
1

29 March 2008

Juha-Pekka Tolvanen

Domain-Specific Modeling
in Practice

© 2008 JPT/MetaCase 2

Outline

� Why Domain-Specific Modeling?

� What is Domain-Specific Modeling?

� Examples and experiences from the industry

� Living in the four levels

� Topics for research

© 2008 JPT/MetaCase 3

How productivity has improved?

� "The entire history of software
engineering is that of the rise in
levels of abstraction"

� Newer programming languages
have not increased productivity

� UML and visualization of code
have not increased productivity

� Abstraction of development can
be still raised by moving from
solution domain to problem
domain

– Inside one company, product
family, business area etc.

© 2008 JPT/MetaCase 4

Domain
Idea

Finished
Product

S
o
lv
e
 p
ro
b
le
m
 i
n
 d
o
m
a
in
 t
e
rm

s
Assembler

Map to code, implement

UML Model
Map to UML

Generate,
Add bodies

Domain
Framework

Domain
Model

Generates codeNo need

to map!

Code
Map to code, implement

Modeling domain vs. modeling code

© 2008 JPT/MetaCase 5

How do we use models?

� Model alone should be sufficient in most cases

– No need to look at code

Code

Model

DSM

Finished
product

Code
visualization

Code

'Model'

Finished
product

Roundtrip

Code

'Model'

Finished
product

Separate
model &

code

Code

Model

Finished
product

No models,
code only

Code

Finished
product

Concepts
are domain-

specific

Mapping
is domain-

specific

MDA

Code

Model

Finished
product

Model 2Model n

© 2008 JPT/MetaCase 6

Let’s inspect an example

© 2008 JPT/MetaCase 7

Traditional way: some modeling
and then coding

� Step1: User view

© 2008 JPT/MetaCase 8

Development with UML...

� Step2: Describe static structure

© 2008 JPT/MetaCase 9

Development with UML...

� Step3: Specify interaction

© 2008 JPT/MetaCase 10

Development with UML...

� Step 4: Logic

+ user navigation

+ behavior

+ exceptions

+ etc.

+ In steps 5...N

© 2008 JPT/MetaCase 11

Development with UML+code

� And finally we start coding!
– Implement the functions, access to APIs, remember the

exceptions, architectural rules, UI guidelines etc.

– ... and throw models away as they are not anymore in sync

...

void CGDSMSAppUi::CmdSendL() // Show notification
{ iEikonEnv->InfoWinL(_L("Confirmation"),_

L("SMS is in draft folder"));
SendMessageL();

}

TBool CGDSMSAppUi::SendMessageL() // Sending SMS Mes sage
{ TMsvEntry msvEntry = iMtm->Entry().Entry();

CRichText& mtmBody = iMtm->Body();
mtmBody.Reset();
mtmBody.InsertL(0, smsNum(16400));
SetScheduledSendingStateL(msvEntry);

}
...

C+
+

© 2008 JPT/MetaCase 12

Development with UML+code

� And finally we start coding!
– Implement the functions, access to APIs, remember the

exceptions, architectural rules, UI guidelines etc.

– ... and throw models away as they are not anymore in sync

...
def Query25_931():
Query: Your name?

global PersonNamed
PersonNamed = appuifw.query(u"Your name?", 'text')
if PersonNamed:

return (List25_275, True)
else: # Cancel selected

return ((call_stack.pop()), False)

def SendSMS25_692():
Sending SMS Cancel_registration
Use of global variables

string = u"Cancel_registration "
appuifw.note(string, 'info')
messaging.sms_send("+358400648606", string)
return (Note25_649, False)

...

Py
th
on

© 2008 JPT/MetaCase 13

Domain-Specific Modeling solution

© 2008 JPT/MetaCase 14

after running the generator...

© 2008 JPT/MetaCase 15

What is Domain-Specific Modeling

� Captures domain knowledge (as opposed to code)

– Raise abstraction from implementation world

– Uses domain abstractions

– Applies domain concepts and rules as modeling constructs

– Narrow down the design space

– Focus on single range of products

� Lets developers design products using domain
terms

�Apply familiar terminology

�Solve the RIGHT problems

�Solve problems only ONCE!

