truss and its graph is presented in Fig. 2 a-f. 

The derived method of the forces calculation [14] can be described in the following steps: 

(s1) 2D truss is a graph itself considering nodes as vertices and bars(rods) as edges,  

(s2) choice the special reference vertex, frequently the left hand, bottom node of the truss is 

chosen, enter the vertices numbering in an arbitrary way, it represents an external 

loading, 

(s3) entering of the orientation of edges: from vertices of lower to upper number label, the 

method does not depend on numbering of vertices, 

(s4) creation of the special tree - which branches connect the chosen vertex with all other 

ones creating the original truss, it is an  additional (theoretical) tree allowing for further 

steps. The orientation of branches is from the chosen vertex to the truss nodes. 

Additional remark: the introduced tree allows for performance of all other tasks in an 

algorithmic manner as well as it has mechanical meaning – allows for inserting external  

forces to the calculation course, 

(s5) creation of the cut matrix (2B) of this new graph (Fig. 2f) – placing the columns 

associated with the branches of the tree at the beginning. It is a well-known fact from 

graph theory: elements of the cut matrix are as follows: {0, 1, -1} what is relevant to the 

fact that a considered edge does not belong, it goes inside or it goes outside of a 

particular cut, respectively. Moreover – the cuts are generated by the tree branches, 

therefore the submatrix corresponding to them is a E matrix. The cut matrix for the 

considered truss (Fig. 2a) is presented by the formula (1): 

 



 
 
Short Article Title 

Proc. GT-VMT 2008 9 / 9 



























−

−−

−−

−−

−−
=

110000000|100000

101010000|010000

011100100|001000

000111010|000100

000001101|000010

000000011|000001

987654321|
2

VI

V

IV

III

II

I

VIVIVIIIIII
B

  

            (1) 

where: I, II, …, VI in the upper row denoted additional tree arcs and in the initial column – cuts 

connected with the end points of these arcs, respectively, 

 

a) b)

d)c)
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f)

 
Fig.2 Truss and its graphs, (a) truss, (b) dimensions, (c) linear graph,  (d) directed graph,  

(e) angles of truss rods (β3 = β5 = 0), (f) graph with an additional tree  
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(s6) creation of so called generalized (or rearranged) cut matrix where elements 0,1 and –1 

are replaced by matrices of rank 2 x 2 where these elements are doubled on the main 

diagonal and the remaining elements are zero (it is equivalent to consider x and y 

components separately). After performance of these actions, the first submatrix 

corresponding to branches of the tree is still a unit matrix. Therefore, the cut-matrix can 

be divided into two sub-matrices, first of them is the matrix representing the branches of 

the tree i.e. E matrix (with 1 on the main diagonal). Finally, the remaining submatrix 

(i.e. 20B
R
) is used for creation of the system of equations, 

(s7) creation of trigonometry functions (or transformation) matrix – collecting the angles of 

inclinations of forces in the nodes and the rods according to the orthogonal coordinate 

system connected with some set of vertices, the original of the introduced co-ordinate 

system is placed in the point chosen in step (s2). It allows for considerations of X and Y 

components of forces. The matrix is denoted by Cβ, 

(s8) creation of the vector matrix of external forces FZ’, 

(s9) creation of the system of equations describing a static analysis of the statically-

determined truss, additionally the rows connected with fixed supports has to be crossed 

out. In mechanical sense it means that reaction of the ground are not calculated via this 

approach, 

(s10) solution of the system by finding the inverse matrix for the matrix generated in step (s7), 

(s11) finding the wanted forces in the rods – collected in matrix S – using the formula (2): 

 

S = [20B
R
 Cβ ]

—1
 FZ.‘     (2) 

 

where: 

S  – forces in bars, 

20B
R
 – special matrix connected with the transformed graph representation of a truss, 

Cβ – matrix of cosinus and sinus functions, upon the geometrical dimensions of the truss 

elements,  

FZ’ – external forces. 

 

The preciseness of the method depends on the procedure of creating a reverse matrix. In many 

cases the reaction of the ground are needed for mechanical analyses, so they can be 

additionally calculated upon classical attitude. It is a slight drawback of the graph-based 

approach. 

External forces are described by formula (7), underneath. 

The analysis of the truss is performed according to the above presented steps (s1)-(s11). Step 

(s6) consists in inserting the formulas: 

 

 









=









−

−
=−








=

00

00
0;

10

01
1;

10

01
1     (3) 

 

 

The matrix 20B has the following form: 
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Matrix of trigonometrical functions is as follows: 
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For example: the rod 1 is inclined by 45º. Therefore sin 45º = cos 45º = sqrt(2)/2;  these are 

elements of the matrix Cβ i.e.: Cβ (1,1) and Cβ (2,1) . The results obtained upon the formula 2 

are as follows - forces in [N] in rods are: S = [9337, -12989, 11 600, -6600, - 12400, 1131, - 
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13200, 17536, - 13864], respectively. In the considered method the data representing the truss 

structure and the dimensions are separated in two distinct matrices. It is very important feature 

which is not characteristic for some other traditional methods. This fact allows also for e.g. 

evolutionary approach to truss design and optimization [19] what was done in the master thesis 

of the co-author (A. Jagosz). It was also shown that the graph method gives the same results as 

e.g. traditional one as well as achieved by means of FEM. Underneath (a) is used instead of 

Fig 2a. The transformations in Fig. 2 are as follows: (a)&(b)→(c) modeling in natural way – 

considering a structure as a graph; (c) →(d) according to the rule “a1”, (d) →(e) calculation 

the angles [with a direction] in algorithmic way based upon vector and scalar products of 

adequate vectors; (d) →(e) adding tree according to the rule “s4”. The final graph is suitable 

for performing of the force calculations. 