– directly in models, not again by writing code, round-trip etc.

© 2008 JPT/MetaCase 16

Works in any domain
(not on phone only)

XML SIP services

C++ (C, Python, Java)Phone UI applications

3 GLHandheld device applications

3 GLERP configuration

Java, CAutomotive infotainment

3 GLHousehold appliance features

8-bit assemblerApplications in microcontroller

3 GLSIM card applications

J2EE, XMLeCommerce marketplaces

CPL, Voice XML, 3 GLPhone switch services

Configuration scripts and parametersSIM card profiles

3 GL, propriety rule language, data structuresGeographic Information System

CPLCall processing

3 GLMachine control

XMLMedical device configuration

XMLPlatform installation

3 GLIndustrial automation

Rule engine languageBusiness processes

J2EEInsurance products

Configuration scriptsTelecom services

Solution domain/ generation targetProblem domain

© 2008 JPT/MetaCase 17

Case: IMS Service Creation*

� Rapid creation, deployment and provisioning of IP-based
services

� Modeling language centralizes service concepts

� Generate all required artifacts from a single design

– Code, configuration, documentation

� Uses a service enabling framework

– runs on top of off-the-shelf application servers

– industry standard SIP-servlet (JSR 116)

� Services can be created easier and faster because of the
higher abstraction level

– without the usual cross-cutting concerns seen in SIP and
HTTP servlet development.

* Implemented by ICT Automation

© 2008 JPT/MetaCase 18

A basic sample. More complex uses include region and time based routing for e.g.
Helpdesk applications.

© 2008 JPT/MetaCase 19

Case:
VoiceMenu for microcontroller

� Home automation system to remote control lights,
heating, alarms, etc.

� VoiceMenus are programmed straight to the device
with assembler-like language (8bit)

� Modeling language to define overall menu structure
and individual voice prompts

� Code generator produces 100% of menu
implementation

� Development time for a feature from a week to a day!

© 2008 JPT/MetaCase 20

© 2008 JPT/MetaCase 21

Case:
Insurance products & eCommerce

� Developing portal for insurances and financial
products

� Need to specify several hundred financial products

� Insurance experts visually specify insurance
products and generate code to the portal

� Comparison to hand-writing Java after first 30
products = DSM at least 3 times faster, fewer errors

© 2008 JPT/MetaCase 22

© 2008 JPT/MetaCase 23

© 2008 JPT/MetaCase 24

Navigation applications

Implemented by VTT

© 2008 JPT/MetaCase 25

Code generator

Formal specification

XML

Formal spesification

GUI-Builder:

Layout

Domain Framework

Formal specification

XML

DDS left DDS rightDDS links DDS rechts

DSM Tool:
Behaviour

generate
Main

ANTENNE1

D1-Telefon

22°C

18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C

18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C

18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C

18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C

18.04.05

13:12

Main

ANTENNE1

D1-Telefon

22°C

18.04.05

13:12

DSM tool:
Content

Designer Ergonomen

DeveloperTechnical
Expert

Ergonomen

Ergonomen

Automotive infotainment

Bock., C., Presentation in MDD and Product Lines, Leipzig, 2006

© 2008 JPT/MetaCase 26

Experiences on DSM

“A module that was expected to take 2 weeks now took 1
day from the start of the design to the finished product”
(Nokia Mobile Phones)

3 times improved productivity and 50% fewer errors
when compared to earlier manual practices. (statistically
significant at confidence levels exceeding 99 percent)

(USAF, Kieburtz et al.)

“The quality of the generated code is clearly better, simply
because the modeling language rules out errors,
eliminating them already in the design stage” (EADS)

“5-fold productivity increase when compared to standard
development methods” (Panasonic)

See references (slide 51)

© 2008 JPT/MetaCase 27

Economics of DSM

� Repetition:

– # of product variants

– # of similar features

– # of developers

– ”outsourcing” to domain experts

© 2008 JPT/MetaCase 28

Domain
Idea

Finished
Product

Model in
DSM

language

Easy!Normal
(many)

Done a few times before!

Code
generator

DSM
language

Framework
code

How to implement DSM

Domain
Framework

Generate code

Expert
(few)

© 2008 JPT/MetaCase 29

The four levels

© 2008 JPT/MetaCase 30

Living in the four levels: MMM?

Metametamodel

Metamodel

Model

Application

� Which kind of metamodeling language?

– Expression power, easy to learn,…

– Representation style?

• text, graphical diagram, table, matrix,...

– ER, OPRR, CoCoA, NIAM, GOPRR, MOF,
EMOF, CMOF, Class diagram, GOPPRR,
Domain model...

� Reuse existing metamodels and libraries
vs. start from the scratch

� Definition of multiple languages and
integration between them vs. multiple
disconnected languages (and models)

© 2008 JPT/MetaCase 31

Living in the four levels: DSMLs

Metametamodel

Metamodel

Model

Application

� How to aid and support language
developer?

– Defining and allocating domain concepts
to language concepts

– A model, a collection of models, an
object, a property, relationship, role,
port, link between these,...?

– Testing the language

– Integrating multiple languages

– Reuse and links between models made

• Multiple languages, users of models,
definition steps

– Sharing languages to developers

– Updating languages (and models made)

� External DSLs vs embedded DSLs

� Graphical, matrix, table, vs textual

© 2008 JPT/MetaCase 32

Transformations in DSM

Metametamodel

Metamodel

Model

Application

� Tools automate the key
transformations on language
definition and language use

� Tools should minimize resource
use

� Tools should allow metamodel to
change

– And reflect changes to modelling
tools and models already made

© 2008 JPT/MetaCase 33

Living in the four levels: Tools

Metametamodel

Metamodel

Model

Application

� 6 ways to get the tools for your need

1. Write your own modeling tool from
scratch

2. Write your own modeling tool based on
frameworks

3. Metamodel, generate a modeling tool
skeleton over a framework, add code

4. Metamodel, generate the full modeling
tool over a framework

5. Metamodel, output configuration data for
a generic modelling tool

6. Integrated metamodeling and modeling
tool

© 2008 JPT/MetaCase 34

Concepts Symbols

Generators
1 2 3 4

Defining DSM solution: Steps

Rules

© 2008 JPT/MetaCase 35

DSM solution in use

� Editors (diagram, matrix, table), browsers, generators,
multi-user, multi-project, multi-platform environment

� Language and generator maintenance and sharing

– language versions, updates models already made

© 2008 JPT/MetaCase 36

Identifying language constructs
[1/2]

� Use domain concepts directly as modeling constructs

– already known and used

– established semantics exist

– natural to operate with

– easy to understand and remember

– requirements already expressed using them

– architecture often operates on domain concepts

� Focus on expressing design space with the language

– use parameters of variation space

– keep the language simple

– try to minimize the need for modeling

– do not visualize product code!

• better to ”forget” your current code

� Implement incrementally (test with models)!

© 2008 JPT/MetaCase 37

Identifying language constructs
[2/2]

� Enrich chosen computational models with domain-
specific concepts and rules
– look at the type of design languages already used

� Investigate various alternatives for describing domain
with the chosen models, e.g.
– model element(s)

– element properties

– certain collection of elements

– relationships between elements

– model organization structures

� Specify as a metamodel in some format
– draft samples with pen & paper

– document early as a metamodel

– implement in some metamodel-based tool

– test it with real models

© 2008 JPT/MetaCase 38

Rules in the languages

� The domain concepts of a modeling language are
bound together with rules

� Putting the rules into the language allows

– preventing creation of illegal models

– informing about missing data

– keeping models consistent

– make code generation possible

� Prefer having rules as part of metamodel to having
separate checker

– Support early error prevention and provide guidance

– But going overboard can hinder flow of modeler

© 2008 JPT/MetaCase 39

Defining notation

� Vital for acceptance and usability

� Symbols can vary from boxes to photorealism

– Best to resemble closely the actual domain
representation

– Worst is having everything a box and special text to
show the difference (cf. stereotypes)

– Design information needs space: compromise

� Don’t create notation from scratch

– Use known/existing elements (and, or, start, stop etc)