 

3.3. Analysis of gear ratios 

 

Third considered problem is calculation of ratios of an automatic gear box. The scheme of the 

gear can be found in document [12]. The gear consists of 6 elements: geared wheels, planets 

and carriers, furthermore it is equipped in the system of two brakes (Br-1,Br-2) and two 

clutches (Cl-1, Cl-2). Activation of some sequences of these control elements allows for 

changing the drives. In Table 2, the sequences of the control elements and the graphs 

describing the obtained mechanical systems are listed. Here, Hsu’s graph is utilized but the 

authors of [12] Freudenstein’s graphs had used. Due to the fact that here we focus our attention 

on graph transformations only the graph-theoretical aspects are discussed. The applied method 

of graph modeling – i.e. Hsu’s graph as well as the applied notation are different than in [12], 

however the same results were obtained (after some recalculations). In [12] some different 

rules for assignment of negative elementary ratios had been utilized. The consecutive 

sequences of the control elements i.e. clutches and brakes causes allow that different drives are 

obtained (different output rotational speeds). The exemplary transformed graphs assigned to 

the available drives are shown in Table 2. The graph-based method of gear ratio calculation 

consists of the following steps: (st1) assignment of a graph to a gear; (st2) distinguishing of so 

called f-cycles – where every f-cycle contains a stripped line edge [i.e. two elements of gear 

are in mesh, their codes are assigned to the stripped line-ends]; (st3) derivation of the system 

of equation describing the kinematics of gear elements; (st4) solution of the system finding a 

searched ratio. In step “(st3)” every equation in the system is created according the algorithmic 

rule for dealing with indicators.  

Therefore, for every f-cycle  (i,j)k  the equation of f-cycle can be written automatically in the 

following form: 

 

ωi - ωk = ± Nj,k (ωj - ωk)     (7) 
where: 

ωi  –  rotational speed of the element i, 

Nj,i – ratio; Nj,i = Dj / Di = zj / zi , zj>0, zi >0 in all cases; D and z with adequate indicators 

describes diameters and numbers of tooth on the particular geared wheels i and j, 

respectively, 

Sign + for internal gearing, sign – otherwise. 

Elements i and j are in mesh, element k is a carrier (an arm). The graph transformations are 

here connected with changes of the adequate functional schemes where the so called redundant 
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elements are omitted. Moreover transformed graphs have different sets of f-cycles which fully 

describe the kinematics for the consecutive stages (writing equations based on the formula 

(7)). The adequate sequences of the control elements (clutches, brakes) are listed in column 1 

in Table 2. 

 

Table 2. Transformed Hsu’s graphs representing the available drives of the automatic 

transmission [12] and  allowable adequate kinamatic analyses 

 

 Activated 

control 

elements 

Hsu’s graph representing the adequate gear 

version - performing its movements via 

other rotating elements 

Derived equation systems – 
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F-cycles: (2,4)1; (3,5)4; (2,3)1  and  (5,6)4. 
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Elements are considered as redundant when their movements do not have any influence on the 

output rotational speed. Transformation of the gear graph consists especially in: neglecting of 

these vertices (and adjacent edges) which represent the temporary redundant gear elements. 

4 Final remarks 

In the paper, the transformations of graphs representing mechanical systems were considered. 

It was shown that in case of some exemplary mechanical artifacts e.g. a planetary gear, an 

automatic gear and a truss – the applied transformations of their graphs allow for an effective 

and an algorithmic performance of some different engineer tasks: (t1) assignment of gear 

functional scheme to a graph,  (t2) ratio analysis  and   (t3) calculation of truss forces. The 

relatively wide reference review was done, focusing attention only on transformation aspects 

of graph-based models of mechanical systems. General review on graphs in mechanics can be 

found in [11,15]. The summary of the considered problems of modeling mechanical systems 

by means of graphs can be shown via a scheme presented in Fig. 4. Graphs are here considered 

as Artificial Intelligence tools because after knowledge transformation from mechanics to 

graph theory the problem can be solved automatically. After retransformation of the obtained 

solution from graph theory field the solution understandable for mechanical engineers is 

obtained. 

 

Clasical mechanical 

methodologies

Knowledge 

transformation

Conversion 

of a truss into 

a graph

(p1)

(p4)

(p3)(p2b)

(p2a)

ratio calculation upon 

transformation of the 

graph of an automatic 

gear box

Solution of the problem 

via graphs

Mechanical solution

Solution in graph 

theory field

Problem formulated 

within mechanical 

field

Reformulated problem 

expressed as 

graph-theoretical one

Knowledge 

retransformation

graph transformation

and gear scheme generation 

(simultaneously)

 

 

Fig.4. Scheme of usage of graph-based models of mechanical systems from AI point of view 

 

The path (p1) in the scheme is illustrated in the paper via conversion truss-graph upon some 

graph transformations. The result (forces in the truss rods) is explicit so path (p2b) is used. In 

the case of ratio calculation we also move along the path (p2b). The path (p2a) is actively used 

is some tasks described in references e.g. for enumeration of designs [11]. Then 

retransformation is needed what was illustrated in the paper via conversion graph-functional 

scheme of a gear. Even wider range of mechanical tasks can be done using the graph-based 

models what is described in the quoted references, especially in the unique books [4,11]. 

Further authors’ investigations are focused on usage of graph transformations in finding of the 

degenerate structures of gears and search for the redundant geared wheels or other redundant 

elements in the considered gear structures. 
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