� Hint: ask users to define the notation

– It is much easier to introduce their own language than
something you created

– Remember also model readers

• managers, test engineers, customers, deployment,
configuration, packaging and even sales

© 2008 JPT/MetaCase 40

Metamodel: Mobile phone app

© 2008 JPT/MetaCase 41

Metamodel: AUTOSAR (partial)

© 2008 JPT/MetaCase 42

Transformations in DSM

Metametamodel

Metamodel

Model

Application

Code

� Code generation principles

– Generate always full code from
modelers perspective

– Never touch the generated code

– Keep generated and manually
written code separete

• Avoid generation of sections of
files (protected blogs)

� Single source, multiple
outputs/streams

• Configuration

• Testing and analysis

• Automated build → automating
compile and execution

• Metrics

• Simulation & prototypes

• Help text and user guides

• Documentation and review

© 2008 JPT/MetaCase 43

Raise abstraction with domain
frameworks

Platform

Component
Framework

Domain
Framework

Generated
Code

Model

PlatformPlatform

Component
Framework

Component
Framework

Hand-
Written
Code

Generated
&

Hand-
Written
Code

Wizard

© 2008 JPT/MetaCase 44

Transformations in DSM

Metametamodel

Metamodel

Model

Application

� Model-to-model transformation is
usually ”a bad thing”:

– Creates copies of the same data

– Running transformation again
after model has been manually
edited difficult

� Better to extend the modeling
language

� Acceptable is some cases

– Models based on a subset of
another language

– Generator exists for an other
metamodel

© 2008 JPT/MetaCase 45

Transformations in DSM

Metametamodel

Metamodel

Model

Application

Code

� Import to models (reverse)

– Data definitions

– Interfaces

– Message types etc.

� Imported data is tied to
specific types in the
modeling language

– E.g. Specific kind of function

© 2008 JPT/MetaCase 46

What kind of transformations

Metametamodel

Metamodel

Model

Application

� Create metamodels based on
models

– Graphical metamodeling

© 2008 JPT/MetaCase 47

What kind of transformations

Metametamodel

Metamodel

Model

Application

”Code”

� Update language based on
external data

– Libaries

– Values to be selected
contextually based on
external data

Other
applications

© 2008 JPT/MetaCase 48

Research topics

� Emprical studies needed more!
– Development time and resource use
– Benefits
– ROI
– Where and when to use DSM

• Application areas, Types of project, Existing styles and practices,
Before, during or after the Big New Architecture?

� How do you design a domain-specific language?
– Identifying variable aspects of the domain?
– Gradual evolution or big upfront design?
– Testing in terms of the DSML and its abstractions

� Choosing a type of language
– Graphical, text, matrix, table, form, interactive

� Evolution of languages in accordance with a domain
– Maintaining compatibility as the language evolves

� Tooling related
– (Meta)model versioning principles & tools
– Graphical DIFF

© 2008 JPT/MetaCase 49

Summary

� We can still continue to raise the level of abstraction

� Domain-Specific approach seems a viable approach

� We need to study (and teach) how to:

– specify languages

– implement generators

– create frameworks for automation

– seek right abstractions for automation

� There is a growing interest in DSM

– research

– industry

© 2008 JPT/MetaCase 50

Question and comments?

Thank you!

MetaCase
Ylistönmäentie 31

FI-40500 Jyväskylä, Finland
Phone +358 14 4451 400
Fax +358 14 4451 405

Contact: jpt@metacase.com

© 2008 JPT/MetaCase 51

References

� EADS case study,
www.metacase.com/papers/MetaEdit_in_EADS.pdf

� Kelly, S., Tolvanen, J-P., Domain-Specific Modeling, Wiley
2008

� Kieburtz, R. et al., “A Software Engineering Experiment in
Software Component Generation,” Proceedings of 18th
International Conference on Software Engineering, Berlin,
IEEE Computer Society Press, March, 1996.

� Nokia case study,
www.metacase.com/papers/MetaEdit_in_Nokia.pdf

� Safa, L., The Making Of User-Interface Designer, A
Proprietary DSM Tool, Procs of 7th OOPSLA workshop on
Domain-Specific Modeling, 2007

� DSMForum, www.dsmforum.org

